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Wetting in fcc Ising antiferromagnets and binary alloys.
II. A Monte Carlo and renormalization-group study
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The order-disorder transition at the surface of an fcc Ising antiferromagnet with nearest- and
next-nearest-neighbor interactions which exhibits an L12 {A38) ground-state structure is studied us-

ing Monte Carlo and renorrnalization-group methods. Monte Carlo results for the surface phase di-

agram, critical behavior of both excess and local quantities, as well as the short-range-order parame-
ter at the surface are presented. The critical behavior is shown to be consistent with the predictions
of mean-field theory.

I. INTRODUCTION

The nature of wetting transitions in systems with
short-ranged interactions in 1=3 dimensions is still rath-
er controversial. ' In particular, computer simulations
of critical wetting in the three-dimensional (3D) Ising
model have yielded results which are consistent with sim-
ple mean-field behavior; the rather exotic critical singu-
larities predicted by various renormalization-group treat-
ments were not observed. This discrepancy between
theory and simulation data is one of the central open
questions in the field of interfacial critical phenomena.

Direct experimental tests of the theory would therefore
be very useful. This may be possible in a semi-infinite
magnetic insulator (in which the interactions are short
ranged) with a bulk first-order phase transition. In this
case, a narrow region of high-temperature disordered
phase can intervene at the free surface and finally wet it
at the bulk transition temperature, T', where the ordered
and the disordered phases coexist. When this occurs,
the order at the surface goes continuously to zero and
low-energy electron-diffraction (LEED), spin-polarized
LEED (SPLEED), or total-reflection experiments using
synchrotron radiation or neutrons can be used to deter-
mine the wetting critical behavior.

In order to provide some guidance for such experi-
ments, we have studied surface-induced disorder (SID)
transitions in an fcc Ising antiferromagnet with nearest-
and next-nearest-neighbor interactions which exhibits an
L lz ( A3B) ground-state structure. The model is general
enough to illustrate several generic features of wetting in

ordering alloys and magnets with short range interac-
tions. In particular, more than one density is needed to
describe the ordered state; this makes it possible to study
the inhuence of surface segregation and was shown in
Ref. 10 to lead to qualitative new nonuniversal wetting
behavior.

In the first paper of this series we investigated this
model using the mean-field (MF) approximation. In the

II. FROM THE ISING ANTIFERROMAGNET
TO THK EFFECTIVE INTERFACE MODEL

Our analysis is based on a lattice-gas model for binary
alloys. At each site of a fcc lattice there is a spin variable
s;=+1. We assume an interaction Hamiltonian of the
form

%=J g s, sj —aJ g s, sj HJ gs;—
(NN) (NNN)

HiJ g s; H2J —g s;—, (2.1)
i in

first layer

i in

second layer

where the first sum ranges over nearest-neighbor (NN}
and the second over next-nearest-neighbor (NNN) pairs
of sites. We take a~O so that J~O and aJ&0 corre-
spond to antiferromagnetic NN interactions and fer-
romagnetic NNN interactions, respectively. The other
terms in (2.1) describe the effect of bulk and surface mag-
netic fields. We do not consider modified surface cou-
pling constants here.

present paper we extend our analysis to include Auctua-
tion effects. The outline of the paper is as follows: The
essential features of the MF analysis are reviewed in Sec.
II. The wetting behavior at (100) and (111}surfaces is de-
scribed and an interface displacement model, in which
the dynamic variable is the local distance of the interface
between the ordered bulk and the disordered surface
phases and the crystal surface, is introduced. This model
is then studied using functional renormalization-group
(RG) methods in Sec. III. Our Monte Carlo (MC) results
for the 3D lattice model are described in Sec. IV. The
surface phase diagram, critical behavior of both excess
and local surface quantities, as well as the behavior of the
short-range-order parameter at the surface are described.
The critical behavior is shown to be consistent with sim-
ple MF behavior. Section V contains a brief summary
and concluding remarks.
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This model has been used extensively to study ordering
fcc alloys (such as the Cu-Au system). "' The isomor-
phism between (2.1) and a lattice-gas model for binary
alloys is defined by the variable transformation
c; =(1+s;)/2. In this way a concentration variable c; = 1

(0) can be identified with an A (B) atom at each site of
the lattice. In the present paper we formulate our treat-
ment in terms of the Ising Hamiltonian (2.1).

In the MF approximation one finds that continuous
wetting transitions occur for appropriately chosen sur-
face fields as the A3B bulk order-disorder transition is
crossed going from the ordered to the disordered
state. ' ' The wetting behavior depends on the crystal-
lographic orientation of the surface while the order at
the surface vanishes with an exponent P, = —,

' at the (111}
surface, P, is nonuniversal at (100) surfaces. In particu-
lar, its value depends on the relative strength of the NN
and NNN interactions: we obtain P, =2.22 for a=0.2,
and P, =2.8 for a=0.1 in the MF approximation in this
case.

The reason for the drastic difference in behavior at
these two surfaces is that while one length scale (mea-
sured for example by the width of the MF order parame-
ter interface} dominates in the [111]direction, there are
two characteristic lengths of comparable size in the [100]
direction. It is the competition between these two length
scales which leads to the nonuniversal behavior. This
effect is rather easy to understand in terms of an interface
displacement model. The dynamical variable in this
model, z, is the local distance of the interface from the
free surface. The free-energy functional, which is derived
in Ref. 10, has the form

Ar f Z 2' JZFIzI =of+ Aie +Bie

—A2Z —2A2Z+ A2e ' +B2e ' + +tz, (2.2)

where t =(T' —T)/T' is the reduced temperature and
A, A, z are the inverse correlation lengths of the order pa-
rameter (OP) and the magnetization in the disordered
(surface) phase. of is the surface tension of the free in-
terface. The temperature dependence of the coefficients
A, , . . . , B2 is negligible near the transition. A, is pro-
portional to a staggered field in the surface; it is identical-
ly zero for model (2.1).

