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Spin-dependent correlations in the ground state of liquid He
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The energy per particle, the sound velocity, and the static structure function of the ground state
of normal-liquid He have been calculated by using the variational theory. Chain summation

methods have been employed to evaluate the expectation value of a realistic Hamiltonian with a

wave function including pair, triplet, spin-dependent and back-flow correlations. Semi-optimized

functions have been used for the Jastrow and spin-dependent correlations. The important contribu-

tion from the elementary diagrams are appropriately taken into account by using the interpolating

equation scheme. Spin-dependent correlations have been found to be important to get an equation

of state which is in very close agreement with the experimental data.

I. INTRODUCTION

The understanding of the correlations among the con-
stituents of a strongly interacting many-body system is a
challenging problem which has been the object of exten-
sive studies in recent years. Liquid He is particularly
suited to study correlations under several respects. First
of all, it is a dense system in which correlation effects are
sizable. At the equilibrium density po

——0.277cr, with
0

0.=2.556 A, the average distance between two atoms is
ro=(314rrpo)' = lo, which is approximately the dis-
tance at which the interparticle potential changes sign.
The measured liquid structure function at the peak differs
from that of an uncorrelated Fermi gas by -25%.

In the second place, the interparticle interaction for
both He and He liquids is well known. It is believed
that the Hamiltonian

g2 N 1V X
H= — gV, +g g v(r ),

i =1 [=1 J =1

where v(r;J ) is the effective potential of Aziz et al. ,
'

denoted as HFDHE2, provides a very good description of
liquid helium. Recent results obtained for the ground
state of liquid He by using the Green-function Monte
Carlo (GFMC) method are indeed in very good agree-
ment with the experimental energies and the liquid struc-
ture functions over a wide range of densities. Liquid He
is less dense than He; therefore, we expect the possible

N

40 FJFrS Q FsD——(i,j ) 40, (1.2)

where 40 is the Fermi-gas wave function, Fz is the so-

contribution from three-body forces to be almost negligi-

ble.
Finally, helium atoms, as constituents of liquid helium

can be safely considered elementary particles (the first ex-
cited state of He atom is at =24 eV). This feature
makes it possible to clear out the genuine many-body
structural properties from the effects due to the excita-
tions of its constituents.

The variational and the GFMC theories look the most
powerful approaches to handle a Hamiltonian of the type
given in Eq. (1.1), although both have not yet given com-
pletely satisfactory results for the ground state of liquid
He. The GFMC technique still suffers from the oc-

currence of nodes in the ground-state wave function. The
most reliable GFMC result for the ground-state energy is
obtained within the fixed-node (FN) approximation and
gives an upper bound of —2.37+0.01 K, to be compared
with the experimental value —2.47 K. On the other side,
the variational method is faced with the problem of get-
ting realistic trial wave functions, as well as with that of
evaluating the expectation value of the Hamiltonian with
su%cient accuracy. The best variational energy obtained
so far is approximately —2.35 K at the equilibrium den-
sity with a wave function of the type
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called Jastrow correlation operator given by

N

II f2(r' ) . (1.3)

Fz- is the triplet correlation operator defined as follows:

and

N

Fr = II f3(r;, , r,k ),
i j,k =1

(i &j&k)

(1.4)

N

g F (i j)

N N

K(i)exp i gk r =k exp i gk r,
J jj=1 j=1

(1.6)

A pure Jastrow model, at the experimental equilibrium
density po, gives an upper bound of = —1.3 K, 's which
results from the sum of a kinetic energy of 13.2 K and a
potential energy of —14.5 K. Triplet correlations
f3 ( r;~, r;z ) are somewhat weaker than f&, but neverthe-
less quite important since they bring the saturation densi-
ty of the system very close to the experimental value pp
and lower the energy per particle at the equilibrium by
=0.55 K (Refs. 6 and 9) with a quenching of the kinetic-
energy mean value of =5%. State-dependent correla-
tions are then expected to lower the energy per particle of
=0.5-0.6 K, without appreciably modifying the satura-
tion density and bring the energy per particle of the nor-
mal spin-unpolarized state of liquid He below that of the
fully polarized phase. Unfortunately, state-dependent
correlations cannot be treated at the same degree of accu-
racy as the Jastrow and triplets correlations, due to the
noncommutativity of the operators FsD(i, j) among them-
selves. In the calculation of Ref. 6 the treatment of the
backflow correlation fk (i,j) is the major source of uncer-
tainties. Three-body backflow terms, neglected in that
calculation, account for =0. 1 —0.2 K (Ref. 10) to the en-

ergy per particle. Moreover, a more involved state
dependence than the one given in Eq. (1.5) seems to be
necessary in order to fully describe the ground state of
liquid He. In Ref. 11 it has been found that the state
dependence carried by the backflow correlations is not
completely adequate to explain the effective mass of one
He impurity in He.

Recently' ' two accurate integral-equations methods,
based on the hypernetted-chain (HNC) theory and on the
"interpolating approximation" for the elementary dia-
grams, have been developed for Bose (HNC/a) and Fer-

is the symmetrized product of state-dependent pair corre-
lation operators, generating the Feynman-Cohen
backflow, of the form

FSD(ij )=fk(i j )

=expjiris(r, )r; [K(i)—K(j)]I, (1.5)

with the operator K(i) acting on @o as shown by the fol-

lowing equation:

mi (FHNC/a) liquids. They have been used to calculate
the binding energy and the liquid structure function of
Jastrow-plus-triplets (JT) models of both liquid He and
liquid He, providing results which are in very good
agreement with the available Monte Carlo calculations'
and with those obtained by using the "scaling approxima-
tion" (HNC/s and FHNC/s). '

In this paper we generalize the FHNC/a
(interpolating-equation) method to treat a correlation
operator containing state-dependent correlations. It is
shown that for the JTB (Jastrow + three-body + back-
flow) model defined by Eqs. (1.2)—(1.6) the FHNC/a
gives results which compare reasonably well with the cor-
responding FHNC/s estimates, especially at the satura-
tion density. The state dependence of FsD(i, j) is here an-
alyzed in greater detail than in previous variational calcu-
lations. ' ' 'Spin-dependent correlations of the type

f (i,j)= 1+ri ( r; )o; cr. (1.7)

are explicitly included in the trial wave function %p.
They are expected to play a significant role on the behav-
ior of the single-particle excitations, ' ' as well as on
that of the spin density structure function. ' ' An im-
proved version of the FHNC/SOC (single-operator-
chain) approximation, which includes the most impor-
tant higher-order corrections, ' has been used to evaluate
the many-body contributions due to f (i,j).

It is found that a JTS model, with an optimized f2(r; )

and a semioptimized ri (r,"), gives a binding energy of
2.31 K at the saturation density. There are some advan-
tages in the JTS model over the JTB model connected
with the calculation of the many-body contributions to
the distribution functions and of the spin-density struc-
ture function.

