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An extensive study of the thermodynamics of a two-dimensional periodic array of ultrasmall
Josephson junctions with and without a transverse magnetic field is presented. A quantum Monte
Carlo algorithm is introduced to study a model that includes the Josephson energy, E,, as well as
the charging energy, E., contributions. The superfluid density, internal energy, and specific heat
for different lattice sizes and numbers of Monte Carlo simulation sweeps are studied as a function
of the ratio a =E./E,, the temperature and the magnitude of the magnetic field. When a0, it is
found that as the temperature is lowered the model has two phase transitions. First, a second-
order Berezinskii-Kosterlitz-Thouless (BKT) transition is renormalized by the quantum fluctua-
tions represented by a finite a. Below this BKT transition the system has long-range phase coher-
ence; thus it is a state with zero resistance. At lower temperatures, a first-order phase transition
appears which is entirely due to the quantum fluctuations that nucleate vortex excitations. Below
this “quantum induced transition” (QUIT), the model still has a finite but diminished superfluid
density, thus indicating that the QUIT is between two different zero-resistance states, one dom-
inated by thermal fluctuations and the other by quantum fluctuations. A QUIT is found to be
more pronounced in the case where there is a magnetic field. The case studied here corresponds
in the classical limit to the fully frustrated state. Finally, we discuss the physical properties of
this new low-temperature phase as well as the necessary conditions to test this prediction experi-
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mentally.

I. INTRODUCTION

Considerable attention has been focused recently on
new effects that possibly may be seen in arrays of ul-
trasmall Josephson junctions, due to charging energy
effects. In a recent series of publications, we have sug-
gested that a transition from a usual superconducting
state to a new coherent state dominated by zero-point
quantum fluctuations may be observed in these systems. 2
The conjectured phase transition has arisen from the stud-
ies of the thermodynamic properties of periodic arrays of
Josephson junctions with very small capacitances (say
from 10 " to 10 ~'* F). The model studied considers the
competition between the Josephson coupling energy E,
and the charging energy E. between junctions. It was
found that as a function of temperature for

a=E/E;, (1.1

different from zero, the system undergoes a low-tem-
perature first-order phase transition.! This quantum
(fluctuation-) induced (phase) transition (QUIT), is a
transition between two different superconducting states as

38

measured by their nonzero superfluid density. More re-
cently, we have found that a constant transverse magnetic
field has a significant effect on the properties of a QUIT.?

The purpose of this paper is to give a detailed presenta-
tion of those results as well as the discussion of new ones.
The approach is based on Feynman’s imaginary-time rep-
resentation of the corresponding quantum partition func-
tion.3 The evaluation of the appropriate thermodynamic
averages is done using a quantum Monte Carlo (QMC)
algorithm suitably tailored for the problem of interest.
The actual representation of the discrete path integral
studied in our simulations is obtained after a series of du-
ality transformations that are discussed in the main body
of the paper.

Arrays of Josephson junctions have been and are being
extensively studied. Periodic arrays are made by using
modern photolithographic techniques. Their physical
properties are bein; studied extensively in the large-
capacitance regime.® The small junctions needed to see
the effects described here are yet to be made, but at the
end of the paper we discuss how they could be fabricated
with the present photolithographic state of the art.
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Another type of Josephson junction array that has been
studied more extensively is that of granular materials in
the dielectric regime, where the grain sizes can be very
small, and thus have significant charging energy effects.’
The effects of the strong disorder present in these systems
have to be considered carefully, however.

Typically, in these arrays of Josephson junctions, the
measured resistance R as a function of temperature T
shows a monotonic decreasing behavior below the bulk su-
perconducting temperature T.0. The temperature at
which the material finally becomes superconducting, i.c.,
R =0, is T.. The qualitative interpretation of this behav-
ior is that near T, the superconductors forming the junc-
tions develop superconducting fluctuations as in a bulk
material. However, since the grains are of finite size, a
true superconducting phase transition cannot take place.
Nonetheless, one can associate a Ginzburg-Landau order
parameter to each grain. A Josephson coupling between
grains appears below T, and eventually at T, the system
establishes long-range phase coherence, i.e., R=0. The
width T.o— T, depends on the spread of values of the
E;’s. When the superconductors making the junctions are
ultrasmall, the width T.o— T, is affected since then the
Josephson current is impeded by the static electric field
between them and thus T, decreases with increasing E..
The value of E, can increase to the extent that long-range
phase coherence is no longer possible.

Once the zero-resistance state has been established, if
the charging energy is non-negligible, new things can hap-
pen at low temperature where the thermal fluctuations are
no longer dominant and the quantum or zero-point fluc-
tuations become significant. Within the context of a
mean-field (MF) theory, Simanek® and Efetov’ found
reentrant phase transitions, i.e., a normal-supercon-
ducting-normal scenario as T decreases. Other MF calcu-
lations, self-consistent harmonic approximations, and
variational calculations do no find a reentrant transi-
tion.%® Recent improvements of the MF within the Ogu-
chi approximation, while not leading to a reentrant transi-
tion, did find evidence for a short-range phase enhance-
ment due to the presence of the charging energy.'® All
these analyses have had the feature that dimensionality
does not play a significant role, and thus their regime of
applicability would be expected to be that of higher-
dimensional systems. An exception is the two-dimensional
scaling analysis of Doniach.!'! He studies a coarse-
grained approximation of the lattice model, in imaginary
time, studied by Simanek and Efetov. Doniach uses the
fact that the model at zero temperature becomes an aniso-
tropic three-dimensional XY model, with a playing the
role of temperature. Thus there is a critical value of a,
say a., such that there is a “long-range order” below a.
and disorder above a.. At high temperatures the model
behaves like a two-dimensional (2D) XY model, and thus
a Berezinskii-Kosterlitz-Thouless phase transition should
ensue. The question is what happens for intermediate
temperatures. Within a scaling analysis Doniach does not
find any signature for a reentrant transition as discussed
by either Simanek or Efetov.

A study of an explicitly two-dimensional model within
the semiclassical approximation was considered by one of

us.’ The Wentzel-Kramers-Brillouin (WKB) limit corre-
sponds to high temperatures. By expanding the Hamil-
tonian of the model in powers of A/kpT (with kp being
Boltzmann’s constant and A =h/2x with h being Planck’s
constant), the problem was reduced to that of a 2D XY
model but with a Josephson coupling constant modified by
E.. From an analysis of the corresponding renormal-
ization-group (RG) equations, it was found that T, de-
creases monotonically with a, as expected, but with all the
critical exponents of the classical XY model (i.e., when
@=0) unchanged. Although the changes are mainly
quantitative, these modifications have proven to be neces-
sary to fit the experimental data on granular NbN granu-
lar superconductors. '

The same WKB analysis found that at low tempera-
tures the RG recursion equations become unstable, which
could be the signature of a low-temperature instability.
The instability was conjected to be a reentrant-type tran-
sition, although of a different nature than the one con-
sidered by Simanek and Efetov, since the two dimen-
sionality of the excitations in the system are essential.
Serious questions about the existence of the low-
temperature instability arise since the region of validity of
the WKB approach used is clearly out of the temperature
region where the instability would appear. Thus, a non-
perturbative non-MF approach is needed to ascertain with
more confidence if indeed there is a low-temperature in-
stability due to the presence of quantum fluctuations in
Josephson junctions arrays, and to understand its proper-
ties. With this idea in mind, we have carried out QMC
nonperturbative calculations to resolve these questions.

From the QMC results presented in this paper it is now
clear that there is indeed a low-temperature quantum-
induced phase transition. This QUIT, however, has prop-
erties that had not been previously surmised. The QUIT
is from normal to S| (superconducting 1) and then to S,
(superconducting 2). The normal to S, transition is of the
second-order  Berezinskii-Kosterlitz-Thouless (BKT)
type'® with an a-dependent critical temperature with a
qualitative behavior as found by the WKB analysis, but
quantitatively different. The critical exponents remain
universal for sufficiently small values of @. The transition
from S to S, is of first order between two states with
finite superfluid density, that of 1 being larger than that of
2. In some dimensionless units defined below, if 7T.~1
then Tquit(a=0.3)~0.03, a low temperature indeed.
The superfluid density differences in the two states are
quite small, Ap~0.02. Of significance is the fact that the
specific heat that has a maximum of order one around 7,
becomes six times larger around Tquit. Thus if ¢, can be
measured, it should give a clear signature of the QUIT.