In order to characterize the wetting behavior, two
cases need to be distinguished. ' ' '

—2A, z
(i) A, 2&2A, , : The leading exponential term is e

and the resulting critical behavior is the same as in the
single-order-parameter case. The order parameter at the
surface, rt, =8&/BA,

~ „0,vanishes at t ' with P, = —,'.
1

At tricriticality, where B,=O in this case, we obtain
P', =A. , /A, 2 for A.i & 3A.„and P', = —,

' for A.2 & 3A,
2Z

(ii) A,2 & 2A, , : The term e determines the wetting be-
havior, so that P, =A, , /A, 2. At tricriticality, where A2 ——0
in this case, we obtain P', =A, , /(2A, z) for A, »A, 2, and

Pi ———,
' for A. , & A, 2 & 2A, i.

For a (111}surface A,z»A, The critical behavior is

therefore the same as in the single-order-parameter case.
On the other hand, for the (100) surface the MF analysis
of the lattice model with a=0.2 yields X, =1.6266 and
A,z ——0.7335, so that A,2&A, , (which implies A,z &2k, , ); we
thus find Pi ——2.22 and Pi ——Pi/2.

The surface magnetization also exhibits a singular tem-
perature dependence. ' Since the coeScients B„A2,
Bz, . . . , in (2.2) are linear in H, , one has

—2A. z
5mi(t):=mi(t) —mi(0)=constX(e ' )

—A, 2Z+constX(e ' )+

This implies

A,2/2A, )5m, (t)=a, t+a, t'~'+ +a~t '

for the (111)surface (A,z »A, , ), and

5m, (t)=b, t+b2t + +b~t2 2~, i~2

for the (100) surface, where the a's and b's are constants.

III. RENORMALIZATION-GROUP THEORY

The renormalization-group treatment of the effective
interface model for a single order parameter predicts a
critical wetting behavior in d=3 which differs dramati-
cally from the MF result. The critical exponents are
found to depend continuously on the dimensionless pa-
rameter to=ktt TA, /(4mo ), where o is the stiffness of the
free interface. In particular, the OP at the surface, g, ,
vanishes as

il, -tt'I x [in(1/t)]~,

where p, =(I+to)/2, 4=0 for co & —,'; p, =v'2' —co/2,
4 =&co/8 for —,

' & co & 2; and P, = 1, 4=0 for co & 2 (Refs.
5, 6, 19, 20). This behavior is expected to be found at the
(111}surface.

In order to determine the RG predictions for the criti-
cal behavior at the (100) surface, we follow the treatment
of Fisher and Huse for the single-order-parameter case. '

For an arbitrary bare interface potential VD(z), the renor-
malized potential is given to linear order in Vby

21

VI(z}= f dz'V (z')e ' " ' " (3 1)
&4mcol
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where I is the logarithm of the spatial rescaling factor.
The critical behavior is determined by renormalizing the
potential until its curvature at its minimum at z =z is of
order one and monotonically increasing. This occurs at
the scale exp(l*) given by 8 Vt*/ciz ~, =1.

m

The average position of the interface, (z), will be
given by the position z of the minimum of the renormal-
ized potential at scale I *; since there is no rescaling of
perpendicular distances, (z ) =z'.

For A,2 & 2A, , [which is the relevant parameter range for
Cu3Au(100)], A, z sets the scale for z and defines co. The
surface OP is given by g, —(exp( —A, &z)). Consider first
the case A,» A, z. p, is determined from

exp — z

21

aa, A
1
——0

1 —z'A,
&

/A, 2
—(z —z') /(4col )dz'e ' 'e, (3 2)

(4mcol*)'

where z is now measured in units of A,2
'. For technical

reasons, we define z =p/. The exponent in the integral
(3.2) is maximized at p'=p —2coA. &/Az. For p & 2coA, &/ll2,
the integral is therefore dominated by the saddle point, so
that

„,z2 f dp'exp[1'[ —p'A. , /Az —(p —p') /(4co)]] -exp[ —pl*A. , /Az~col'(A, , /A2) ] . (3.3)

From the RG treatment in Ref. 6 we know that for co & 2 we have

pl =z = — ln(t),2+co
(3.4a)

I'= ——,'ln(t) .

Collecting everything together, we arrive at

(3.4b)

=0 (3.5)

This result is correct as long as

2+co=@,) 2coA, ~/A2,

i.e., for

co&(A, (/A, 2
—

—,') '=:co) .

For p & 2coA, &/A, 2 the integral is dominated by p' near zero, so that

f dp'exp[i'[ —p'A, , /A2 —(p —p, ') /(4co)]] -exp[ p l'/(4co) ——,
'—In(&")],

+4m col ' (3.6)

from which we obtain given by (3.5) for co & 2.
co2 =2(A,z/X, ), we have

For 2 & co & coz, with

(2+co)

8co
(3.7)

This result is valid for co 1 & ~ & 2. Finally, for m & 2 we
have

Ar
1

p, = +8co— co, 4= v'co/8 .
2A2 X2

'
A2

(3.10)

(z ) = —U'2co ln(t)+ —' ln ln
1

4 (3.8)

P, = 1, 4=0 . (3.9)

For k2 &2k, , &2A,z, co»2. In this case, p, and %' are

instead of (3.4a). Together with (3.4b), we find from (3.6)

Finally, for co & coz we again obtain the result (3.9).
Note that p, is a continuous function of co which cle-

creases monotonically with increasing cu for A,» A, 2 and
increases with increasing co for A,2 & 2A, 1 & 2A.2.