If both spin-dependent and backflow correlations are
included in FsD and if higher-order corrections to the
SOC/SOR (single-operator-chain —single-operator-ring)
scheme as well as three-body backflow cluster terms are
included in the calculation of (H ) (JTSB3 approxima-
tion; Jastrow + triplet + spin-dependent correlations
+ three-body backflow), the value —2.47 K is obtained

for the ground-state energy at saturation density pp. The
kinetic-energy expectation value is found to be
(T)=11.8 K, which difFers from the corresponding
GFMC-FN (fixed-node) evaluation of Ref. 5 of =0.5 K.
The reason for such a discrepancy is not well understood
at present. It should be noticed that there is a large can-
cellation between potential and kinetic energies and, as a
consequence, a variational calculation giving a good
upper bound for the total energy may still miss details of
the wave function qlo which are relevant to ( T ). More-
over, it is an interesting problem to fully recognize the
differences between the variational and the GFMC treat-
ments as far as the long-range part of %p is concerned.
The sound velocity and the liquid structure function are
also found to be in very good agreement with the experi-
mental data, showing on one side that spin correlations
are important to get a realistic ground-state trial wave
function and, on the other side, that possible three-body
interactions to be added to the Hamiltonian (1.1) have
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negligible effects on the static properties of liquid He.
The FHNC/a method used in the calculation of the

distribution functions of a JSTB wave function is outlined
in Sec. II ~ The expression of the energy expectation value
and of the liquid structure function are given in Sec. III.
The results are presented and discussed in Sec. IV.

II. FHNC/a METHOD

0 0
W

(a)

I m
+'W ~ W W w

~~

I
I I
I I
I )0 0

(c)
Very accurate evaluations of the two-body distribution

function g(r, ) for JT wave functions are obtained by us-

ing the FHNC/a theory. ' ' ' If more involved trial
wave functions of the JTSB type, given by Eq. (1.2) with

FsD =fk(i, j)f (i J)' (2. 1)

are employed, one has also to include the important
many-body cluster terms containing backflow and spin
correlations.

The single-operator-chain (SOC) approximation has
been widely used in nuclear-matter calculations and in
that case it is believed to furnish reliable results, mainly
because state-dependent correlations are weaker than
central correlations. Here also, one has rj (r j)«1,
therefore it is plausible that FHNC/SOC will be a good
approximation for a JTS model wave function. Higher-
order cluster terms of the type suggested in Ref. 21 and
discussed in Appendix A provide for very small correc-
tions to the energy expectation value.

,Backflow correlations are treated as in Ref. 6. The in-
clusion of spin correlations in FsD allows for keeping a
backflow correlation ga(r, j) which is even weaker than
that in Ref. 6, therefore the treatment used there is ex-
pected to be more justified in the present calculations.

Full derivations of the FHNC/SOC approximation,
the FHNC/a method for the JT model, and the approxi-
mation to sum cluster terms with backflow correlations
can be found in the original paper. ' ' ' Here, we limit
ourselves to combining the above treatments in order to
evaluate the energy expectation value and the liquid
structure function for JTSB model wave function at the
best possible accuracy allowed by the present many-body
technology.

The sum of chain diagrams, in the FHNC/SOC ap-
proximation, is given by the following nodal operators

N „(i,j)=N'„+N „rr, o), (2.2)

where mn =dd, de, ee, and cc denote terms in which nei-
ther i nor j is exchanged, in which only j is exchanged, in
which both i and j are separately exchanged, and in
which both i and j belong to the same permutation loop,
respectively. The function N'„(r,, ) sums chain diagrams
built up with central links only, namely Jastrow, triplets,

I

(~) ' (e)

I m

I

(~)

(g)

I

(h)

FIG. 1. Examples of diagrams contributing to g(,r) and in-
cluded in the present FHNC/a scheme. Dashed, zig-zag, wavy
lines represent f2 —1, gs, and g correlations, respectively.
Shaded triangles correspond to triplet correlations f, —1 and
oriented lines to exchange correlations.

where mn =dd, de, ee and I (1') is d or e,

~ll' ( +~II', dd )( +~ll', de )( +~ll ed )', (2.4)

and 5II „ is 1 or 0 whether Il'=mn or not. The function¹,is given by

and backflow correlations, whereas N „(r; ) sums chain
diagrams where each link contains only one g correla-
tion and may have additional central dressing. For in-
stance, Figs. 1(a) and 1(c) contribute to Ndd, Fig. 1(b) to
Nd„Fig. 1(d) to Ndd, and Figs. 1(e) and 1(f) to Nd, . The
central terms of the nodal operators are given by

N'„(r;, )=pf&'rk g &II'[ggI'(r k) ~ I',dd]'
I, I'

+ [gml(rkj ) Nml(rkj ) ~ml, dd ] ~

(2.3)

N;, (rj ) =p f d rk([ge'e(r+ )+3M,N„(rk )f2(rk )jt '(r+ )][g«(rkj ) N,', (rkj )+I (kzrkl )—/v]

+ [3M,N&(rik )[f2(rk)h'(rk )—1]]g,', (rkj )) .

The Slater function

(2.5)
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l(x; }=3[sin(x, ) —x; cos(x, )]/x;

with

(2.6}

(2.8)

(2.10}

where

x,"=kFt (r, ) =kF»,"[I +2rtz(r, j )+2Z(r,
&
)], (2.7)

sums both the uncorrelated and backflow-correlated exchange links [in Eq. (2.5) the subtraction of the function
l(k—»r k)/v. avoids the inclusion of chains with more than one uncorrelated exchange link). The function Z(r, )i.n-

cludes the three-body dressed cluster terms of the type dd containing one backflow link re(r;~ ) [see Fig. 1(g)]. In the
case of the JTS model gz ——Z=O gives the standard value x;~ =k~r,j.

The functions g „(r/) sum all the diagrams of type mn, therefore also elementary terms should be included in their
calculation. Following the interpolating procedure of Ref. 8 we get for g „(r; ) the following expression:

g'aa(;J }=f2(»j}h'(r() }+gaa "(»()»

gz, (r,J. )=f&(r;.~)hM(», J )T&,(r;J )+gz, "(»,J ),
g,', (r, )=f2"(r,j)(hst(», J ) [ T„(»,J )+2![kFt(r, )]T„("r;J)

+a(r~ )[T&,(r;. ) vT„(r~—)]} h'(r; —)1 [kit(r~t)]/v)+g„(r; ),
g,', (r,j ) =f2(r; )[hM(r, )T.„(r,")—h'(r, ")1[kF"t (r, )]/v"I,

+1 exp[C«(r; )+Ezra(r, )],

h~(», , ) =exp[a(», , )N~~(», , )+C«(»,, )+E«(»» )],
exp[a(r, )Nzz(r; )]—1

a(r, . )

(2.12}

(2.13)

T „(rj)=N'„(r; )+C „(r, )+D „(r,") (mn&dd) . (2.14}

The functions C „(r,~ ) are obtained by integrating the triplet correlations f3(r;, r;z ), dressed with two-body bounds
g „,on the coordinate r„. For instance, the link between particle 1 and particle m in Fig. 1(b) is summed in C~, (r& ).
Similarly, Z(r, )and D "„~«(r,j ) sum all dressed three-body elements linear in gz. Contributions of order gz are not
treated exactly by the above equations. The expression of C „,Z, and D „are given in Ref. 6 and are not reported
here.