To understand the properties of this QUIT further we
proceed to consider the effects of an external magnetic
field. The problem of an array of Josephson junctions in a
magnetic field, without charging effects, has been studied
extensively in recent years.'* The problem is rather subtle
in its properties since it depends intrinsically on the
number-theoretic nature (rational or irrational) of the
“frustration” parameter

=/, (1.2)
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where @ is the magnetic flux through an elementary pla-
quette in the lattice and @y is the fundamental quantum of
flux (@9=2.07%10"7 Gem?). Even for a square lattice
the behavior of the critical temperature as a function of f
has the Hofstater-Cantor setlike structure.'> Correspond-
ingly, the geometrical properties of the lattice can be
“seen” in the complicated response of the system at T.(f).
The problem when f= 3 is particularly interesting since
it corresponds to the fully frustrated case studied first by
Villain and others, '® and within the superconducting con-
text by Teitel and Jayaprakash.!” The main result, for
f=1%, is that there is a decrease of the superfluid density
with a lower critical temperature T.(f = %, a =0) ~0.45.
The nature of the phase transition is still unclear since the
model shows XY BKT-tK‘pe properties as well as an Ising
diverging specific heat.'® In an interesting analysis by
Berge et al. the amount of frustration was varied by
changing one of the coupling strengths E; in a pla-
quette.!® Their results show that in this case there are
two transitions as a function of temperature. The low-
temperature transition being Ising-like while the high-
temperature transition is XY. The question remains as to
the real nature of the transition in the homogeneous sys-
tem with f= 1, although recent experimental results give
strong evidence for having an XY-like transition. !°

Here, as a first nontrivial step we consider the f= %
case with nonzero charging energy. We do not analyze
the real nature of the high-temperature phase transition
except to measure its a dependence, which, as in the f =0
case, is a monotonically decreasing function of a, although
with a smaller slope. It is the low-temperature phase that
interests us most here. There we find a QUIT, but with
properties which are noticeably clearer than in the f=0
case. First, the critical temperature is Tquir(f=1%,
a=0.5)~0.12, an order of magnitude larger than in the
f=0 case. Also of importance is the fact that Ap(f =%,
@=0.5)~0.1, i.e., about 30 times larger than in the f =0
case. We observe clear signatures of hysteresis loops, thus
indicating that we have a stronger first-order transition.
Although these results may appear as just an am-
plification of the f =0 results, as surmised for the a =0
and f= § case, the physics is sufficiently different to need
a separate analysis. We shall discuss these points in more
detail in the main body of the paper.

The contents of the paper are divided into seven sections
and one appendix. In Sec. II the models studied are intro-
duced. We also discuss most of the additions to the mod-
els that would make them more realistic, but which we
leave out at this time to make the analysis feasible. Sec-
tion III discusses the mapping of the operator representa-
tion of the quantum-mechanical models into their Feyn-
man imaginary-time path integral. There we stress the
important properties of this representation and the limits
at which we can recover the true quantum behavior of the
model. Using duality transformations, we arrive at the
explicit expressions for the partition function used in the
quantum Monte Carlo (QMC) simulations. As a useful
test of the numerical algorithm developed to treat this
problem, we consider the ‘“zero-dimensional” case of a
single rotor using an exact finite-dimensional transfer-
matrix analysis. This study illustrates clearly the care
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that has to be taken to obtain true quantum behavior at
low temperatures. This transfer-matrix analysis is given
in the Appendix. In Sec. IV the QMC algorithm is intro-
duced and its advantages and shortcomings are discussed.
The algorithm is tested against the known solutions in the
zero-dimensional and in the high-temperature two-
dimensional cases. It is here where we make explicit why
these calculations, to be reliable, have required large
amounts of supercomputer time. All results presented in
this paper were obtained from simulations run on Cray-
XMP and Cray2 computers. Section V presents the re-
sults together with a discussion of their physical
significance. Section VI discusses the fabrication of
periodic arrays of Josephson junctions such that the pre-
dictions made in this paper may be tested. In Sec. VII we
give a discussion of the results in terms of the known be-
havior, for the £ =0 and f>0 models, at T =0 and close to
T.(f). We propose a plausible phase diagram which is
consistent with the results of Sec. IV.

I1. DEFINITION AND PROPERTIES
OF THE MODELS STUDIED

Our goal is to understand the thermodynamic proper-
ties of two-dimensional arrays of ultrasmall Josephson
junctions (JJ). An example of an array of JJ consists of
metallic grains embedded in an insulating matrix. These
granular films are formed by various deposition tech-
niques. Depending on the amount of metal deposited on
appropriate substrates, one can separate three distinct
concentration regimes by their conduction mechanism
processes. When the amount of metal is large, i.e., when
the volume occupied by the insulating inclusions is small,
the specimens have metallic behavior but with conductivi-
ties o, <oc, with o, being the inhomogeneous material
conductivity and oc the crystal conductivity in the bulk
metal. Also, the superconducting Ginzburg-Landau
coherence length &, <&c, and the London penetration
depth A, >\, thus making these inhomogeneous systems
strong type-II superconductors. When the amount of
metal is close to the percolation limit, the conductivity has
percolative as well as variable-range hopping contribu-
tions.>

When the insulating regions occupy a larger volume,
conductivity will be dominated exclusively by thermally
activated and quantum-mechanical tunneling processes.
It is this dielectric regime, when the grains have dimen-
sions from tens to a few hundred angstroms, that is of in-
terest in the present discussion. If the metal in the bulk is
superconducting, a zero-resistance state is reached for cer-
tain concentrations of metals in the granular systems.
This is because of the long-range phase-coherent (LRPC)
state due to the Josephson couplings established between
the grains.

One can expect that this dielectric regime can also be
created experimentally by fabricating periodic arrays of
JJ using modern photolithographic techniques. As of
now, these types of arrays have not been made. However,
there are a number of recent advances which may permit
the fabrication of these devices using present state-of-
the-art technology. We discuss these works and their pos-
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sibilities in Sec. VI.

Typically, in these systems the measured resistance R
shows a two-stage mechanism as the temperature T de-
creases. A monotonic decrease starts at temperatures
around the bulk superconducting (SC) temperature, Tco.
The zero-resistance state is reached at a lower tempera-
ture, T., at which R=0. The present interpretation of
this behavior is as follows: Around T, the grain develops
SC fluctuations. Since they are of finite size, however,
LRPC cannot be established. If the typical size of the
grains d is smaller than the bulk &gi, one can associate a
Ginzburg-Landau order parameter with each grain,

vi=|v;|e*, 2.1)

where 1=+/—1 and i stands for a two-dimensional posi-
tion vector and ¢; is a phase constrained to lie in the inter-
val ¢; € [0,27]. The fluctuations of the magnitude of the
order parameter are larger for temperatures just below
T.o. However, closer to T, the magnitude fluctuations are
very small and the fluctuations in ¢; become dominant.
Thus, around and below T, the grains become Josephson
coupled, with the coupling energy

F#s=2E;(i+1,0)[1 —cos(gi+1—9:)]. (2.2)
-

The Josephson coupling constant E;(i +1,i) is also an
explicit function of temperature, the superconducting gap
A(T), and the normal-state resistance between grains
RG+1,i):

haa(T)

E;G+1,i)= tanh
/ 4¢2RGi +1,i)

BA(T)
2

(2.3)

Here e is the electronic charge. Taking E; as a constant,
the thermodynamics associated with 7 4 is that of the 2D
classical XY model with a Berezinskii, Kosterlitz, and
Thouless (BKT) vortex-unbinding transition. The BKT
scenario leads to universal predictions that have been
confirmed in several experiments. For periodic systems,
the temperature dependence can be ignored in the theoret-
ical analysis and included when comparing with experi-
mental results.’’ In general, for a granular system,
E;(i,+1,i) will be a random variable. For small amounts
of randomness, it has been shown that the thermodynamic
properties of this model are like those of the BKT scenario
with renormalized coupling constants, but with the same
universal exponents. The case of large amounts of disor-
der is not yet understood.