The results for the tricritical exponents p', and 4, are
given in Table I. pI is a continuous function of co. It de-
creases monotonically with increasing co for A 1 ) 2A 2,
while it increases with increasing co for 2A, 2 & ~» A,2/2.
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TABLE I. RG predictions for the tricritical exponents PI and 4, as a function co= ks TA,z/(4me },for 2A, , & A,i.

A.1)2A, 2 2A2)A, 1)A2 2A,g) 2A. 1 )A,2

P', = 1+co 2——,%,=0
2A2 i2

for a) & —'(A, 1/A. 2
—1) ':—a)1, for co& —'

2

1+coPI=
2

for —& co
1

2

(1+2')
P'i = 8' +r= ——

for co1, &co& 2
1

~1 — ~1 ~1
p( —— v'Sro —c—o, 4, =—v'co/S

2A2 A2 A2

for
2 &&2 =2~~2j~]~

p', =&2a) co/2, —4, =v'a)/8

for
2 &co&2

for —' & co
2

PI ——1, %, =0
for co &co for 2 &co

IV. MONTE CARLO SIMULATIONS

The Monte Carlo method has been used extensively to
study the order-disorder phase transitions of the Ising
model (2.1) in the bulk. ' ' ' It is quite clear that the
nearest-neighbor model (a=O) cannot provide a good
description of binary alloys, such as the CuAu system,
even at stoichiometric compositions. Also, the next-
nearest-neighbor model is at best a crude approximation.
Nevertheless, the experimental long-range-order data for
Cu3Au at cA„-—0.25 and cA„=0.28, are reproduced rath-
er well for a=0.2. ' Therefore, we have chosen this
value of a for most of our simulations; some data were
also taken for a=0.1 in order to check the a dependence
of the wetting behavior.

We have confined our calculations to systems which
are at stoichiometric A &B composition in the bulk. Since
we use the grand canonical ensemble, the chemical poten-
tials p „and pz or, equivalently, the field 8, are therefore
a function of temperature. This temperature dependence
of H, determined in a system with periodic boundary con-
ditions, is shown in Fig. 1.

In the present simulations we consider a system of D
(100}or (111) lattice planes, with periodic boundary con-
ditions within the planes. For the (100) planes we mea-
sure the system size in units of the unit cell of the sc
lattice —with the lattice constant ao being half of the
next-nearest-neighbor distance in the fcc lattice —in
which half of the lattice sites are occupied. In the (111)
planes the B (Au) sites form a triangular net, which is
generated by two primitive vectors a, and a2 {with

I ai I
=

I az I
=2i 2+o and ai a2=4+o}. The ~y~te~ »ze

in the {111)planes is then measured in units of ci ——a, /2
and c2 ——(a2 —a, /2)/2, so that c, c2——0. In both cases we
have chosen as L XL geometry in the planes. Each (100)
plane consists of N =L /2 spins, and each (111)plane of
N=L spins. The ordered structure fits the periodic
boundary conditions only if L is even in case of the (100)
planes, while for the (111)planes L has to be a multiple of
4. In order to keep the system size as small as possible,
we take only one of the two boundary planes to be a free

8.55

H(T)

8.50-
a o

0 0

8.45— 00a
0
0

8.00
2.0 ksT/J

FIG. 1. Temperature dependence of the magnetic Seld 0 re-
quired to keep the bulk system at the stoichiometric A 38 com-
position. The Selds for two dim'erent coupling constant ratios a
are shown.

surface; effective bulk fields are introduced (in addition to
H} at the other surface in order to simulate a semi-infinite
system. It turns out that both magnetic and staggered
fields are necessary in order to keep the concentration
and the order parameter at their bulk values. These
efFective fields are also used to break the symmetry be-
tween the four equivalent ground states of the A sB struc-
ture. For the (100) case, the surface is forced to be of the
AB type (A type) by choosing of an even (odd) D and
elective bulk fields which favor a pure A "bulk" plane.

A necessary condition for the MC study of the SID
transition is that the "bulk" part of our system stays in a
(metastable) ordered state. We find that this requires
larger and larger lattices when coexistence between or-
dered and disordered phase is approach. This is the
reason for our choice of lattice sizes (as well as for the in-
troduction of the effective bulk fields, see the preceding),
which vary from L=12 and D=20 to L=50 and D=50.
Sampling techniques with preferential surface site selec-
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tion were used so that surface spins are flipped 10 times
more often than bulk spins. After "equilibrium" was
reached, typically 7500-50000 MC steps per surface site
were used for calculating the averages.

Since the critical surface behavior is expected to de-
pend on the crystallographic direction of the surface, we
present and discuss the results of the MC simulations for
the (100) and the (111)surface separately.

0.6

0.4—

I I

xQ

Symbol H2/H,

0.10

v 0.05

o 0.0
-0.05

A. (100) surface

The temperature variation of the OP in the first and
the third layer is shown for two difFerent surface fields in
Fig. 2 for the case of an AB type surface. If not stated
otherwise, all the following simulation data are obtained
for this surface type. The surface transition can be either
first or second order, depending on the choice of H

&
and

H2. From Fig. 2 we estimate the transition temperature
to be ks T'/J =2.870+0.010. This is in good agreement
with the temperature of the order-disorder transition
determined in MC simulations of the bulk system.