The function g „(r, ) sum the single-operator ring (SOR) diagrams, like, e.g., Fig. 1(h), and they can be easily cal-
culated by using Eqs. (6.34)—(6.36) of Ref. 20, with the result

g&& (r~ )=3f2(»~J )M~h'(r~j )[rt~(r~j )+hM(r~j)N&&(r» )],
g&, (r» )=3fz(r J)M&M, (hM(» J)[rt (r~)+h~(r~j)N&&(r~} ))T«(r J)+h'(r J }h (r~)N&, I,
g„(r, )=3f2("r; )M, (hM(r; )[rt (r,")+h~(r; )N&z(r, )][T„(r,")+a(r; )T&, (r,")]"

ph'(r, )h (r, )IN„(r",")—1 [k"Ft(r;J )]/vI

+hM(r, )h (r; ) I 2N&, (r, )T"&,(r,
& )+21 [kFt (r";& )]T„(r; ) —a(R; )vT„. (r,)I"

+h'(r; )IN&, (r; )+2N„1[kFt(r, )]/M, I h(r, )vT„(—r; )N„(.r; )/M, },

(2.15)

(2.16)

(2.17)

where

h (rj. ) =2q (rj )+N&&(r&),

h~(r,~}=2'~(r,j )+Nz&(r, j )/2, .

(2.18)

(2.19}

and the vertex corrections M& and M, are given in Ap-
pendix B. The function g'(r) given by

g'(r) =g&&(r)+2gz, (r)+g,', (r), (2.20)

corresponds to the FHNC/cz approximation of the pair
distribution function g (r). In the case of J or JT models
of qio, g'(r) approximates g (r) very well. If also

I

backAow and spin correlations are included in %0, impor-
tant many-body contributions are neglected in g'(r), like,
e.g. , SOC and three-body separable diagrams. A better
approximation for the pair distribution, which includes
the above diagrams will be discussed in the next section.

The function E&&(r) appearing in Eqs. (2.12) and (2.13)
corresponds to the sum of the basic elementary diagrams
of the type dd with at least one triplet correlation [see
Fig. 1(i)]. The interpolating procedure automatically in-
cludes all the elementary diagrams which can be obtained
by connecting two or more parallel chains N(r} with the
two-body links g „(r), via the relations' '
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+E' +"'
i=1

=p a(r) +" 'gN'(Ndd) (a;&dd),
i=1

(2.21)

where E' +"'(r) are the elementary diagrams obtained
by connecting the m +n chains among themselves. In
Ref. 8 it has been found that P =1 is a good ap-

proximation, although the use of p=0 for (Nd, ) (Ndd )

and of P=1 for the all remaining cases seems to allow
also the fulfillment of the condition S(0)=0. In this pa-
per we keep all the P's equal to unity and we extend the
relations (2.21) to include possible parallel connections
containing backflow and triplet correlations. More pre-
cisely [see Eq. (2.14}]we take

gT (N') +E™+"}=() +" 'gT (N'}
Ii=1 i=1

(a;+dd) . (2.22)

Diagrams Edd(r) are not of the type E' +"'(r) and there-
fore they have to be explicitly included in the convolution
equations. Edd(r) is here approximated by the sum of the
four-point diagrams Edd4(r) with the two-body links
given by g'(r) of Eq. (2.20) calculated in Jastrow approxi-
mation. The reliability of this approximation is based on
the property that 2gd, (r)+g,', (r) =0 (Ref. 6) and that the
pair distribution g '(r) does not change significantly under
the inclusion of f3,f, and f„.

The interpolating function a(r) is derived by consider-
ing the mass three-boson system described with a wave
function of the Jastrow type with a short-range pair func-
tion f, of the McMillan form. Then the interpolating
function a(r) is taken to be

—1

1+p d r g r —1

'll' ( +Mdfill', dd }( + e'll', de)( +Me'll', ed }

(2.29)

For the cyclic exchange chains one needs to distinguish
two nodal functions N„(r j) and N b(r j), given by

N„(r j)=p f d rk[g„(r;k) —N„(r;k)]g,', (rk ),
Ngb(r[j)=p f d"k[ggg(rjk} Ngg(r;k)

+I (kjrlk )/v]grab(rkj), (2.31)

Bg=1+~fd r g(r)+~ ru'(r) . (2.27)
3 2'

If, instead of the short-range f, we have a pair correla-
tion function f~(r) with a long-range tail, the above equa-
tion cannot be used anymore to get ao. In this case the
parameter ao in Eq. (2.23} is calculated by requiring that
the elementary functions El(r) and E,(r) obtained with
the long-range and short-range fz(r) be equal at the ori-
gin.

A typical behavior of the interpolating function a(r) is
displayed in Fig. 2. The healing of a(r) to 1 guarantees
that at large interparticle distances the FHNC/a approx-
imation merges into the FHNC/0 approximation which
is a consequence of the fact that the elementary functions
heal to zero much more rapidly than the nodal functions.

The spin terms of the nodal operators N „defined by
Eq. (2.2) are given by the following SOC equations:

N „(rj)=pf d rk QHll [g l(rk) N l(rk—)]gl.„(rk, ),
I, I'

(2.28)

where mn =dd, de and ee, I, I'=e, d and

a(r) =1+a+pv(r)/N pv(r) (2.23)

where ao is a constant parameter. N pv(r) is the nodal
function satisfying the equation

Npv(rj)=p fd'rk[g pv(rk) 1]

X [gpv(rkj ) Npv(rk—j ) —1] (2.24)
O.s-

where gpv(r, ) is given by .the Percus-Yevik approxima-
tion

0.6-
ha

gpv(r j)=f, (r j)[1+Npv(r j)] (2.25} Q,4

and Epv(r) is the Percus-Yevik prescription for the ele-

mentary diagrams, namely, 0.2

Epv(r ):—N pv(r ~ )+ln[1+Npv(r ~)]~~ (2.26)

The parameter eo is determined by requiring the
compressibility consistency condition (CCC) for a classic
fluid interacting through a potential u(r)=U(r)/
ksT= —lnf, (r}and given by

O.O
0

g + I ~
y

s
y

w
g

2 4 6 8 go 12
O

FIG. 2. The interpolation function a(r} for the JTSB model
at p=po (ap=0.96}.



4528 M. VIVIANI, E. BUENDIA, S. FANTONI, AND S. ROSATI

with

N„(r, )="N„(r, )+"N,b(r; ) . (2.32)

The expression of the links g are easily obtained by ap-
plying the interpolating procedure expressed by Eq. (2.22)
to the SOC equations (6.18)—(6.20), (6.23), of Ref. 20,
with the following results:

g„„(r;,)=f2(r;, )h'(r;, )h (r;, ), (2.33)

gde(rtj)=fz(r j)[h (r j)hst(r j)Td, (r, )+h'"(r; )Nd, (r, )],"
g„(r, )=f"2(r,")(h (r, )h"l(r, )["T„(r; )+a(r&)Td, (r j)]—I [kFt(r j)]/v

+ht'd(r; )I21[krt(r, )]T„("r, }—vc"t(r, )T„"(r; )I +h'(r, )N„"(r, )+2"hM(r,")Nd, (r, )Td, "(r, )), "

(2.34)

(2.35)

g,„(rj)=f2(rj){M,h (rj)tht'd(r; )T„(r; ) h'(r, —)I[kFt(r,, )]/vI+h'(r, )N,„(r, )) (cx =ca, cb) .

The three-particle distribution function, for a ground-state wave function %o of a J or JT type, is given by

g3(rij rk)=f3(r j r(k } X gran(r(, )gn, ((rjk)gt, m(rk }[1+Ann(, (r;,, rk)]
m, t?, I, .