Of importance for the present study is the fact that the
grains are small. In this case, the charging energy associ-
ated with the grains becomes relevant and thus will com-
pete against the Josephson energy which tries to establish
a superconducting current between grains. The charging
energy contribution to the total energy between two super-
conductors separated by a thin insulating region was con-
sidered by Anderson in the context of the first Josephson
junctions and within the context of granular materials by
Abeles. A general form for the charging energy Hamil-
tonian is

2
He =%—Zﬁi+|ci11|,iﬁi , (2.4)
1

where n; is the operator that measures the number of
Cooper pairs transferred between grains, and Ci+l.iis the
inverse of the capacitance matrix. This matrix can have a
long-range contribution; however, due to Coulomb screen-
ing effects we can take it as a nearest-neighbor matrix.
For a granular material this matrix is also a random vari-
able whose randomness is not completely independent of
that of E;(i+1,i). In Eq. (2.4) quasiparticle charging
effects are not included.

The variables ¢; and n; are canonically conjugate and
satisfy the commutation relations,

(2.5)

From these commutation relations it is clear that when
the fluctuations in the phase difference between the grains
Ap<1, the Josephson current is well established since
from Heisenberg’s uncertainty principle An>1. When
A¢—~An the charge in the grains is well defined and thus
the charging energy becomes important in determining if
there is LRPC.

An understanding of the superconducting properties of
a material results from studying its response to an exter-
nal magnetic field. Adding a transverse magnetic field
leads to the Hamiltonian

(7, ¢j] = =16k, .

ﬂJ-ZEJ(i,i'l'l)[l_COS(¢i+1_¢[+ﬂ+1,i)] 2.6)
with

2r (1 =
Sfi+r,i ?of'ﬂA'dl

1

2.7

where A is the magnetic vector potential with H=VxA
and f=2X ,f;+1, is the frustration parameter defined in
Sec. I with X, the sum around a plaquette. Equation
(2.6) with E; constant has been studied extensively. In all
our calculations with >0 we use the gauge

A=(0,Hx,0).

The thermodynamics of the model is rather complicated
depending intrinsically on the lattice geometry and the ra-
tionality of /. The Hamiltonian being periodic in f needs
to be studied only for the interval 0<f=< 1. For the
particular value = %, the model corresponds to the fully
frustrated XY model first considered by Villain.'® The na-
ture of the phase transition is a source of controversy since
the model has U(1) symmetry from the rotational invari-
ance and Z(2) or Ising symmetry from the f-induced in-
variance. Numerically it is found that the model has a
finite superfluid density at the lower critical temperature
while the specific heat shows a logarithmiclike divergence
around T.(f= 5 ).!” Recent experiments in a periodic ar-
ray of proximity-effect Josephson junctions in a field of
f =1+ show all the characteristics of a BKT transition, in-
cluding the square root exponentially increasing correla-
tion length above T.(f= 1 )."°

An important condition to be able to see experimentally
a BKT-type transition is that the contributions from the
screening currents should be negligible. Otherwise, the
logarithmic interaction between vortices would be
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screened and no topological phase transition would be ob-
servable. The quantum nature of the phase, and
spcciﬁcally the effects of dissipation, seem to be important
in explaining the conditions for onset of superconductmty
in recent experiments on granular ultrathin films.?! From
these experimental results, it has been suggested that
there is a universal value of the sheet resistance indepen-
dent of the material, below which the system becomes su-
perconducting. The universal resistance takes the value
around R, =h/4e*~6 ka. We will not treat the effects
of dissipation in this paper and leave it for a future publi-
cation.

Here we are mainly interested in the questions of stabil-
ity of the superconducting or LRPC state against quan-
tum fluctuations with and without an external magnetic
field. At the present moment we cannot include all the
effects pertaining to a more realistic description of a
granular material with ultrasmall grains. Hence, we
make approximations to the models described above to
isolate the effects related to the charging energy in a
periodic lattice.

We start by considering the nonrandom case, i.e.,
E;(i+1,i)=E;=const, and the capacitance matrix will
be taken constant as well and only with a diagonal contri-
bution C(i +1,i) =C(i,i) =C =const. One would expect,
based on general electrostatic considerations about the
positivity of the electrostatic energy, that since
| Ci+1,i| = C; i =C the main effects may come from the
diagonal term. However, the question remains if the off-
diagonal contributions may in fact affect the phase dia-
gram of the model. This is an approximation that has
been made often, but its effects in two dimensions are not
fully understood due to the fact that technically it leads to
a more difficult model to study. This nonrandom approxi-
mation corresponds to a periodic array of JJ with small
capacitances, and thus we expect our results to apply
directly to those systems. On the other hand, taking the
coupling constants as nonrandom may be justified when
the randomness is small and when looking at the long-
range properties of the granular system.

The model studied in this paper is finally given by the
periodic Hamiltonian:

# =2 |E;[1 —cos(pi+1— i+ fi+, 1)]'*'2

2C 6
(2.8)

Here we have used 7; = —1(8%/8¢?) which follows from
Eq. (2.5). Although this Hamiltonian is a simplification
of the general case, it is nonetheless a highly nontrivial
model. It represents a quantum many-body problem in
which the dimensionality plays a crucial role.
The thermodynamic properties associated with # are
obtained from the partition function
Zg=Tre #%, (2.9)
where Tr stands for the quantum-mechanical trace. In
the next section we transform Zg into its Feynman path-
integral representation which permits a numerical evalua-
tion for a full range of parameters.

III. IMAGINARY TIME REPRESENTATION OF Zo

To evaluate Zg in two dimensions and in the operator
representation seems rather complicated. Thus we choose
to study Zg in its imaginary-time or Feynman path-
integral representation which is amenable to Monte Carlo
simulations. Since we want to study the physics of Z at
very low temperatures, the regime where quantum fluc-
tuations are dominant, we need to be sure that the numer-
ical answers obtained are the correct ones in this regime.
Thus we need to find the conditions under which we find
the real quantum behavior of this model. Since the quan-
tum fluctuations are directly related to the kinetic-energy
contribution to #, we being this section by considering
the thermodynamics of the kinetic-energy term. In this
limit (E;=0), the model reduces to that of N-indepen-
dent rotors, the answer to which is found in any elementa-
ry quantum-mechanics book. It is thus instructive to
study this simple model to ascertain the limits of validity
of the numerical results obtained from the simulations.

At the end of this section we proceed to consider the full
model including the E; and f;;+1. We choose to study
the full model in its dual representation which makes the
symmetry explicit between high and low temperatures,
i.e., thermal and quantum fluctuations dominated re-
gimes, respectively.

A. Single-rotor case

The E; =0 partition function decouples into a set of in-
dependent rotors each of which has

Zz=Tr |exp Ecﬁ:;%” , 3.1)
where
E.=2-. (3.2)
2C

The normalized eigenfunctions and eigenvalues of the ro-
tor Hamiltonian are

1 .
I ¢m) -—

V2 ’
m= %Ecm 2 ’
with m an integer. Therefore,

oo

Zgz= Y exp(—BE.m?).

m=—oo

(3.3)

We would like to recover this result in the limit 3 BE. > 1
within the context of the path-integral representation us-
ing a Monte Carlo algorithm. Z g can be obtained as usu-
al from the trace of the matnx elements of the time evolu-
tion operators U =e ~#%

Zﬁ"J; ‘d¢<¢|l}(‘r,1)|¢),

where

(3.4
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L—1 L, A
(x| Otere) o0 = 7 TT o) T (6500 | Orws i) L olse-1)). (3.5)

Here k is an integer, L, is the number of time slices in the imaginary-time axis,

ww=11tke
with e spacing between time slices, and

L.e=ph. (3.6)
The boundary conditions are

o(r=1) =9, o(r=1)) =9,. 3.7
The quantization condition is given by the periodicity requirement,

o(z+Bh) =0¢(1). (3.8)