0
0 0 @

0

-4.0 -3.5 -3.0 -2.5

FIG. 3. Surface order parameter g& at coexistence
( T=2.870), as a function of the surface field H& and for several
values of H2/Hl', lattice size L=40, D=46. Some data shown
[marked by crosses (X)] are taken for ksT/J=2. 873 with
L=30, D=38.

1. Surface phase diagram

The first aim of our computer experiment is to deter-
mine the surface phase diagram: which surface fields lead
to continuous surface transitions, and for which H&, H2 is
the transition first order. The position of the boundary
line between these two regions is most easily found by a
variation of the surface fields at coexistence ( T = T' ).
Figure 3 shows the H, dependence of the surface OP ri,
for several fixed ratios H2/H, . For H2/H, &0, ri, is
found to vanish continuously with H &. On the other
hand, for H2/H, & 0, ri, (H, ) seems to behave discontinu-
ously near H, = —2.6; increasing H& beyond the values
shown in Fig. 3 leads to a complete disordering of the
whole system.

The phase diagram, which is obtained from the data in
Fig. 3, is shown in Fig. 4. The solid line which ter-
minates at point 0 in Fig. 4 is a tricritical line. It

separates the region of first order transitions (which
occur for more negative values of H() from the region of
continuous transitions. In terms of the interface displace-
ment model (2.2), this line corresponds to A 2

——0,
B2 &0. To the left of this line Az is negative, to the
right it is positive. In the scenario we describe here, B2
changes sign at the multicritical point 0. For larger
values of Hz, B& is negative. The dashed line is a line of
first-order transitions; Az is positive along this line. A

0.2 0

2

~ ~
~ re~+

~ ~ '

0.5—

Symbol

0
d o

bulk

H =-
1

H& =-2

2.4 ks T/J 2.8

FIG. 2. Order parameter in the first and third layers at a
(100) surface for surface fields H, = —2.5, H2 ———0.12 (O, Q),
and H& ———3.5, H2 ——+ 0.17 (O, B ), as well as the bulk order
parameter (V), as a function of temperature T.

FIG. 4. Surface phase diagram for the AB-type surface in the
(01,02) plane. The solid line is a line of tricritical transitions
which separates the regions of continuous and discontinuous
surface transitions; it is determined by linear interpolation be-
tween the data points. The dashed line indicates the approxi-
mate position of a line of first-order transitions. The dashed-
dotted lines are the lines of constant H2/Hl, along which
ql(01) was measured as shown in Fig. 3. The squares (continu-
ous transition) and the circle (discontinuous transition) indicate
the values of surface fields for which we have determined the
temperature dependence of several surface quantities, as dis-
cussed in the text.
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sheet of prewetting transitions (not shown here) is expect-
ed to project out from this first-order line into the t&0
region of the full (t, H „H2 ) phase diagram.

It can be seen that the H2 dependence of the tricritical
line is weak. A similar H1 dependence of g1 has been
found in MF approximation. Even the value of the tri-
critical point H', = —2.70 (calculated for H2 ———0.2 in
the lattice MF treatment' ) is in astonishing good agree-
ment with the MC result Hi ———2.81 (obtained by a
linear interpolation in Fig. 4). Since the concentration of
A atoms increases with increasing H„Fig. 4 shows that
a SID transition occurs if the A component is enriched at
the surface.

The behavior of g1 at coexistence as a function of sur-
face field for the case of B segregation at the surface, i.e.,
for large negative values of H„ is shown in Fig. 5. Of
course, the surface OP decreases if the surface composi-
tion deviates from the ideal AB composition —in either
direction. However, Fig. 5 shows that the surface order
vanishes exponentially as H1~ —~, i.e., with increasing
8 concentration in the surface. In contrast, we find that
the OP in the third layer does not decrease substantially
in this limit. The exponential decay of i), with large neg-
ative H, is therefore just the behavior of an antiferromag-
net with a fixed staggered field (from the third layer) in an
external magnetic field. Neither an interface delocaliza-
tion transition nor a disordering transition in the surface
occurs in this case.

These observations can be understood as follows: Due
to the antiferromagnetic coupling, a 8-rich surface leads
to a high A concentration in the second layer. Then, in
the third layer, which is the second layer of the AB type,
an atom on an A site feels the existence of the free sur-
face only through a single (ferromagnetic) next-nearest-
neighbor coupling. If we assume that all layers further
away from the surface are in their ordered bulk state, the
next-nearest-neighbor interactions from the first and the
fifth layer cancel each other at the A sites of the third
layer; however, they favor the occupation of 8 sites by 8
atoms. Therefore, it is plausible that 8 segregation

causes much less disorder in the nei.ghboring layers than
A segregation.

Finally, we want to demonstrate that a SID transition
is also possible for the A-type surface. Figure 6 shows
the H1 dependence of g1 at coexistence for this surface
type. The relation between g1 and H1 in the region of in-
complete SID is again almost linear. A linear extrapola-
tion yields (H', ,H2)=( —2.66, —0.27) for the tricritical
point. However, compared to the AB-type surface, the
role of A and B segregation is reversed in this case: SID
occurs only for large negative values of H1, i.e., for high
8 concentrations in the surface. The heuristic argument
given above for the AB-type surface can easily be
modified to explain this behavior. Note that there is only
a very small interval of surface fields where SID transi-
tions are possible for both surface types.

D —1

(rib —g„),
n=1
n odd

where gb is also calculated from the profile by

D —5

rib =
n =D —11

n odd

(4.1)

(4.2)

This definition of gb does not coincide with the usual
definition of the bulk OP in A3B binary alloys, since
only the AB-type layers are taken into account here.