(2.36)

(2.37)

A m~(~ddd (r j,rtk ) =0,
Addd(r'j r'k ) (1+s)Addd, 4(r'j rjk )

+ Addd, 4(re rik )

(2.38)

(2.39}

where A -„-1. is the sum of the Abe terms, and the
sum is extended to all the allowed FHNC combinations
of the subscripts m, n, . . . . If state-dependent correla-
tions are present in %0 nonfactorizable terms arise which

should be added to the right-hand side of Eq. (2.37). We
neglect these terms, and, moreover we approximate

g „(rj ) with g'„(r,j) and use the scaling approximation
of Ref. 6 for the Abe functions, namely

I

short-range or long-range pair correlations fz(r) for both
Bose and Fermi systems.

Results of FHNC/a calculations for J, JT, JB, and JTB
models of +0 are compared in Table I with the MC' and
FHNC/s results, obtained in correspondence to short-
ranged f2(r) of the McMillan form. The contribution
from back-flow correlations have been evaluated by using
the same approximation as in Ref. 6, in which the three-
body part of the back-flow kinetic energy terms has been
neglected. There is an overall agreement among the three
diff'erent approaches, with the FHNC/a giving results
which are slightly more close to MC estimates than the
FHNC/s approximation.

where A4 is the four-point Abe diagrams built with the
link g'(r) 1 and A4 sums al—l those containing at least
one triplet correlations. The scaling parameter s is here
determined by solving the J model of the mass-three-
boson system by using the HNC/a scheme and requiring
that the Jackson-Feenberg (JF), and Pandharipande-
Bethe (PB) forms of the kinetic energies give the same
result. It has been found important to consistently use

p(o. ') FHNC/a FHNC/s

TABLE I. Comparison of FHNC/a, FHNC/s, and MC
(Monte Carlo) energies for the J, JT, JB, and JTB models with
short-ranged correlations. The function f2(r;, ), f„(i,j), and

f3( r;, ,r;„}and the MC estimates are taken from Ref. 13. The
FHNC/s values are from Ref. 6. All the energies are in K.

III. CALCULATION OF THE ENERGY

TJF /N TF + T~ + T~ + T~

where TF is the Fermi kinetic energy

(3.1)

The energy of the liquid can be calculated by using
different forms of the kinetic energy. The Jastrow-
Feenberg (JF) form ' is the one which looks the most
adequate if triplet correlations are included in the wave
function, since only the two- and the three-body distribu-
tion functions are involved in the energy calculation.
Other commonly used forms, like the Pandharipande-
Bethe (PB) form and the Clark-Westhaus (CW)
form ' require also the knowledge of the four- and
Ave-body distribution functions.

The JF prescription provides the following expres-
sions ' for the expectation value of the kinetic energy
with the wave function %o of Eq. (1.2):

0.277 J
JT
JB

JTB

—1.10
—1.62
—1.38
—1.98

—1.08
—1.49

—1.08+0.03
—1.61+0.03
—1.55+0.04
—1.91+0.03

3 fi
TF =— kF,

5 2m

TR is the Boson-like term

(3.2)
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JdrI@q [F+(VfF)+(VfF+ )F 2—(V~F+ ) (V,F)]40]

Jdr +0+To
(3.3)

with Fbeing the full correlation operator F&Fz S [ g; j,FsD(i, j)] and T+ and Tz are given by

g2 Jdr[(V/40 )F+F40+2(V)40 }F+F(V)4O)+4OF+F(Vf@o}]
(3.4)

fdr[@OF+(V)F) (V)4O) —(V)4o )F+ (V,F)40]
2m fdr%'+4 (3.5)

EJF/N =TF+ W+ W@+ U+ U@, , (3.6}

The energy per particle can be written in the following
form:

where the f ' are defined by the equation

f2(r „)f (r „)= g f'(r „)0'(mn),
i =1,2

(3.10)

W= W;+ W, + W, + W„+5W, (3.7)

where the Ws and the U's correspond to the two-body
and three-body energy terms, respectively. The approxi-
mation adopted to take into account state-dependent
correlations consists on treating exactly the two-body
cluster terms, adding to these the many-body cluster con-
tribution in accordance with SOC and SOR approxima-
tion. This implies that up to five operators may have
one external point in common. Central correlations are
included at any cluster order.

The W term is more conveniently separated into five
pieces,

and therefore are given by

f'(r~„}=f2(r „), f (r „)=f2(r „)rj (r „) . (3.1 1)

2g2kF2

Bde = [r7)a+3rja+r ('9a }5'

The operator H(mn) is of the dd type, i.e., it gives rise to
both a direct and an exchange term. The other two
operators Bd, and B„come from the kinetic energy
operators acting directly on the backflow correlation
fk(m, n) and Bz, cannot have any exchange on particle n

whereas B„is purely an exchange term. They are given
by

where Wo sums all the diagrams which have no operator
chain connecting the two external points i and j, W, cor-
responds to diagrams having a reducible SOR at either
external points i or j, W, is the sum of diagrams with one
SOC, and W„sums diagrams with both one SOC and one
SOR at i or j. Higher-order correlations to SOR and
SOC approximations are included in 5W, as discussed in
Appendix A. Few examples of diagrams contributing to
W are given in Fig. 3, where the black bubble between i
and j generically denotes the interaction-type link

f2(r'j )FSD(&j )H (~ j }Fsn(' j )f2(rI'j } ~

The term Win Eq. (3.6) contains the expectation values
of the potential and the two-body parts of Tz and Tz
given by Eqs. (3.3) and (3.5), respectively. One easily
finds that there are three different types of two-body
operators B(mn), Sd, (mn), and S„(mn) of the form

2

(rrj~ +4'~ )f 'f "&p,

I

I
I~I

t
I j

(a) (b)

+ 2r rid rj'jj+ 3rj~ ]f'f",

(c)

(3.12)

(3.13)

X(mn)= g X'J(mn)0'(mn)0j(mn),
i,j =1,2

(3.g)

with 0'(mn}= l, cr .o„ for i=1,2 and they have to be
dressed with central chains SOC and SOR. The operator
A'( mn ) has the following components:

i j
(e)

$2HIk fIf k [fI(V2f II) (Vf I) (Vf k)] (3.9)

FIG. 3. Examples of diagrams included in the energy calcula-
tion. (a) Belongs to Wo, (c) to W„(b) and (e) to W„(d) to W„,
and (f) to 6W.
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with

dl(k t)
I = (3.14)

By combining the interpolating procedure discussed in
the previous section with the operator algebra of
FHNC/SOC theory, one gets the following expression
for the Wo+ W; appearing in Eq. (3.7):

Wo+ W, = fd r I
(H"+Bd', )[h'(Mz') +hMMd"M, '"Td, ]+H "h~M,'"(Td,Md" +T„M,'"+aTd, M,'")

}A '

2

+ fd r [[H'"l(kFt)+B,',"][ h'l—(kFt)lv+hMT„]+H'"h~T„[1(kFt) vaT—„]}(M,"" ")2

+ (KnimK 1km+KnkmKi 1m) A m (3.15)

where a summation over the indices i,j, . . . from 1 to 2 is implied and the matrix K'~ is defined through the equation
2

0'(mn)0~(mn)= g K''"0 (mn),
k=1

(3.16)

and its values are K" =K' '=K "=0,K"'=K' =K ' =1, E '=3, and K = —2. The constant A, defined as
A"=K""', results in A'=1, A =3. The vertex corrections Md'~, M,'J", and MP" "are given in Eqs. (B5) and (B6) of
Appendix B.