For the problem at hand the matrix elements of U are

(0() | Ui, 1i=1) | ¢ (- 1))—2— Z (or | mXmi | O Ceaytie— 1) | mic—1mi—1 | oc—1)
='217m,‘§’_wf d¢"f doi—rexplimy (95— — o) — T BEcmi], (3.9)

where we used the orthogonality relation {my | myx—1) =8 x—1. Using Egs. (3.5), (3.6), and (3.11), the partition function
reads

oo

L,
Zz=(n) “zfo 1 = exp‘ [lm(zk)w(rk D =65l =

2L 2(‘L'k)] ]d¢(rk). (3.10)

One can transform this equation to a more convenient form using the Poisson identity,

> fw= T [T reoemmax. 311

n= —o

Hence Z z becomes

L,/2 L oo
L. 2x T 2
Zx BE, j; kI:Il M(m“%)__mdqb(rk)cxp 2[3E o(zi) +2aM (tg 41,71)] ] (3.12)

The integer link variables M (7 +1,7) are defined between the sites k and k + 1. The appearance of these variables come
directly from the fact that ¢ is constrained to lie in the interval [0,27], and thus is essential to the study discussed here.
Since it is difficult to do simulations simultaneously for the integer and angular variables, it is more convenient to rewrite
Z % in the form

L,

Z7= | BE

L2 ., L Le oy
} J:) IMde(z)exp|— X —{1 —COS[¢(Tk+1)_¢(Tk)]}] , (3.13)
k=1 k=1 BE.

which is exact in the limit that 2L./BE.>> 1, which is, in fact, our limit of interest. This expression for Z % is reminiscent
of the partition function for the classical XY model. However, the limits and the boundary conditions under which this
model has to be studied lead to different answers. To see this, we need to show under what conditions we recover the ex-
act solution given in Eq. (3.3).

Using the identity
*dX _ _ _ oLty | Lt
o g exp[ IMX ﬂEc 1 cos(X)]J Iy BE. | (3.14)

where I is the modified Bessel function of order M, Z % can be expressed as

L.

Z2= | BE.

L,/2 2z Le _ L
J M(uzﬂ n)j; kl:lld¢(‘l’k)CXP{!M(‘tk+l,Tk)[¢(Tk+1)_¢(‘l'k)]}e L'/pE‘IM(,Hh,,,) {FET] (3.15)
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From the asymptotic limit,

(3.16)

BE.

valid when L./BE.> 1, we recover the quantum-mechan-
ical answer given in Eq. (3.3). This reasoning makes it
clear that in order to obtain the quantum limit from Z 5
we need to take the L,— oo, as well as the e— 0 limits,

i.e., the continuum limit,

L M2
IM[ T }~e MﬂE,/L,’
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Formally, one usually writes this limit as a path integral,

2 pph 2
Zﬁ-fd[qb(f)]exp[__hl_%c_ oﬂ !%J dr]. (3.18)

Implicit in this expression are the conditions given in Egs.
(3.7) and (3.8), plus the fact that there is a coefficient
that depends explicitly on L,. Since we are interested in
the thermodynamic properties related to Z %, we need to
take derivatives with respect to B, which appears in the
coefficient, as well as in the limits of integration of the ki-

netic energy.
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FIG. 1. The free energy, internal energy, and specific heat are shown for the uncoupled rotor problem, E; =0. (a), (b), and (c)
show the effect of various values of L, (O=50; + =100; X =500; continuous curve is the infinite L. limit), for the model with the
phase ¢; having a continuous U(1) symmetry. (d), (e), and (f) are for L, =103, with the phases restricted to the elements of various
Zy subgroups of the U(1) symmetry of the model N ; ¢ =50; + =100; x =500; continuous line exact result. See the text for a full

discussion.
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Since the Monte Carlo simulations for the full model, to
be discussed later, are by force carried out for finite L,
and for a subgroup of U(1), Zy, we need to obtain criteria
for the minimum values that these parameters should
have, as a function of a and g, such that the answers are
the correct ones. In so doing we use different methods to
evaluate Z 5. First we evaluate analytically Z# from Eq.
(3.13) as a function of L, by using the identity of Eq.
(3.14) and compare it with the exact result of Eq. (3.3).
Figures 1(a), 1(b), and 1(c) show, respectively, the free
energy, internal energy, and specific heat evaluated direct-
ly from Eq. (3.13) for different values of L,. From these
figures we see that for high temperatures, such as near the
BKT transition temperature, a small value of L. suffices
while the study of low temperatures, as in the region of
the QUIT temperature, large values (L,~1000) are
needed to get the correct answers.

Figures 1(d), 1(e), and 1(f) show, respectively, the free
energy, internal energy, and specific heat evaluated using
the transfer-matrix technique discussed in the Appendix
for L,=103 and with the phases ¢€l0,27] discretized into
N equal angles. A trivial normalization factor of BE./8
was subtracted from the free energies to compare with the
free energy from Eq. (3.3). This is a convenient approxi-
mation which permits evaluation of the partition function
using a finite number of equally spaced angles. Figures
1(d), 1(e), and 1(f) show that while small values of N
provide excellent approximations at low temperatures, at
high temperatures larger N values are required to obtain
adequate approximations. This is opposite of the classical
plane-rotator model (see Ref. 22), where large-N values
are required at low temperatures. It has been found for
the classical XY model?? that N ~12 is enough to give ac-
curate answers. Because we must have L, = 2, we require
N to be large at high temperatures in our model. We also
require N to be large at temperatures much lower than
those simulated in this paper, for the same reason that NV
must be large in the classical model at low temperatures.
However, at the low temperatures simulated in this paper,
j

Alp(7)] -21;

L.
[ﬂan ]{1 —COS[¢(Tk+1) _¢(1'k)}+

where V=LXLXxL, This representation of Zgy makes
evident an important physical symmetry between the ki-
netic (quantum) and the potential or Josephson (thermal)
contributions. Since the most important contributions to
the partition function come from the smallest terms in the
action Al¢(7)], we see that the kinetic-energy term, for
fixed L., is multiplied by ™!, and at low temperatures
this term will become the most relevant one in the action.
Similarly, since the Josephson term is multiplied by B, it is
at high temperatures that this term will dominate the
thermodynamics of the model. This ‘“dual” symmetry,
apart from having a clear physical meaning, will be ex-
ploited in the implementation of the QMC algorithm to be
discussed in the next section.

In the way we have rewritten Zy we notice the follow-
ing facts. We started with a 2D operator quantum prob-

E
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we are mainly limited by finite L, values and the magni-
tude of N does not present a problem. As seen from Fig.
1, in the quantum case N = 5000 gives accurate answers
for all temperatures of interest in the our case.

Because any nonzero coupling between rotators would
provide additional paths for fluctuations, the graphs in
Fig. 1 may be used to provide an approximate upper
bound on the values of N and L, required to give an ap-
proximation to the exact values of the thermodynamic
quantities over some temperature range. We used these
curves as a guide for which values L, were required in
different temperature regions. In addition, as discussed in
the next section, we demanded that large enough values of
L, be used so the errors were of a statistical nature rather
than due to the approximation due to finite L, values.

The conclusion from the analysis of the thermodynam-
ics of a single rotator problem is that to recover the true
quantum answers at low temperatures we need to have
2L/BE.>1, as well as having N=5000. The former
conditions will impose stringent requirements on the
minimum lattice sizes on which to carry out the simula-
tions to get reliable answers. Since we are interested in
simulating a 2D quantum problem the conditions for con-
vergence are less severe than those found in the OD prob-
lem, but nonetheless still significant.