To calculate the surface excess susceptibility

X, =ay, /Bh
~ „,, (4 3)

2. Critical sttrface behavior

Next we turn to the investigation of the critical proper-
ties of various surface and excess quantities. We obtain
the surface excess OP, g„ from the OP profile as follows:

10' .
0

10'— 0
o~

0

-2.5 -2.0 -1.5 -1.0

FIG. 5. Surface order parameter pl near coexistence
(k& T/J=2. 860) as a function of the surface field Hl, for large
negative Hl, with H2/H, =0.1 and L =40, D=46.

FIG. 6. Surface order parameter gl for the A-type surface
(gl is here the OP of the second layer), at coexistence
(kqT/J=2. 870) as a function of the surface field HI, for
H2/HI ——0.1 and L=40, D=45.
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FIG. 7. Surface excess susceptibility P, (a), surface excess order parameter g, (b), and surface order parameter g& (c) for the (100)
surface, plotted as a function of the reduced temperature t (with kz T /J=2. 880) for several values of the surface fields (Ref. 26). In
(a), data shown are (from bottom to top) for H, = —1.0, Hz ———0.2, for H, = —2.5, H, = —0.12, and for H& = —2.9 H2 = —0.29.
Data for successive values of the fields are multiplied by a factor of 10 to separate them in the figure. In (b) and (c), data shown are
(from bottom to top) for H&= —1.0 H2= —0.2 for H~ = —1.5 H2= —0.2 for H~ = —2.0 Hp= —0.1 for H& = —2.5 H2= —012,
for H, = —2.75, H2 ———0.1375, and for H, = —2.9, H& ———0.29. In (b), data for succcessive values of the fields are incremented by
2.5 to separate them in the figure. In (c), the data for H, = —2.75 and H& ———2.9 are multiplied by a factor of 2 and 6, respectively.
The solid lines are an approximate At to the asymptotic slope of the data.
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k~ TP, =N 'Qb '9( '9b —'9) 'Qs ~

I J

(4.4)

where h is the (staggered} field conjugate to ri, we use the
fluctuation-dissipation relation

difference is not surprising. Nevertheless, we cannot ex-
clude, a priori, the possibility that this discrepancy is due
to capillary wave effects.

This can be tested by looking at the ratio of the critical

The temperature dependence of the g, and X, are shown

as a function of the reduced temperature t = ( T'
—T)/T' for several surface fields in Figs. 7(a) and 7(b).
Both MF and RG theory predict the following critical
behavior:

1S—

I I I I I li I I I I I Ills

i},——In(t),
(4.5}

ls i'+++++++++++++

The MC data show the predicted scaling behavior. It is
nice to see that the deviations from scaling occur in both
ri, and X, at about the same value of t -=0.05.

For a more detailed comparison between MF theory
and MC results, we show lattice MF results for the tem-
perature dependence of i)l, in Fig. 8(a}. There are only
some minor differences between Figs. 7(b) and 8(a):

For H
&

———2.9 and H
&

———2.75, the transition is
discontinuous in the MF approximation. The reason is
that the position of the tricritical line is slightly different.

The absolute value of g, is in MF theory only half of
the MC result. This can be attributed in part to the
different values of the bulk OP's at T'. i)&"-0.55,

=-0.75. In addition, the mean distance of the inter-
face from the surface is about 1.5 times larger in the
simulations than in the MF result.

The behavior of the surface OP is particularly interest-
ing. The temperature dependence of i), is shown in Fig.
7(c); the corresponding MF results are shown in Fig. 8(b).
We first discuss the qualitative properties of g&. The ob-
served temperature dependence of g& can be described by
an effective critical exponent p, ,ff. Figure 7(c) shows that
pi ff depends on the values of the surface fields: p, ,ff in-
creases with increasing distance of (H„H2) from the tri-
critical line. However, for the two surface fields
(H„H2) =( —2.75, —0.1375) and (H„H2) =( —2.9,
—0.29},which are both on the tricritical line, we find the
same (tricritical) exponent p', . p, ,ff reaches an asymptot-
ic value far away from the tricritical line, which is the
true critical exponent p, . The intermediate values of p, ff
are due to crossover effects. The crossover region is very
broad: In order to see P, clearly, we have to choose sur-
face fields so far away from the tricritical line that the A
concentration in the surface exceeds c„=0.75. All these
properties of the surface OP are also found in Fig. 8(b),
the MF result; the remark concerning the position of the
MF tricritical line made above applies here also.

From Fig. 7(c) we find
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P, = 1.72%0.05,
P', =0.81+0.05 .

10 10

Compared to the MF result P', "'=2.22, the MC data
yield a significantly smaller value for pi. However, since
the MF approximation indicates that P, depends on the
ratio of two microscopic lengths in this case, this

FIG. 8. Mean-field results for the surface excess order pa-
rameter g, (a) and surface order parameter g, (b) for the (100)
surface, plotted as a function of the reduced temperature t, for
the same values of the surface fields and in the same presenta-
tion as the Monte Carlo data shown in Fig. 7.
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and the tricritical surface exponent. The RG yields

PI/PI&0. 5 for all ro when 1&A,I/A2 ——P'I "'&3. For
A, , /)Lz&3 this ratio can be smaller; however, for the
unique value of co which yields P, = 1.72 in this case, one
obtains pt/pt-0. 58. In contrast, the MC data give
p', /p, =0.47+0.04. The MC data are therefore con-
sistent with the MF result p', /pt ———,

' and give no indica-
tion of a fluctuation induced renormalization of the ex-
ponents. Note also that the linear dependence of g& on
H, (at t=O) as the tricritical line is approached (see Figs.
3, 6, and 13} is consistent with the prediction of MF
theory.