The sum of the terms W, and 8'„ is more conveniently separated into four pieces depending on the exchange nature
of the two-body operator existing between the two external points m and n, namely

W, + W„= W„(dd)+2W (de)+ W„(ee)+ W„(cc),

where W„ is approximated as in Ref. 20; therefore one has

(3.17)

W„(dd)= fd r H'"Ndd[h'+hM(2Td, +aTd, +T„)]M (11K" 'A'+10L" '+9K'" )

+. fd r H'"NzzI h'1 (kFt) l—v+h~[21 (kFt)T„avT„)}M-,

+ [ i (KknmLm2k+Kikml n2m+3KknmKmi2+Kknml m2k)
2

+ i (4Kn2mK mikA k+Kknml i2m+Kniml k2m)] (3.18)

W (d )
p fd3 (HikNa +BikNa )(h c+h c T )M M (Kk2i A i+I k2i) (3.19)

W (ee) f d3r HikNah cM2Kk2iAi (3.20)

cc)= f d rIHi" [hcl(k t) —vhc T„]+hcB~"}NaM [K"im(1 n m+Kn mAm)+Kn"mL ~im+K~imnl m]

—3p f d r [H'"[hcl(kFt) —vh~T„]+hcB'"}(N„Nab)M Kn'kA —k (3.21)

The matrix L'J" is defined in Ref. 20 and its values are L" =L' '=L "=0, L'"=1, L' =L ' =L '=3, and
L =6. In preceding formulas we have taken for simplicity the same vertex factors Md and M, used in the SOC equa-
tions.

A completely similar procedure can be used to calculate W~ with the result

(3.22)

where

2

W@ O+ W+, ——— pM, f d r[f'f"(h'I 1 (kFt)V', 1 (kFt)+[V, l(kFt)] }4mv

—vh~T„V, l(kFt)) —25, &5 &N;, 7 1(kFr)]K"' A ",
and

(3.23)

with

Wq, , ——W~ (dd)+ W~ „(cc), (3.24)
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fi
pM~ Jd3r f'f"Ndd(h'I i(kFt)V, l(kFt)+[V, l(kFt)] I

—vhM T„V,l(kFt))
e,x

t & (K nimL m2k+ 2KikmL n2m+ 3K knmK mi2+ K knmL m2&
)

L p

] (4Kn2mK mik A k+KknmLi2m+KnimL k2m )]+3
$2

( )= M~ fd3rf'f h'[g l(k t)] I ,'N„—[Kk™(L"2m+K" A )+K"" L " +K' "L ]

—3(N„—N, b)
K"'"A") .

The term U in Eq. (3.6) corresponds to the kinetic energy due to triplet ( Ur ) and back-flow ( Uk ) correlations

U=U~+Ug,

where U& comes from T& of Eq. (3.3) and Uir from T& and T&. The term Ur, given by

(3.25)

(3.26)

(3.27)

Ur ———p d r; d r;k g3(r j,r;k)|)';Inf3(r, , r;k),
8m

(3.28)

has been calculated by employing the three-body distribu-
tion function g3(r, , r,k ) discussed in the previous section.
In the approximation of Ref. 6 the term Uz has been
completely neglected. Explicit expression for Uz can be
found in Ref. 30.

The quantity U~ in Eq. (3.6) is a three-body kinetic en-

ergy part of T+ of Eq. (3.4). In practical cases it has been
found to give a contribution to the energy which is less
than 0.1%, and therefore it has been neglected.

An improved approximation to the distribution func-
tion g (r), with respect to g'(r) given in Eq. (2.20), can be
easily obtained by using the equations derived for the en-

ergy expectation value, namely

g (r) =go(r)+g, (r)+g, (r)+g„(r), (3.29)

where the terms g„(r) are obtained by the corresponding
W's given in Eqs. (3.15} and (3.17)—(3.21} by setting
Bd, ——B„=O and H'"=f'f and dropping out all the in-

tegrations. In such a way, Eq. (3.29) sums not only the
diagrams included in g'(r), but also the SOC and separ-
able diagrams. A more extensive discussion on the pair
distribution function and on its spin-spin component is
given elsewhere. '

IV. RESULTS

fz(r ~ ~ ) = 1 —const/r (4.1)

There are a few methods to calculate the optimum
pair correlation function f2(r) for a J- (Jastrow) model
wave function +Q. These methods differ among them-
selves mainly in the treatment of the elementary dia-
grams contributing to the expectation value of the Hamil-
tonian, and it is not completely clear which one furnishes
the best f2(r) in a realistic case. Moreover, the generali-
zation of those treatments to the case of a wave function
% Q containing triplet and state-dependent correlations
looks too complicated. Therefore we have preferred to
use here a simpler method which provides a semioptim-
ized pair correlation function with the proper long-range
behavior

where wo(r) is the induced potential in HNC/0 approxi-
mation and wz(r) includes elementary diagrams contri-
butions. The explicit expression of wo(r) and wz(r) are
given in Ref. 8. The pair correlation function f2(r) ex-
tracted from the pair distribution function g(r), solution
of Eq. (4.2), has proved to be remarkably adequate from
the variational point of view.

The triplets correlation f3(r;j, r;k) has been taken of
the following form:

f3(r;, r;k ) =exp[ —,'q (r, , r,k )],
q (rij r k ) rf P "ij )P"'k )r'j rik

cycl

(4.3)

(4.4)

where g, ,i denotes the sum over the three permutations
of the indices ij k, and the function g(r) is given by

(r r,)2—
g{r)=nV/A, r exp,

N
(4.5)

A similar form has been considered for the back-flow
correlation rjB(r) also

pic(r) = A.bexp
(r r„)—2

2
Wb

(4.6)

In Table II the FHNC/a results are compared with the
corresponding FHNC/s estimates. The values reported
in Ref. 6 have been used for the parameter A,„,r, and w

(x =t, b) of the functions g'(r) and ritj(r). The approxi-
mation of Ref. 6 has been used for the back-flow correla-
tion terms. As in the case of the short-ranged pair corre-
lation function, there is a good agreement between the

I

The method consists in calculating the optimized f2 for
the mass three-boson system according to the HNC/a
version of the optimization process. One has to solve
the following Euler equation

$2
V &g (r)+ [U (r)+ wo(r)+ wz(r)]&g (r) =0,

m

(4.2)
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TABLE II. Comparison of FHNC/a and FHNC/s energies for the J, JT, and JTB models with
long-ranged pair correlations. The FHNC/s values are those enclosed in parentheses and are taken
from Ref. 6. All the energies are in K.

p(~ ')

0.237

0.277

0.301

0.330

J
JT

JTB
J

JT
JTB

J
JT

JTB
J

JT
JTB

1.13
1.13
1.13
0.93
0.96
0.96
0.85
0.89
0.89
0.77
0.80
0.80

10.58( 10.71)
10.31(10.40)
9.77(9.89)