B. Duality representation of Z¢g

We can now consider the model of main interest in this
paper. Adding the Josephson term to the partition func-
tion given in Eq. (3.13) is straightforward and we write
the full partition function as

L v/2 I
Zg= BE. J j; dlo(z)]e ~Ale] (3.19)
with
Zﬂ {1 —coslg; +1(zx) —'¢i(‘tk)+fi+l,i(‘l'k)]}} , (3.20)

lem and the result of writing Zp in the imaginary-time
representation is that we now have to study a three-
dimensional problem. In the limit of high temperatures
the model approaches the two-dimensional classical be-
havior since Bh <1. We note that for =0, a=0 the
model can be recast into the form of an anisotropic classi-
cal 3D XY model with a playing the role of temperature.
The physics at T=0 and close to Tpkt(a) is clear, and
thus the important question is to find the properties of the
model in the intermediate temperature regime. The situa-
tion is less clear when f0, since the corresponding model
has not been studied before.

In the next sections we present and discuss the results
obtained from Monte Carlo simulation studies of the
model given in Eqgs. (3.19) and (3.20), in different param-
eter regions of interest.
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IV. QUANTUM MONTE CARLO METHOD

The simulations carried out on the model defined in
Egs. (3.19) and (3.20) employed the standard Metropolis
algorithm? on L XL X L, lattices with periodic boundary
conditions in both spatial and imaginary-time directions.
However, several modifications to this technique were
used to optimize the efficiency of the algorithm. In partic-
ular, the reciprocal 8 dependence of the two terms in the
action given in Eq. (3.20) was exploited. The lattice sizes
and the statistics used will be discussed in the next section.
Here we describe the algorithm and the thermodynamic
quantities measured.

As mentioned above, at high temperatures the poten-
tial-energy term dominates while at low temperatures it is
the kinetic-energy term that is most relevant. Both contri-
butions are relevant for B~1. This temperature depen-
dence must be taken into account in the implementation
of an efficient algorithm. At temperatures with =<1, in-
dividual planes begin to disorder in such a way that disor-
der between adjacent planes along the t axis does not in-
crease since otherwise a strong Boltzmann suppression
would ensue. For this reason the QMC updating was car-
ried out in two stages. First an update of the angles in
each of the L? columns in the 7 direction was attempted
by shifting all angles in a given column by the same
amount using the standard Monte Carlo (MC) algorithm.
At high temperatures (or small charging energy) angular
configurations that do not have all angles the same in a
given L, column are highly improbable. Hence the first
QMC stage is necessary in this region. We then proceed-
ed to update the LL, angles in the lattice in the usual
way. A similar improvement at very low temperatures,
where individual planes tend to order (up to topologically
stable defects), would entail updating all L? angles for a
given “time slice” as well as updating individual angles.
This procedure would unreasonable tax the numerical pre-
cision limitations inherent in this type of simulation, but
in our work this third possibility is not necessary since for
the temperature range considered here the two-stage MC
procedure works reasonably well.

As mentioned before, rather than using the continuous
J

h 1
Y=__
L3E, L2L,

( ):kcos[saxﬂ(fk)—«»x(u)])—

XY

+ LB [< S sinloy+1(re) =0y (7)1

L1 x,y,k
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U(1) symmetry of the problem, to increase the computa-
tion speed we used a discrete Zy subgroup. For N
sufficiently large, while not bearing on the physics, this ap-
proximation permits the use of look-up tables in the simu-
lations. As demonstrated in the case of the single rotor
model at low temperatures, the size of the Zy subgroup
must be large to provide adequate results. We found that
using NV =5000 at all temperatures gave good results. The
angular width was varied continuously to allow for an an-
gular change of the two QMC stages to keep the accep-
tance ratio in the range 0.2 < a < 0.3. This prevents the
problem present at the two extremes of acceptance ratio
where the system tends to remain frozen in a given angu-
lar configuration for a long time.

In our simulations we measured a variety of quantities
in the model as a function of a, B, the frustration parame-
ter f (for f=0 and f= 1), and also as a function of the
lattice sizes and number of Monte Carlo steps
(MCS)/site. The more relevant quantities amenable to
experimental measurements are the helicity modulus (.e.,
the superfluid density), the internal energy, and the
specific heat.

The helicity modulus Y measures the response of the
system to a twist along a spatial direction, say the x direc-
tion. Adding an additional angle kox in the x direction,
where ko=2n/A¢ and Ao is the wavelength of the twist, to
the argument in the cosine of the Josepson contribution to
the action A4 of Eq. (3.20) the helicity modulus is then cal-
culated by2*

Y= 4.1)

9%F
0ké |k,=o0

with F the free energy associated with Fq, BF
= —In(Zg). This quantity provides an excellent test of
the physical properties of the system, since it is directly
proportional to the superfluid density. From the explicit
expression for the partition function given in Egs. (3.19)
and (3.20), and taking the derivatives with respect to kg
and setting ko =0, one obtains the discretized expression
for the helicity modulus,

( [ zksin[¢x+1<fk)—¢x(fk)1]2>

X5y,

(4.2)

The Hamiltonian is an even function of the angular difference, so the last term vanishes in all configurations. We also
calculated the internal energy per site, E =9(8F)/8p, which is equal to

E f— —_
hL? 28h L2, h

1 Lr 1 EJ <
ik

2{1—coslwi+1(rk)—so.-(rk)l}>+—1_L L. <

{1 —cosle; (x+1) —<Pi(rk)]}> ,
x

i

L? aE; (Bh)?

(4.3)

on the discrete lattice. Note that the first term in the helicity modulus is proportional to the internal energy. The specific
heat per site, C,/k = —B2(9E/3p), was also calculated. The discrete expression is
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1 -h___zL_r"_< — coslo: o >
hszBCv 2 " aE,(hB) %;{1 coslo; (tx +1) — @i (1)1}
2 2
(Bh)?* | Es 2y 1 | L 1 2, 2
+ L2 AL, x+L2 aE; (ﬁh)zor ahLZUXfa (4.4)

when

‘D,"'%{l “COS[‘P,’(T1(+|) —'V’i(fk)]}
and

D, -g{l —cosle;+1(tx) =i (2 )1}

we have defined
o2 =(d2) —(®,)?,
ol=(0) —(®,)?,

and
Oxe ={(D, D) — (D, ND,) .

The expressions when f;+;,;%0, entail adding the f;+,,;
term to the arguments of the sine and cosine functions.

The fact that C, is not just given as the fluctuation of
the internal energy is a consequence of the discretization
along the 7 axis. This would seem to imply a violation of
the Callen-Welton-Kubo fluctuation-dissipation theorem.
However, if we rewrite the above expression in terms of €
as defined in Eq. (3.6), and look at the limit e— 0, recal-
ling that in this limit

{1 —coslg;i (tx+1) — i (zi) 1} — %2

8 2
ar |’
one finds that the violations to the fluctuation-dissipation
theorem are of O(e). Thus it is recovered in the continu-
um limit.

We performed several checks of the algorithm de-
scribed above. First, we checked that the QMC simula-
tions of the 0-dimensional model were in agreement with
the results discussed in the preceding section. The simula-
tions were carried out in 2x2X L, lattices. For L,= 500
and N =5000 the results are essentially on top of the ex-
act answers obtained from Eq. (3.3). Also, for the full
model we checked that in the limit a— O our results com-
pared successfully with previous calculations in the classi-
cal limit for the internal energy, the specific heat, and Y.

We also tested our QMC results in the semiclassical
limit against perturbative results obtained from the WKB
approach described in Ref. 3. For the internal energy,

E 1 1 a a

= =—2+ + &4+ 2
E - 2t 288, Y a2 T a8 T 1ospE, +0G?),
4.5)
and the helicity modulus
Y 1 BE;a 2
e - -0(a?). 4.6
@’E)) e, 24 0@ “.6)

The first two terms in Eq. (4.6) are the ones obtained by

|
Ohta and Jasnow,2* while the third term is the leading
correction to lowest order in a.

In practice, in order to test the statistical accuracy of
our results, we followed the usual procedure of separating
our measurements into n groups of m iterations each and,
assuming statistical independence of the samples, estimat-
ed the standard deviation of the mean of the n groups of
averages. In order to obtain meaningful answers from this
procedure, especially in the case of C,, which is given in
terms of average fluctuations, we always used n,m = 150.
(In most cases n=m =200 was used, although some runs
were done for n,m as large as 1000 at the lowest tempera-
tures studied.)