This observation is in agreement with the simulation
results of Binder et al. for wetting in the sc ferromag-
netic Ising model: they also find that the critical behav-
ior is consistent with simple (universal) MF behavior.
The two simulations differ, however, in three important
points.

(i) While Binder et al. are able to estimate the value of
co independently to be about ~=1, we have no informa-
tion about co whatsoever.

(ii) The location of the first-order bulk transition is
known exactly in their model so that they can obtain
more accurate values for the critical exponents.

(iii) Renormalized wetting exponents are expected only
when the transition temperature is above the roughening
temperature Tz of the system. Below Tz interface delo-
calization occurs by a series of layering transitions and is
expected to show MF critical behavior (since co=0). The
simulation of Binder et al. is performed for temperatures
above Tz. For our model, T„ is unknown. However, the
absence of any signs of layering in the simulation data is
an indication that T' & Trt in our model.

Order-parameter and concentration profiles near coex-
istence are shown in Fig. 9. Note that even for j=0.01,
the distance of the kink position from the surface is rath-
er small.

3. Surface magnetization
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Our data for the surface magnetization as a function of
temperature for H, = —2.0 are compared with the MF
result in Fig. 10(a}. For this value of HI, m, increases
rather strongly as the transition temperature T' is ap-
proached from below. In contrast, in the high tempera-
ture, disordered phase the temperature dependence is
rather small. Near T*, the magnetization is continuous,
but decreases rapidly between TI and TU [TI (TU) is the
temperature of the boundary between the ordered (disor-
dered) and the two-phase region of the bulk phase dia-
gram for m =—,'; see Fig. 10(b)].

As T~TL ——T', the thickness (z ) of the disordered
surface phase diverges (i.e., becomes macroscopic}. In
the two-phase region TL & T & TU, (z ) is determined by
the condition that the total magnetization density of the
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FIG. 9. Order parameter (0 ) and magnetization (6 ) profile
in the (100) direction for kb T/J= 2.85 and H I

———2.5,
Hp ———0.12.

FIG. 10. (a) MF theory (solid lines) and MC simulation
(O, U) results for the surface magnetization as a function of
temperature T, for H, = —2.0, H2 ———0.1. The transition tem-
peratures T*= TL and TU are k& T*/J=4.18 and
k& TU/J=4. 32 in the MF approximation, as indicated. For the
MC data (with lattice size L=24, D=30) k~T*/J=2. 88 is
used; the size of the two-phase region is smaller in this case. (b)
Part of the bulk temperature-magnetization phase diagram of
model (2.1) near m=0. 5, obtained from MC simulations (Ref.
23).
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sample is —,'. For T ~ TU the system is in the coherent
disordered phase. The variation of the surface magneti-
zation for TL & T & TU refiects the (essentially) linear de-
crease of the bulk magnetization in the disordered phase
as the two-phase region is transversed.

The size of variation of m, with temperature for
T &TL depends rather sensitively on the values of H&

and the surface enhancement. Indeed, for particular
choices of these parameters the temperature dependence
of m

&
can be substantially smaller. ' At very low temper-

atures m& is approximately zero, independent of the
value of H, . For H& sufficiently negative, the surface
magnetization remains small for all T & TL. Decreasing

H, therefore suppresses the temperature dependence of
m

&
in the low-temperature phase. However, for the case

considered here, in which the coupling constant in the
surface, J„is equal to that in the bulk, the wetting transi-
tion becomes first order for H, ~ —2.7. For other
choices of J„it should be possible to move the tricritical
line to sufficiently negative values of H, so that we have a
SID transition even when m, remains very small for all
T & TL. This would correspond to the observed behavior
in Cu3Au.

the jump of a& is too small to be seen. The data for
H ] = 2.0 are continuous as a function of temperature.

5. a Dependence of the critical exponents

In the MF approximation, p, was found to depend on
the ratio a of NN and NNN couplings. For example,
P& ——2.8 for a=0.1, P& ——2.2 for a=0.2, and P& ——1.9 for
a =0.3. Since the bulk phase diagram changes its topolo-
gy near a =0.25, we have determined P& for a =0.1 in or-
der to compare with the a=0.2 results of the last para-
graph.

In order to calculate p& and pI for a=0.1, we have to
first determine the position of the tricritical line. Data
for ri&(H, ) at coexistence, with Hz/H, fixed, are shown
in Fig. 13. By linear extrapolation of the data for

1.0

4. Short-range order

In the bulk, short-range order (SRO) in the grand
canonical ensemble is described by the correlation func-
tions

g, (r) = (s,s) ) —m,',
where r denotes the distance between the sites i,j on the
lattice. This quantity is related to the standard Cowley
short-range-order parameter ab(r) by"' '

a$(r) =gi, (r)/(1 —mb) .

Near a free surface, the short-range order will not only
depend on the distance between the lattice sites, but also
on their distances from the surface. Therefore, we define
the SRO parameters a„(r) for spins i,j, which are both in
layer n:

a„(r)= [(sI"'s'"') —m„]/(1 —m„) .

0: Q110: CL12
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A generalization for spins in different layers is straight-
forward but will not be considered here.

The data for a, (r) and az(r) are presented in Figs. 11
and 12 for surface fields which lead to a second- and
first-order transition, respectively. Due to the antiferro-
magnetic coupling, a&(r) is negative if r is a nearest-
neighbor distance.