13.25( 13.48)
12.73( 12.97)
12.02( 12.28)
14.93( 15.22)
14.40{14.55 )

13.50( 13.77)
17.18( 17.69)
16.35{16.76)
15.44( 15.86)

—12.12( —12.17)
—12.13(—12.19)
—12.01( —12.11)
—14.55( —14.76)
—14.53{—14.80)
—14.33( —14.50)
—15.92( —16.28)
—15.92{—16.33)
—15.67( —16.12)
—17.57( —18.29)
—17.49( —18.31)
—17.17( —18.03)

—1.54( —1.46)
—1.82( —1.79)
—2.24( —2.22)
—1.31(—1.28)
—1.80{—1.83)
—2.31(—2.36)
—0.99{—1.06)
—1.61( —1.78)
—2.17( —2.35)
—0.39( —0.60)
—1.15( —1.55)
—1.73{—2. 17)

two variational schemes. For p &po the results obtained
for the total energy E compare very well, although the ki-
netic ( T) and potential ( V) energies separately do not
agree as well. This is due to the different semioptimized
pair correlation functions fz(r) adopted in the two calcu-
lations. Most of the differences in the two functions fz(r)
are due to the fact that the induced potential ivE(r) in Eq.
(4.2} is neglected in the calculations of Ref. 6. Such
differences do not seem relevant to evaluate the total en-

ergy, whereas they are important for quantities like ( T ),
and the momentum distribution. ' ' A similar feature is
more evident in the Bose case: if the HNC/a scheme is
used with a Jastrow factor derived from Eq. (4.2), where
wz(r) is neglected, essentially the same results of the
HNC/s scheme are obtained for (T), ( V), and E,
whereas if wE(r} in Eq. (4.2) is not neglected then the ki-
netic energy is appreciably reduced. For instance, at
p=0.3648o, ( T) =14.69 K, ( V) = —20.59 K, and
E = —5.90 K, whereas (T),=15.25 K, ( V), = —21.19
K, and E = —5.94 K.

As the value of the density p increases the scaling ap-
proximation for the elementary diagrams starts deviating
from the interpolating equation method, and this explains
most of the discrepancies shown in Table II for E at
p& po

The spin correlation function g has been calculated by
minimizing Wo+ Wz, o, calculated by setting g „"(r)=0
in the FHNC/a Eqs. (2.8}—(2.11), under the constraint
that both i) (r) and [ri (r)]' heal to zero at some distance
d . This requirement is fulfilled by solving the following
Euler equation:

$2
X(r)"+[v(r}+w (r) —A]X(r)=w, (r), (4.7)

with

r) (r) =X(r)/[rf z(r)QFi(r)]

and

gz F, (r)
w (r)=-

m F, (r)
F~(r)" Fi(r)' [Ft(r)']z

+
4F&(r) 2rF~(r) 4F&(r)z

(4.8)

w, (r)= 2 $2[4Fz(r)V fz(r)+4VFz(r) Vfz(r)+fz(r)V Fz(r)] —4Fz(r)v(r)fz(r) —2 fz(r)F&(r)
1

(4.9)

The functions F, (r), Fz(r), and F3(r) are defined as

Fz(r) = ——
[ h '(r)l [kFt (r)] /2+ hit(r) T„(r)I

F, (r) =g'(r)/f', (r) —vFz(r)',

F3(r)=h'(r)(1 [kFt(r}]V,I[kFt(r)]

+[V,l[kFt(r)]) ),

(4.10)

(4.11)

(4.12)

where the function g'(r) is defined in Eq. (2.20}. The pa-

rameter A, is fixed by healing conditions. For a given
choice of the function fz, f3, and uzi, the Euler equation
(4.7) is solved in correspondence with different values of
the healing distance d to get the correlation function g
which minimizes the energy of the liquid. It has been
found that the g obtained in this manner provides better
upper bounds of the energy than a three-parameter trial
function of the same form as i)zt of Eq. (4.6). The results
obtained with a wave function %0 of the JTS type are
given in Table III. The optimum values of A,„r„and m„
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TABLE III. Breakdown of the energy (in K) of the JTS mod-

els of liquid He as a function of the, density p. ao is the parame-
ter of the interpolating function.

p(0. ')

ao
TF
W

W~
UT
b 8'
E
E,
E,
E„
&T)

E

0.237

1.13
2.71

—4.31
—0.55
—0.04
—0.008
—1.95

0.09
—0.26

0.02
9.95

—12.15
—2.19

0.277

0.96
3.00

—4.49
—0.66
—0.15
—0.012
—1.92

0.13
—0.55

0.04
12.31

—14.62
—2.31

0.301

0.89
3.17

—4.43
—0.74
—0.24
—0.02
—1.69

0.18
—0.82

0.08
13.80

—16.06
—2.26

0.330

0.80
3.38

—4.08
—0.8S
—0.41
—0.02
—1.18

0.18
—1.07

0.09
15.74

—17.74
—1.99

obtained by minimizing the energy of the JT model of
liquid He at p =po result to be

A, , =0.75, r, =0.85o, m, =0.45o, (4.13)

which coincide with those reported in Ref. 6. The depen-
dence of these parameters on the density p has been
found to be very weak and therefore the values given in

Eq. (4.13) have been used at all the densities considered in
the calculation. The quantities E„with x=0, s, c, and cs
reported in Table III are defined as

E =8'„+W~„, (4.14)

and & V) and & T) denote the expectation value of the
potential and kinetic energy, respectively.

The SOC contribution E, to the energy results to be
large and negative and the separable diagrams provide
for a repulsive 10' correction. Typical values of the ver-
tex correction M„d, are reported in Table IV.

Both the SOC-SOR contribution E„and the higher-
order terms, summed in 58', result to be very small at all
the densities, which strongly indicates that the approxi-
mation used in this calculation to take into account the
many-body cluster terms with spin correlations is ade-
quate.

A comparison of the results given in Tables II and III
shows that the JTB and the JTS models give very similar
equations of state for the liquid, with the JTS wave func-
tion being slightly preferable from the variational point
of view. In fact corrections of =0. 1 —0.2 K, due to the
three-body back-flow term Uz should be added to the en-
ergies given in Table II.

The results of the variational calculation performed
with the wave function %0 of the JTSB type, at the equi-
librium density p=po, are reported in Table V as a func-

tion of the variational parameter A,b. The calculation has
been done by keeping the functions f2(r), ((r), and rl (r)
as found for the JTS model wave function and by minim-

izing the energy with respect to the parameters rb and mb

of rl~(r). The best variational energy is obtained in

TABLE IV. Vertex corrections for the JTS model of liquid
'He.

p(~ ')

Md

M,

0.237

1 ~ 101
0.969

0.277

1.100
0.964

0.301

1.100
0.954

0.330

1.090
0.930

correspondence to

gb —Q. l5, rb —Q. 8Qo, ~$ —0.375(y . (4.15)

TABLE V. Breakdown of the energy (in K) of the JTSB mod-
el of He as a function of the variational parameter A, b of the
back-flow correlation q&. The three-body back-flow term is
neglected here. The Fermi kinetic energy TF——3.00 K. ao is the
parameter of the interpolating function.

ao
W

UT
6$'
ED+E,
E,+E„
&T)

0.96
—4.49
—0.66
—0.15
—0.012
—1.79
—0.51
12.31

—14.62
—2.31

0.96
—4.57
—0.77
—0.15
—0.010
—2.04
—0.46
11.93

—14.43
—2.50

0.15

0.96
—4.55
—0.81
—0.15
—0.010
—2.09
—0.43
11.82

—14.34
—2.52

0.20

0.96
—4.48
—0.85
—0.15
—0.009
—2.11
—0.38
11.76

—14.25
—2.49

The contribution of U& to the energy has been neglected
in the minimization process. It has always been possible
to find a minimum of the energy at all the densities con-
sidered. The various correlation functions obtained at
p=po are compared in Fig. 4, and the two-body distribu-
tion function g(r) corresponding to different choices of
%'0 is displayed in Fig. 5.