In our analysis of the a dependence of T, this quantity
was estimated in two different ways. Following the
reasoning of Refs. 24 and 17, T, was determined as the
temperature for which Y(8) =2/nB. The first, less precise
method to determine this intercept consisted in measuring
Y in the temperature range that would produce three or
four values above and below the low Yo=2/nB. An error-
weighted least-squares fit to these data was then used to
determine the intersection. The uncertainty in 7, was the
(analytically propagated) uncertainty in the fit, corre-
sponding to a conservative min-max error estimation. The
second method, more precise, but also more time consum-
ing, consisted of a repeated readjustment of B by interval
halving; the direction of the shift being determined by
whether the current mean value of Y was smaller or larger
than Yo. The uncertainty in 7, following from this pro-
cedure was then obtained by direct min-max for the inter-
sections of {Y)s + o({Y)) with Yo.

We checked whether the system had thermalized by the
usual procedure of comparing the values for a given quan-
tity coming from different initial configurations. This is,
of course, temperature dependent, but we found that
5%103 to 1x10* iterations were generally sufficient at all
but the lowest temperatures where thermalization in some
instances required upwards of 2x10* MCS/site. In the
fully frustrated case, where the bulk of our analysis was
done, the interesting physics takes place at modest tem-
peratures, where thermalization does not present major
difficulties.

V. RESULTS

After making a few general comments on the nature of
our simulations, in this section we shall describe the re-
sults of our numerical analysis. We will begin by describ-
ing briefly our results for the unfrustrated case (f=0),
and then present our analysis of the fully frustrated prob-
lem (f=1).

As mentioned above, the main technical difficulty en-
countered in the simulation of our model stems from the
asymmetrical weighting of the two contributions to the ac-
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tion. At low temperatures, where our main interest lies,
thermalization of some initial states can be very slow. For
this reason, it is crucial to the success of a Monte Carlo
analysis of this model to choose initial configurations care-
fully. Of course, in order to ascertain whether the system
has thermalized at a given temperature, it is necessary to
study the evolution of initial states which are widely
separated in state space; close to a phase transition, this
implies using initial states which are very far from equilib-
rium. As a case in point, in Fig. 2 we show the evolution
of the internal energy of two states as a function of the
number of Monte Carlo steps per site (we shall often refer
to this kind of simulation as representing the time evolu-
tion of a state). The results are for the f=0 model for
a=0.3 simulated at a very low temperature. The state
with higher initial energy, closer to an equilibrium state at
these temperatures, is one where spatial planes at each L,
value are completely ordered, but completely uncorrelated

5 T T T T
(a)
-20 1 1 | 1
0 1 2 3 4 5
108t
2 | I
1= —
< B
Wl _
-1 —
_2 | | (b)
2 33 4 5
10°t

FIG. 2. (a) Time evolution of the energy of two different ini-
tial states close to a first-order transition in the f=0 problem for
a=0.3 at T=0.02. The abscissa is measured in MCS/site. The
fluctuations in the simulation are smaller than the thickness of
the smooth curve drawn over them. (b) Detail of (a) closer to
the thermalized region. This figure shows two apparently stable
states with different energies at 77=0.02, signaling the presence
of a nearby first-order transition.

from planes at different values of 7 (in what follows we
shall call this a mixed-ordered state). The other state,
with lower initial energy, is ordered along the L, direction
and completely disordered in each spatial plane (we shall
refer to this state as a mixed-disordered state). Whereas
the first state has essentially equilibrated after approxi-
mately 103 iterations, the second has taken about 4x10°
iterations to reach its final state. This simulation, dis-
cussed in greater detail below, shows the existence of two
apparently stable states with different energies at the
same temperature, signaling the presence of a nearby
first-order transition (further evidence supporting this
contention, our main result, will be given later). In Fig. 3
we show the evolution of the same two initial states at a
slightly higher temperature, where the energy gap has di-
minished. Note, however, that the mixed-disordered state
has not yet thermalized after 5x 103 iterations. Of course,
our initial states will take less time to thermalize, and the
situation is certainly less dramatic when far from a transi-
tion, but the above results clearly indicate that great care
should be exercised in the region about T'quit. For the re-
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FIG. 3. (a) Time evolution of the same two states as shown in
Fig. 2 but at a slightly higher temperature, 7=0.03. (b) Same
as (a) but closer to the equilibrium region. Note that the energy
of the state with lower initial energy is still increasing after
5x 103 iterations.



38 NEW COHERENT STATES IN PERIODIC ARRAYSOF ...

o] AAAA_

-2 | | ] | |
00 0.02 0.04 0.06 0.08 0410 042

V5

FIG. 4. The specific heat C, vs temperature for a=0.3 and
f=0. Lattice sizes used in this simulation were L XL X L. with
L=10, L, =150 for T=<0.024 and L =30, L, =30 for 7> 0.3.
At T =0.03 the simulation was done for both lattice sizes. The
points below 7 =0.03 correspond to averages over 3-4x10°
MCS/site after discarding 2x 103 MCS/site. Error bars in this
and in the following figures represent one standard deviation
from the mean.

sults which follow, all initial states were thermalized for at
least 5% 103 iterations away from any phase transition,
and for at least 10 iterations in the vicinity of a phase
transition.

The existence of first-order transition in the model with
S=0, implied by the above results, has been previously de-
scribed.! Further evidence for the presence of this transi-
tion can be obtained from measurements of other thermo-
dynamic variables. In Fig. 4 we display the specific heat
as a function of the temperature for @ =0.3 and f=0. An
apparent cusp (or discontinuity) in this quantity, typical
of first-order transitions, is evident in the figure. It should
be noted that the magnitude of the peak in C,, for the size
of the lattice studied, at Tgkt for a =0 is of order one,
whereas here it is six times larger. In Fig. 5 we show the
results for the helicity modulus Y in the same temperature
region. A striking discontinuity in Y can be seen at T
== (.03, roughly at the same place where the specific heat
seems to have a cusp. Note, however, that unlike what
would be expected in a reentrant transition, where Y — 0
as T— 0, here Y seems to tend to a finite value at 7=0.
This points to the existence of a hitherto unsuspected new
coherent state in the model’s very low temperature region.
Because the temperatures at which this state appears are
so low and, hence, from our previous discussion, the lattice
sizes along the imaginary-time axis need to be so large,
further analysis in this region is impractical. One would,
for example, like to analyze the behavior of the model as a
function of a, but such an endeavor would be prohibitively
time consuming and - was therefore not attempted. Also, to
better ascertain the size dependence of C, and Y at Tquit
more calculations for different lattice sizes would be need-
ed. However, given the large amount of computer time
that was needed to get the points below Tquit shown in
Figs. 4 and 5 [which was of the order of 70 central-
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FIG. 5. The helicity modulus Y vs temperature for a=0.3

and f=0. Lattice sizes and number of MCS/site were the same
as those for Fig. 4.

processing-unit (CPU) hours on a Cray-XMP/48 super-
computer] this analysis was not attempted.

Fortunately, as we shall discuss below, a related effect
occurs in the presence of an external, transverse magnetic
field, but at much higher temperatures. This makes a
more complete analysis of the f0 case possible.

In the fully frustrated problem (f= %) the QUIT to
this new state is much more evident than in the f=0 case.
For comparison with Fig. 5, in Fig. 6 we display the re-
sults for the helicity modulus Y as a function of the tem-
perature for a=0.3 and f=73. A pronounced discon-
tinuity with AY = 0.1 is evident around 7 =0.15. Apart
from the fact that this temperature is above five times
larger than the corresponding f=0 value, here the gap in
the helicity modulus is about thirty times larger. Another
effect of the frustration is evident in Fig. 6. The rapid
drop in Y, corresponding to the descendant of the BKT
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FIG. 6. The helicity modulus Y vs temperature for a =0.3
and f=1%. The lattice used in this simulation measured
8x8x30. The values plotted correspond to averages over 4x 10*
MCS/site after discarding 104 MCS/site. Values were obtained
by heating the mixed-order state described in the text.
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transition of the classical @ =0, = 3 model, occurs at a

temperature which is much closer to T'qurt than it does in
the f =0 case. We shall elaborate on this point at the end
of this section.