~
a, (r)

~

is found to decrease as a
function of distance and as a function of temperature—
just as expected. On the other hand, az(r) shows a very
unusual behavior, which is directly related to the highly
interlocked structure of the fcc lattice: Below the bulk
transition temperature, an antiferromagnetic structure
appears in the short-range correlations which increases
with temperature. Above T*, it decreases again, parallel-
ing the decrease of the order in the whole lattice.

For H, = —3.5, a2 has a clear jump at T = T*, while

0.2— 00 OO0 0
o

.0

FIG. 11. Short-range-order parameters a~ for H& ———2.0,
H2 ———0.1, where the surface transition is continuous, as a
function of temperature T. Data for the first (i=1) and the

second (i=2) layer are given in part (a) and (b) of the figure, re-

spectively, for nearest (a;&), next-nearest- (a;2), third- (a;3), and

fifth- (a;4) nearest-neighbor distances, as shown by the inset in

(a). Lattice size is L=24, D= 30.
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FIG. 12. Short-range-order parameters a;, for H& ———3.5,

H, =0, where the surface transition is discontinuous, as a func-

tion of temperature T. Data for the first (i=1) and the second
(i=2) layer are given in part (a) and (b) of the figure, respective-

ly, for nearest (a;I), next-nearest- (a;&), third- (a;3), and fifth-

(a;4) nearest-neighbor distances, as shown by the inset in (a).
Lattice size is L =24, D= 30.
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FIG. 13. Surface order parameter gI for a=0.1 at coex-
istence (k&T/J=2. 340), as a function of the surface field HI
and for two values of H2/HI as indicated; lattice size L=40,
D=46.

FIG. 14. Surface excess order parameter g, (a) and surface

order parameter gI (b) for the (100) surface with a=0.1, plotted
as a function of the reduced temperature t (with

kz T /J=2. 345) for several values of the surface fields (Ref. 29).
Data shown are (from bottom to top) for H, = —1.0,
H2 ———0.2, for H I ———2.0, H2 ———0.1, for H I

———2.5,
H2 ———0.12, and for HI = —2.67 H2 = —0.267. In (a), data for
successive values of the fields are incremented by 2.5 to separate
them in the figure. In (b), the data for H, = —2.67 are multi-

plied by a factor of 3. The solid lines are an approximate fit to
the asymptotic slope of the data.
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H2/H& ——0.1, we obtain the tricritical point (H&, Hz)
=(—2.67, —0.267). The temperature dependence of q,
and g, is presented in Fig. 14 for several surface fields

corresponding to various distances form the tricritical
line. As before, the surface excess OP shows the expected
logarithmic behavior for reduced temperatures smaller
than t -=0.1. Figure 14(b) yields the desired critical ex-

ponents

Pi ——0.88+0.05,

P, =1.8420.05 .

Decreasing a therefore leads to an increase in p& and pI,
just as in the MF approximation. Note however that the
relative increase is substantially smaller than that pre-
dicted by MF theory.

B. (111)surface

The SID transition at the (111) surface is found to be
continuous for all surface fields H&. This can be under-
stood in the following way. Assume that H& is chosen so
that we have the stoichiometric composition at the sur-
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FIG. 15. Surface excess susceptibility P, (a), surface excess order parameter g, (b), and surface order parameter g& (c) for the (111)
surface, plotted as a function of the reduced temperature t (with k~ T /J=2. 880) for several values of the surface fields. In (a), data
(from bottom to top) for H& ———1, for H

&

——0, and for H
&

———5 are shown. Data for successive values of the fields are multiplied by a
factor of 10 to separate them in the figure. In (b), data (from bottom to top) for H& ——4, for H& ——2, for H, =0, for H, = —5, and for
H

&
———12 are shown. Data for successive values of the fields are incremented by 2.5 to separate them in the figure. In (c), data (from

bottom to top) for H, =4, for H& ———12, for H& ——2, for H& ——0, and for H& ———5 are shown. The data for H, = —12 are multiplied

by a factor of 0.5. The solid lines are an approximate fit to the asymptotic slope of the data.
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face. If the effect of the missing neighbors at the surface
is suf5cient for a continuous transition —this depends on
the surface enhancement —then the transition is continu-
ous for all surface fields, since deviations from
stoichiometry enhance the surface disorder. We expect
from this argument that the surface OP is largest for
those surface fields which lead to the stoichiometric sur-
face composition.

Figures 15(a) and 15(b) show the critical temperature
dependence of the excess OP g, and the surface excess
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FIG. 16. Mean-field results for the surface excess order pa-
rameter q, (a) and surface order parameter g& (b) for the (111)
surface, plotted as a function of the reduced temperature t for
the same values of the surface fields and in the same presenta-
tion as the Monte Carlo data shown in Fig. 15.

FIG. 17. Order parameter (0 ) and magnetization (4 ) profile
in the (111)direction for k& T/J=2. 84 and H& ——0.

susceptibility 7, for several values of H&. The data exhib-
it the expected scaling behavior [Eq. (4.5)] for t &0.05.
The width of the asymptotic scaling regime is thus about
the same as at the (100) surface. In addition, we again
find that the value of g, is about a factor of 2 greater than
that predicted by MF theory [see Fig. 16(a) and the dis-
cussion following Eq. (4.5)].