The energies per particle of the liquid obtained for
different model wave functions at various values of the
density are shown in Table VI. The energies E(JTSB2)
correspond to the JTSB calculation discussed above and
therefore they do not contain the contribution from Uz.
This has been estimated perturbatively, by calculating the
expectation value of the three-body terms ' of Tz and

Tz of Eqs. (3.3) and (3.5), respectively, on the same wave

function %o obtained in the JTSB2 calculation. The su-

perposition approximation [i.e., A „&
——0 in Eq. (2.37)]

has been adopted for g3. The energies E(JTSB3) include
such an estimation of Uz, which results to be positive
and =10% of the contribution to the energy from from
the two-body back-flow term U2 ——E(JTSB2)—E(JTS).
The three-body terms of T~ and Tz coming from the Abe
terms in g3 are expected to give a negative contribution
to the energy. We have not calculated them, but we have
estimated them in the following way: We have repeated
the energy minimization by computing the serni-
optimized g after having included the back-flow correla-
tions in 40. In this manner we get a different value of U2.
We have then assumed Uz to be given by y Uz and deter-
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FIG. 6. Calculated liquid structure function S(k) compared
with the experimental data at T=0.41 K of Ref. 38 (open trian-

gles) and at T=0.76 K of Ref. 39 (solid triangles).

operator chain and with uncoupled single-operator rings
are taken into account. The accuracy of such an approxi-
mation has been checked out in nuclear matter by Wirin-

ga, ' who computed the supposedly leading terms of the
higher-order corrections to E and found them to be quite
small in magnitude. However, in a dense system like
liquid He higher-order corrections to the FHNC/SOC
approximation could be of some relevance.

Let us briefly summarize the technique devised by
Lagaris21 to calculate multiple-operator chain diagrams
of the type shown in Fig. 7, in which each wavy line
denotes the correlation F=2f2' and the thick line cor-
responds to 0" [see Eq. (3.9)]. The operators o, tr as-

sociated with each wavy line can come from either %p in

the expression (%0 i
H

i
qlo). Therefore for a given dia-

gram, one has various terms due to different partitions of
the symmetrized products of n; nj operators appearing
on the right and on the left side of the Hamiltonian. For
instance, for Fig. 7(a) one has the partition (0,4) with the
symmetrized product of the four operators on the right of
H "(i,j ), namely

H "(ij)S[(oi ol)(trj ol)(&, om)(o' tJ )]/4i

the L=O from the L=1 relative angular momentum
states of any two-particle system in the liquid. However,
they have also independent effects which may be relevant
in the study of the excited states of the liquid. '

The kinetic energies resulting from the present calcula-
tion are somewhat lesser than the corresponding venule

obtained by GFMC calculation. For instance, at p=pp
we get ( T) =11.85 K against the GFMC-FN (Ref. 5) es-
timate of 12.28+0.04 K. The kinetic energy expectation
value crucially depends on the details of the correlation
operator and, for instance, a nonproper treatment of
long-range behavior of the pair correlation function may
lead to uncorrect estimates of ( T). However, a correc-
tion to ( T) of =3 K, as requested by the recently re-

ported experimental value appears to be too high.
The results obtained in the present calculation indicate

that the HFDHE2 effective potential of Aziz et al. ' pro-
vides a realistic description of liquid He and that four-
body correlations in 4'0 should have negligible effects at
density values close to the experimental saturation densi-

ty.

K

(a)

Ei~- ~l
(b) (c)

1 m
}

' )'
s

1 1

(e)

s T

(&)

the partition (1,3) with one operator on the left and three
on the right, etc. Due to the absence of operators in
H "(i,j ) each partition generates the same products of
operators, therefore the generic diagrams Dk 2 having k
chains made up with two wavy lines give rise to the fol-
lowing expression:
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APPENDIX A: MULTIPLE-OPERATOR CHAINS

In a FHNC/SOC calculation of the expectation value
of the energy E, only diagrams with at most one single-

pq
x

t'M M)
(})

FIG. 7. Examples of multiple-operator chain diagrams in-

cluded in the calculation of the energy expectation value (hW
term).
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k k

D» =p"f d r, f . . f d r» H "(i,j) P F(r;„)F(r„)C. "' S g (o, cr„)(o„o.)
n=1

where C,"'( . ) means trace over the k external indices,

(Al)

F(r, )=2"f~z(r,")g (r, )," (A2}

and ak is a coeScient given by the sum of the weights of each partition divided by 2 . For instance

az ——(2/4!+2/3!+1/4)/16=1/4!. More generally one has '

k

C,'J ' ~ g (o'; ~r„)(0„0J)
n=1

(2k)!(k +1), k even,
—,'(2k)!(k+2)a, cr, , k odd, (A3)

2k

a»"——
z» g I/p!(2k —p)! =,, k &2 .

2 p p

As a result, the sum of all the diagrams of the type Dk 2 is given by

(A4)

g D» z
——cosh(X; ) +X; sinh(X;. ) —1+[2 sinh(X, " ) +X; cosh(X; ) —3X; ]

k&2

X,"=pf d r, F(r;&)F(r~ ) .

(A5)

(A6)

A completely similar procedure can be followed in the
case of diagrams of the type Dk 2'"'" which have an ex-
change between i and j, like, e.g. , Fig. 7(b). In fact, the
exchange operator P, =(I+a; o. )/2 is always to the
left of all the correlation operators in all the terms con-
tributing to Dk "2'"'",and one gets the following result:

I

above also in the case that an exchange operator P,. is as-
sociated with some of the links connecting internal
points, like, e.g., in Fig. 7(d). The sum of all the
multiple-chain diagrams D„! ! of the type dd is then ex-

pressed as follows:

D 'e~~" = —i(k r; ) P~ y D4"
I&&2 I& &2

(A7) ! =Ldd(~j }
k

It is easy to generalize the above procedure to calculate
diagrams having operators chains built up with any num-

ber of ogeratorial links. The generic diagram of this

type, Dk
I I

has one chain with a, links, a second chain

with a2 links, etc, , and leads to an expression which

differs from that of Eq. (Al) in the spatial part only.

, F(r;„)F(r„) is here substituted by the more in-

volved chain structure 11» &F(r;„). F(r„J},whereas
1

the C~
' part and the weight ak are given by

C{kj
IJ

k

g a„!(k+I},k even,
n=1

k

g a„!(k+2)cr, a, , k .odd',
n =1

(AS)

a„ f

(A9)

and their product C 'ak" depends upon the number k of
the parallel chains only. One can easily verify this result
in the case of Fig. 7(c) by using the property that the C
part of a generic product of the five cr; cr operators does

not depend upon the position of the operator col.cr

The products C. 'a„" has the same expression given

~; '~J.
=Ldd(r(~ )+Ldd(r( ) (A 10)

where

Ldd cosh(N„d ) +——Ndd sinh(Ndd )—1,
Ldd ——2 sinh(Ndd ) +Ndd cosh(Ndd ) —3N„d .