A useful question to ask at this point is what type of
fluctuations are responsible for this transition. A partial
answer can be obtained by looking at the time evolution of
the individual contributions to the internal energy at tem-
peratures close to the transition. In Fig. 7 we plot the in-
stantaneous value of the kinetic (charging) and potential
(Josephson) contributions to the internal energy at
T=0.16 for a=0.3 and f= }. Starting from the mixed-
ordered state described above a clear jump in the potential
energy is seen after approximately 1.36x10* MCS/site.
No such effect appears in the kinetic energy. This points
clearly to the source of the QUIT being related to quan-
tum fluctuations in the spatial correlations and not to
correlations along the imaginary-time axis. Similar anal-
yses of the separate contributions to the helicity modulus
lead to the same conclusions. This plot distinctly shows
the typical decay of a metastable state near a first-order
transition.

It is important to review the physics of first-order tran-
sitions to understand how the cooling and warming
branches of the thermodynamic quantities arise. Upon
cooling from high temperatures only one state is allowed,
thus increasing or decreasing the temperature does not
change the stationary values for the thermally averaged
quantities. Below the transition temperature there are
two possible states. The lower free-energy state is more
stable. However, the decay time for the metastable state
to the equilibrium state can be very large and thus essen-
tially unobservable in the time of an experiment. To
reach the metastable state one may need to prepare the
system appropriately. For example, to reach the glass
state in a liquid one needs to cool the system quickly.

A similar situation exists in a simulation of a model
that shows a first-order transition, in which one can find
the competition between two different states. The dis-
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tance on the free-energy surface between these two states
may be very close to the transition temperature, leading to
a longer lived metastable state at lower temperatures. In
a liquid-crystal phase transition one is able to nucleate the
crystalline phase more easily if a crystal “seed” is added
to the system. Similarly, one should expect that we will be
able to nucleate the metastable phase with more ease if we
start from an initial configuration which is relatively close
to that state on the free-energy surface. We have found
this condition to be essential to see the QUIT. In fact,
starting from the mixed-ordered state, say, the stable
state may or may not appear (in a finite run, of course)
depending on the initial seed for the random number gen-
erator (or using a different generator). This is not entirely
surprising or unexpected in light of the above discussion; if
the initial state is sufficiently far from the state of lowest
free energy, and if the phase space available to this state is
sufficiently small, it is quite easy for the system to freeze
into one of the nearby metastable states. Simulation of
systems with metastable states, as is well known, can be
very subtle.

The size-dependence of the energy and helicity modulus
near Tquir yields further information on the nature of the
transition. In Fig. 8 we show the values of E and Y near
Tquit for three lattice sizes. At each temperature, the
values of these quantities are seen to be independent,
within the uncertainty of the measurement, of the size of
the lattice. This is strong evidence of a first-order transi-
tion.

The hysteretic behavior implied in the above description
of our results would be complete if it included a cooling
branch as well. Unfortunately, we have not been able to
see the full cooling branch in our simulations. This is not
entirely surprising, since, as we have stressed in the
preceding section, the efficiency of our algorithm de-
creases with temperature. Indeed, we have not been able
to see the decay of a state in the cooling branch into a
state in the heating branch. In Fig. 9 we have plotted both
heating and cooling values for the internal energy and hel-
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FIG. 7. The evolution of a mixed-ordered state, for T=0.16, a =0.3, and f=}.

Plotted are the individual contributions to the

internal energy. The potential (or Josephson) term [graph (a)] shows a dramatic jump after = 1.36x10° MCS/site, typical of the
decay of a metastable state near a first-order transition. The kinetic (or charging) term [graph (b)], shows no such discontinuity.
These results indicate that the origin of this first-order transition is related to spatial correlations and not to correlations along the

imaginary-time axis.
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FIG. 8. (a) The internal energy E as function of the tempera-
ture for a=0.3 and f=1%. The values corresponding to three
lattice sizes are plotted: L XL XL, with L, =30 and L =8 (x),
L=16 (0 ), and L =24 (D). These results demonstrate that the
energy is nearly independent of lattice size, a situation typical of
first-order transitions. (b) Same as (a) but for the helicity
modulus Y.

icity modulus. For temperatures above T = 0.4, both sets
of values are seen to lie on top of one another.

The transition we have described occurs for a wide
range of values of a. In Fig. 10 we display the heating
branch for the internal energy as a function of tempera-
ture and for several values of a. For all values of a shown,
the heating branches of both E and Y display a clear
discontinuity at a temperature which increases very slowly
with a. Although we have not determined this fact com-
pletely, it seems that the gap in both quantities disappears
abruptly as a increases past a=0.7. We have also not
been able to determine whether a minimum value of « ex-
ists below which the QUIT disappears. For the reasons
given above, it is possible that the gap persists all the way
down to a=0 as long as the system is driven slowly to
a=0 from some nonzero value. In a similar manner, the
existence of some nonanalyticity as a function of a might
be used to explain the sudden disappearance of the gap for
larger values of a. There are certainly interesting and im-
portant questions which should be answered. We shall not
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FIG. 9. (a) Cooling branch (¢ ) of hysteresis loop for the
internal energy for a=0.5, f=1%. Lattice size was 8 x8x 30.
For temperatures above T == 0.14 values coincide with those of
the heating (X) branch. (b) Same as (a) but for the helicity
modulus Y. In this figure we give the error bars as defined in the
text.
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tion, averages were calculated over 55 K MCS/site.
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dwell on this point any longer, but, as additional informa-
tion, in Fig. 11 we present the results of a simulation per-
formed at fixed temperature in the metastable region for
several values of a and for f= 4. The simulations were
carried out starting with the two states at a =0.3, and suc-
cessive points were obtained by lowering the value of a at
fixed temperature. The most salient feature of these re-
sults is the fact that the gap between the heating and cool-
ing values for both the internal energy as well as the heli-
city modulus does not show any clear trend as a function
of a and, indeed, within the uncertainty of our measure-
ment, seems to be very weakly dependent of a.

We have also analyzed the normal to superconducting
transition which our model exhibits at moderate tempera-
tures and which is the direct descendant of the transition
in the classical, a=0 and f=% model. The transition
temperature in this case was determined, using the meth-
ods described in the preceding section, to be the point at
which the helicity modulus intersects the BKT line given
by Y(T.(f,a)) =2T./x. This procedure is not completely
justified theoretically, since we lack a full theory for the
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FIG. 11. (a) The helicity modulus in the metastable region
(T=0.1) for f=4% has a function of a. Lattice size was
8x8x30 and measurements represent averages over 16 K
MCS/site. Plotted are values of Y obtained by cooling (upper
set of points) and heating (lower set). (b) Same as (a) but for
the internal energy per site showing only the warming branch.
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FIG. 12. Tekr(f=0) and T.(f = %) as functions of a. Lat-
tice sizes (LXLXL,) were in the range 10<L <16 and
30=<L.=<60. Each point on the graph was obtained, using the
methods described in the text, from 10-12 measurements of Y.
Each value of Y was obtained by averaging over 4x10*
MCS/site.

frustrated case, even in the classical limit. However, it is
possible to argue that, at least for a<<1, Tpxt(a) and
T.(a,f = %) should have a qualitatively similar behavior
as functions of a. Indeed, within a WKB approximation,*
the contribution of the charging term in the action leads
to a renormalization of the Josephson coupling; but the
value of this coupling is determined solely by the fact that
the Josephson contribution to the action is periodic. Since
for nonzero f this term is also periodic, it follows that here
the Josephson coupling should be renormalized in a way
similar to the f =0 case.?> Of course, this argument, valid
for temperatures close to T, is only true for small a. The
above caveat notwithstanding, it is reassuring that the a
dependence of T,., as obtained from the heuristic pro-
cedure we have described, is remarkably similar to that of
Tkt In Fig. 12 we plot T, and T'gkt as functions of a.
An error-weighted least-squares cubic fit to the data gives

Tek1(f=0) =0.9265 —0.08342+0.0157a2—0.012a°,
(5.1)

T.(f= 1) =0.4934—0.0952a+0.244a> —0.0147a>.
(5.2)

The fact that the coefficients of the above fits are small
provides an a posteriori justification for our analysis.