In Fig. 15(c) we have plotted the critical temperature
dependence of g, for several surface fields. Since MF
theory predicts a universal exponent P',M"'=0.5, it is
much easier than at the (100) surface to distinguish be-
tween MF and RG behavior. Inspection of the slopes in
Fig. 15(c) gives values for P& (depending on the surface
field) which are all larger than P', "'. However, the devi-
ations from the MF value are rather small, and, further-
more, the MF results shown in Fig. 16(b) also have slopes
slightly greater than 0.5 in this range of reduced tempera-
tures. The scatter of the data is too large for these small
deviations to be significant. We therefore conclude again
that the MC data are consistent with the predictions of
MF theory.

Finally, Fig. 17 shows the order parameter and magne-
tization profiles. As for the (100) surface, the interface is
very near the surface. Even for the smallest values of the
reduced temperature considered, the profiles are just be-
ginning to show the characteristic kink shape.

V. CONCLUSIONS

We have given a detailed description of the surface
phase diagram, the critical behavior of both excess and
local surface quantities, as well as the behavior of the
short-range-order parameter at the surface at the order-
disorder transition in an fcc Ising antiferromagnet with
NN and NNN interactions which exhibits a L 1& ( A 3B)
ground-state structure. Whi1e it is known that the MF
predictions for the bulk phase diagram of this model are
qualitatiuely wrong, ' we find that it does an excellent job
of describing the behavior at SID transitions. In fact,
several predictions are in quantitative agreement with our
data; in particular, the wetting critical behavior was
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found to be consistent with the predictions of MF theory.
Needless to say, we have only considered a very simple

model. Although it may correctly describe many proper-
ties of a magnetic insulator (with short-range interac-
tions), it is not expected to faithfully represent any real
alloy system or magnet with indirect or itinerate ex-
change. For example, in the rare earths, strongly local-
ized f electrons polarize the conduction electrons and in-
duce, in this way, oscillatory, long-range RKKY interac-
tions. The interactions in ordering alloys such as Cu3Au
are of similar form. "

While the qualitative features of the wetting phase dia-
gram of the present model should also apply to ordering
alloys, certain details, such as the values of the critical ex-
ponents or the nonuniversal critical behavior we find at
(100) surfaces, are intimately connected with the short-
range nature of the interactions; the nonuniversal behav-
ior is a feature of wetting when the dimensionality of the
OP is greater than 1 in this case.

In general, the wetting exponents depend rather sensi-
tively on the range and type of interaction. " Because
of this, measurements of the surface OP or the coverage,
characterized by the behavior of z*, at SID transitions,
would provide a useful test of our understanding of mag-
netic or ordering interactions in these systems. This
would be very important since the interaction parameters
in real materials are in general not well known.

While LEED (Ref. 33) or SPLEED (Ref. 34) yields in-
formation about local surface quantities, a total reflection
experiment ' allows a direct determination of z*. X-
rays or neutrons can be rendered surface sensitive by to-
tal reflection: for angles of incidence a, smaller than the
critical angle n, of total reflection, the incoming wave de-
cays exponentially into the bulk of the material (on the
length scale of the penetration depth, I). For tempera-
tures sufficiently close to the transition, the interface
width is generally small compared to both the penetra-
tion depth and the thickness of the disordered surface
phase. In this case, the intensity Iz of the superlattice
Bragg peak decays exponentially with z*:
Is —exp( —2z */I ). ' For short-range interactions,
z'=zo ln(t), so that Is -t, with pz ——2zo/l. As an ex-
ample, consider the parameter values appropriate for
Cu3Au, ap ——1.87 A and minimal penetration depth
Ip =30 A. From the simulation data we obtain zp =2ap
for the (100) surface. This yields Ps ——0.4 for
a; =af ——a, /2, and P~ =0.2 for a;=a, /2, af &a,
(where af denotes the exit angle of the scattered radia-
tion). Thus, the Bragg intensity drops about 1 order of
magnitude over the temperature range 0.001 ( t (0.1.

Finally, throughout our discussion we have assumed

that the system has attained thermodynamic equilibrium.
This may not be the case in experiments on ordering al-
loys. The wetting phenomena we considered occurs
when the system approaches the order-disorder transition
from the low-temperature, ordered phase [see Fig. 10(b)].
The concentration in the disordered phase which forms
at the crystal surface is different from that in the ordered
bulk. Equilibrium therefore requires the transfer of
atoms over length scales of the order of the wetting layer
thickness; this is clearly not possible on the time scale of
a typical experiment. This fact has several consequences.
First, the measured temperature dependence of the con-
centration in the surface layer, c„may be substantially
smaller in the low-temperature phase than predicted by
theory. However, as noted in Sec. IV A 3, similar behav-
ior is expected for certain choices of H, and surface
enhancement. In a given experiment, it may be difficult
to decide which of these two possibilities is the real cause
of such behavior. ' ' Second, it is not a priori obvious
that this effect will not influence the values of the critical
exponents, or at least the nonuniversal behavior which
occurs at (100) surfaces in the present model. The MF re-
sults discussed in Ref. 10 indicate, however, that this
should not be the case. Consider first the [111]direction.
Two densities are needed to describe the wetting behavior
in this case. However, the length scale of the concentra-
tion mode is very short; as a consequence it can be shown
that the universal features of the surface critical behavior
will not be influenced by the details of the concentration
profile. In the [100] direction three densities are needed
to describe the wetting profiles. Two of these, the order
parameter and the difference in concentration between
adjacent planes, have correlation lengths of comparable
size; they couple strongly to cause the characteristic
nonuniversal behavior discussed above. Also, equilibra-
tion is fast because it requires only a local redistribution
of atoms. The third mode, the average concentration
density in neighboring planes, equilibrates slowly. How-
ever, it has only a very short correlation length so that,
just as in the [111]direction, we do not expect this fact to
influence the essential features of the nonuniversal criti-
cal behavior.
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