(Al 1)

(A12)

The function Ndd takes also into account of some separ-
able diagrams, like, e.g., Fig. 7(e), by means of proper
vertex corrections. Their expressions, as discussed in Ap-
pendix 8 are derived for the case of separable diagrams
having only one operator chain. The presence of more
than one operator chain implies the occurrence of extra
commutator terms. It turns out that these extra terms
are generally reduced by a factor = 5 with respect to the
ordinary vertex corrections. Since the contribution is al-

ways quite small we have disregarded the mentioned ex-
tra corrections in this paper.

The discussed procedure can be used to calculate the
multiple-chain diagrams of the type de, ee, and cc. The
diagrams Dk'I

I
having k —1 dd chains and one de chain

[see Fig. 7(Q] furnish for the products a»'CJ"' the same
expression as those associated with the diagrams Dk"I

I

and given by Eqs. (AS) and (A9). There are two types of
ee diagrams: those having two de chains [see Fig. 7(g)]
are characterized by the weight
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(k+1}+— a; a., k even,2 k+1
3 k —1

ee] (k)ak C,
o

(A13)

(A14)

whereas the chains having one ee chain, like, e.g., Fig.
7(h), lead to the expression

(k —1)a; a, k even,
ee2 (k)

—(3—2a; a, ), k odd .

Finally, in the case of diagrams of the type cc, like Fig.
7(i} one gets the result

(k+1)(1+a; a. ), k even,
eeC( k)

(k+2)(1—a a ), k odd . (A15)

L &(i,j )=L'&(r; )+—,'a; aJL~&(r J ),
where

(A16)

It follows that the sum of all the multiple-chain diagrams
D ~ with aP =de, ee, and cc are given by

Ld, Nd, [N——dd cosh(Ndd }+2sinh(Ndd )],
Ld, =Nd, f Ndd sinh(Ndd )+3 cosh(Ndd ) —3],
L,', =N„[Nddcosh(Ndd )+2sinh(Ndd )]+(Nd, ) [3 cosh(Ndd )+Nddsinh(N~~)],

L„=N„ I 3[N&zsinh(Ndd )+cosh(Ndd ) —1] [Nzzc—osh(Ndd )+2 sinh(Ndd )] I

+ (Nd, ) [Ndd cosh(Ndd ) +2 sinh(Ndd ) + [cosh(Ndd ) +2 sinh(Ndd ) /Ndd ]J,
L;, =N„[Ndd cosh(N~& )+2 sinh(Ndd )+Nddsinh(Ndd )+3 cosh(Ndd }—3]

L„=N„[3[N&zcosh(Ndd )+2sinh(Ndd )] [Nddsinh(N—dd )+3 cosh(Ndd ) —3]] .

(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

As a consequence, the contribution 6 W to the energy expectation value due to the multiple-operator chain diagrams is
given by

b W=EW(dd)+b, W(de)+b, W(ee)+b W(cc),

EW(dd) = fd r H "([h'+her( T„+2T«+aT&, )]L&d

(A23)

+ [
—h '1 (kF ~) Iv+hM [21(kf&)T« —vaT«] I (Ldd +Ldd )),

D, W(de)=p f d r H "(h'+hl Td, )Ld, ,

(A24}

(A25)

b W(ee)= f d r H "h'L;, , (A26)

DW(cc)= f d r H"[h'1(kFt) hlvT„]L;, .— (A27)

APPENDIX B: SEPARABLE DIAGRAMS

A separable diagram is a diagram which is constituted by two parts, connected by means of only one point called arti-
culation point. The contribution of such diagrams can be included in the nodal function as a "vertex correction" as in
Eq. (2.28); that is, for a given point i of a diagram I all the separable diagrams having i as the articulation point are
summed up with a numerical factor M(xr, y„) multiplying I . The variables x„and yr specify the diagrammatic ele-
ments of I which reach the articulation point i as in Ref. 20: x„=I,f, or I' for an interaction line, a double wavy line
or a chain, respectively; y& ——e, e, or d for an operatorial exchange loop, a central exchange loop, or a direct correla-
tion, respectively.

In the present calculation we have taken into account separable parts of the SOR type having an articulation point in
common with a SOC or SOR. Diagrams which have three or more SOR touching at the same point have been neglect-
ed. The resulting expression for M is

M(xr yr)=1+D g m(xr yr ys xs}J(yr ys xs» (B1)

where D = ——', and m (xr,y„,ys, xs) is a number between 0 and 1 coming from commutator contribution between I
and the separable part S. J(yr, ys, xs ) represents the contribution of S. xs and ys specify the diagrammatic elements
coming at the articulation point from S: ys ——e, e~, or d whereas xs f or P. For examp——le, if yr ——e, S cannot have an
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exchange loop at the articulation point and yz is forced to be d. With the interpolating approximation we have

J(yr d xs):3pf d r f2X [[(Mdh +M hseTg )+5& dh~(MdTd +M cxTd +M T )](1+Ndd5 p)

+(M, h'+M, hssTd, 5r d)N&, 5„p)

J( d, e, P) =3p f d r f2h [ —h '1 ( kF t) /v+ hss [21 ( kF t)T„va—T„]I M, ,

where h', her, and hl are defined in Eqs. (2.12), (2.13), and (2.19), respectively, and

=f',
X, =''s 2g, xs ——P

(B2}

(B3)

(B4)

In the SOC equations (2.28) and in Eqs. (B2) and (B3) instead of using M (x r,y r ) we have employed

Md ———,
' Q„M(xr, d) when the correlations of I connected with the articulation point are only dynamical and

M, =—,
' g„[M(xr,e)+M(xr, ez)] when there is also an exchange loop [there are only five different M, becausezr

M(f, e)=0 in our approximation]. In fact the differences between the M(xr, d)'s [or between the M(xr, e)'s and
M (xr, e )'s] are small and in such a way all the equations look simpler.

When we have to calculate the expectation value of a two-body operator 0 „ the vertex corrections in m and n are
more involved, due to the presence of the many operators coming from F'(m, n)0~(m, n)F"(m, n) [here 1 = 1 refers to the
central component so F'=f2 and 0'(m, n)=0(r „),whereas i=2 refers to the operatorial component and F2= f2' ].
In that case we introduce a vertex correction in m and n which depends upon the indices i, j, and k:

M'~"=1+ ,'(D;z+D —2+Dl,z)J(y, d,f )+ —,', (5D;2+3D z+5Dk2)J(y, d, P)+5 d ,'(D;z+Dk—z)J(d,e, P), (B5)

where Dz2 ——D, D» ——D &2
——D2& ——0, and y =d, e. When an exchange loop is present between m and n there is anoth-

er operator coming from the exchange operator (I+o o„)/2. Thus we have

Mp" =1+—,
' (6D 2+3D z+3D&2+2D;2+2Dk2)J(e, d, P}+,'(D 2+D —2+D&z)J(e,d,f )

which also depends upon the exchange operator's variable m.
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