VI. FABRICATION OF ULTRASMALL
JUNCTION ARRAYS

To experimentally observe a QUIT of the type dis-
cussed above depends critically on the ability to fabricate
arrays of Josephson junctions with suitably small capaci-
tances. Existing technology may be adequate for this pur-
pose depending on the specific range of capacitances re-
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quired. It is certain that the smallest capacitances would
be achieved in a granular system which characterizes thin
films at the earliest stages of their growth. However, ran-
domness in such systems may prove to be a drawback
to quantitative comparisons between experiment and
theory.

The closest geometry to that required to study the re-
gime discussed here is very likely the 20000-junction ar-
ray fabricated at IBM several years ago.?® The all-Nb
junctions were formed on an oxidized Si chip using
electron-beam lithography. The geometry was that of
crossed strips with an overlap area of 1 um?. The capaci-
tances of the junctions were estimated to be 0.1 .0.02 pF.

Unfortunately, the junctions described above probably
have too large a capacitance to exhibit the effects dis-
cussed here. Capacitances at the level 1-10 fF may be
achieved by using a two-layer electron-beam technique
with Sn electrodes.?’ This has been done by using narrow
(0.2-0.4-um) in-line electrodes. The dielectric in these
edge junctions, SnOy, has a low dielectric constant, which
helps to make low junction capacitances possible. These
junctions have not yet been formed in array config-
urations.

Configurations with capacitances of the order of 0.07-
0.03 fF have been produced by Fulton and Dolan,?® but
were not reported to exhibit Josephson effects. In part,
this may be because they were not cooled to sufficiently
low temperatures. These Al-Al junctions were formed us-
ing a multiple angle, deposition-oxidation-deposition cy-
cle. In fact, the major problem in producing ordered ar-
rays with capacitances smaller than the order of femto-
forads may be the difficulty of ensuring the occurrence of
the Josephson effect.

A more speculative approach, which could result in
much lower capacitance junctions, but which runs the risk
of not succeeding because the Josephson coupling may be
too weak, is the use of the techniques of Kratschmer and
Isaacson.?’ This involves the deposition of AlF3 on a sub-
strate and then writing directly on the surface with a
high-intensity, finely focused electron beam. With ap-
propriate dosage of electrons it is possible to form a check-
erboard pattern of Al squares directly, where the spacing
between squares is the order of 1-10 nm. The resultant
tunneling junctions, if strongly enough coupled, would
have capacitances of less than 0.1 fF. It might be possible
to increase the tunneling coupling without substantially
increasing the capacitance by forming these structures on
doped substrates, or on substrates which are degenerate
semiconductors. Although some structures have been dis-
cussed by Kratschmer and Isaacson, to our knowledge
their superconducting properties have not been investigat-
ed.

VII. DISCUSSION

In this paper we have presented an extensive Monte
Carlo study of the low-temperature properties of a model
for a two-dimensional periodic array of ultrasmall Joseph-
son junctions. The most important result emerging from
our studies is that of finding strong evidence for the ex-
istence of a low-temperature ordered phase which is com-
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pletely dominated by quantum fluctuations. The evidence
for these quantum (-fluctuation-) induced (phase) transi-
tions (QUIT’s) has emerged from calculations of the heli-
city modulus, internal energy and to a lesser extent of the
specific heat with and without a magnetic field. The
effects of a QUIT are found to be more pronounced in the
presence of the magnetic field.

One can discuss the properties of the model in the case
f=0 in terms of the tentative phase diagram shown in
Fig. 13. There we see that at zero temperature we should
find the behavior of a 3D XY model with one critical point
for a critical value of a, say a..!! Below a., we expect to
find long-range phase coherence as measured by the phase
correlation functions. From the universal properties asso-
ciated with the T =0 critical point, we can expect that at
sufficiently low but finite temperatures around a. the
correlations should decay exponentially with distance as
well.

At higher temperatures, close to Tsxt(a) we expect the
correlation functions to decay algebraically with a renor-
malized n(a), and to have a line of fixed points just below
Tekr(a).? The Tpkr(a) transition is produced by the un-
binding of thermally excited vortices (TEV). It was found
that as the temperature is lowered the quantum fluctua-
tions have the effect of nucleating vortex pairs.> We have
called these quantum nucleated vortex pairs QEV. The
appearance of QEV can be understood heuristically from
our imaginary-time representation. When the tempera-
ture is high, around Tgkt(a), the world line of the vortex
pairs are of the order of B4, and thus the quantum fluc-
tuations related to the displacements perpendicular to the
7 direction cannot be large. When the temperature is
lowered, BA and thus  grow and therefore the possibility
of creation and destruction of vortex pairs increases. It is
for this reason that a perturbative analysis as a function of
the vortex pair density breaks down at low temperatures.3

At intermediate temperatures we have the first-order

BKT

T

FIG. 13. Conjectured phase diagram for f=0. At T =0, a.
is the critical coupling of the anisotropic 3D XY model. Region
S1 denoted the renormalized BKT phase with power-law-
decaying correlations. Around a. at finite but low temperatures
in region S, the correlations decay exponentially. The line that
separates S from S denotes the first-order boundary dividing
the superconductive S| and S phases.



4578 JACOBS, JOSE, NOVOTNY, AND GOLDMAN 38

QUIT. A first-order transition has a finite correlation
length. A question which arises is the understanding of
how can one go from an ultralow exponential decay of
correlations to an algebraic one, both characteristic of
second-order phase transitions, passing by the first-order
QUIT transition. Since the first-order region exists pre-
cisely for intermediate temperatures, neither weak- nor
strong-coupling expansions can shed light into the physics
around this transition, and therefore the need for the type
of nonperturbative analyses given in this paper exists.

For the /=0 case, the situation is still more complicated
since we do not know for sure what the behavior of corre-
lations at high or low temperatures is. In this case, a new
type of vortex excitation appears, field-induced vortices
(FIV), that can be distinguished from the TEV in that
they can have fractional vorticity and will be present at all
temperatures. In the fully frustrated case, fractional
charged vortices are known to exist mainly in the ground
state.'#!7 Of course, the ground state of the model con-
sidered here is different due to the zero-point quantum
fluctuations. In the case where there is an f=0 we have
present TEV, FIV, and QEV, and thus it remains as a
subject for future study to understand how each one of
these excitations participates in the triggering of the
QUIT, and the nucleation of the low-temperature quan-
tum fluctuation dominated superconducting phase. We
leave the answering of some of these important theoretical
questions for future studies.
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APPENDIX

In this Appendix we discuss the dependence of Zgx
given in Eq. (3.13) for finite L, and with the angle
¢ € [0,27] discretized into N equally spaced angles using
the transfer-matrix technique. Define x =2L./BE.. Then
the L., Nth approximation to the partition function is

(x)*t

2 L
ZL”NS—N—TI.(A ), (A1)

Le

where A is an N X N transfer matrix with elements

ai; =exp{x [cos [—2-75(—1:—'L)] —1”. (A2)

N

The matrix A is a circulant, i.e., it can be written as

R

A=Y cP'+cn,,PV2,
i=—R

(A3)

where the last term is present only if IV is even. Here P is
the N X N permutation matrix

00 0 ---1
1 00 ---0

P=10 1 0 --- 0f, (A4)
0 0--- 10

the coeflicients are given by
¢ =expixlcosxl/N) — 11},

and R=N/2—1 if N is even and (N—1)/2 if N is odd.
The eigenvalues of A can now easily be written, since the
eigenvectors and eigenfunctions of P and hence of A are
known.? This gives

1 L2 l .
ZL,,N-'—L_(X) Zli s (AS)
N i=1
where the eigenvalues are given by
R . .
k,-==l Y, cicos [M +(—1)e 2% (A6)
=—R

with the last term present only when N is even. Figures
1(d), 1(e), and 1(f) show, respectively, the comparison of
the free energy, internal energy, and specific heat for fixed
L.=103 and various values of N. See Sec. III for the
significance of these figures.
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