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Shadow wave function for many-boson systems
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Some properties of a new class of variational wave functions for boson systems are studied. This
study extends the Jastrow class, and many-body correlations are implicitly introduced by a coupling
of the particle coordinates to subsidiary shadow variables. We prove that the new wave function
has Bose-Einstein condensation both in the liquid and in the solid phase. The maximum-overlap
criterion for this wave function with the exact ground state is developed. The kind of Jastrow
correlations implicitly contained in the new wave function is studied and we formulate a theory of
correlations based on the reference interaction site model.

I. INTRODUCTION
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where X(r) is a normalized function of finite range and

QN is the normalization constant. Clearly the shadow
variables I g; I induce some extra correlations between the

I r; ) and this can be considered a way of introducing Jas-
trow terms of higher order as implied by the cluster ex-
pansion of InS(r& . . rz).

The physical basis of why (2) should be a good repre-

The variational theory of the ground state of many-
boson systems based on the Jastrow trial wave function
(WF) and on its generalizations has had great success'
when we compare its results with the properties of He or
with the results of exact simulations. Still some funda-
mental aspects escape our understanding. The outstand-
ing problem is the freezing process and how the equilibri-
um positions in a highly quantum system develop. Until
now these equilibrium positions had to be assumed
a priori and inserted in the WF in an ad hoc way. It is
true that in this way we can compute rather accurately
the liquid-solid transition in He, for instance, but we
would like to see these equilibrium positions emerging in
a dynamical way from a translational invariant WF. This
is not only for a question of principle but also because it
would open the possibility of detailed studies of disorder
phenomena in quantum solids.

Recently a shadow WF has been introduced which
has, in addition to a Jastrow term, a factor in which the
correlations between the particles are mediated by subsi-
diary variables, the shadows. We write this function in
the following form:

sentation of these higher-order terms can be obtained by
considering the discretized path-integral representation
of the density matrix and the isomorphism between a Jas-
trow function and the Boltzmann factor of classical parti-
cles. When S—= 1 in (1) we have the standard Jastrow
function and u(r, j ) represents the complete direct action
between particles i and j. u(r) has exactly the same role
as the pair potential energy divided by kz T in a classical
system. However, in the path-integral representation, to
each variable r; a sequence of positions r';"' is associated
so that each particle is represented by a kind of "poly-
mer" and r';"' are the positions of the "monomers. "
Therefore, the actual position r; of a particle implies the
virtual presence in its neighborhood of the remaining
part of the "polymer" and clearly this will induce addi-
tional correlations between the particles which cannot be
reduced to the Jastrow form. When the density is large
the important configurations of the "polymers" presum-
ably are rather compact and in fact from path-integral
computations; it is found that the distribution of the
"monomers" around the center of mass of this "polymer"
is Gaussian-like and the correlations between different
centers of mass are very much classical-like. From this
picture the shadow WF (1,2) naturally emerges with g',

having the role of the centers of mass and X representing
the probability distribution of a "monomer, " i.e., of the
real particle, around this center of mass.

Monte Carlo computations with this new WF have al-
ready been performed and it has been shown that gs can
satisfactorily describe both the liquid and the solid phase.
This is the first realistic translationally invariant wave
function of a quantum solid. Which phase is stable de-
pends on the values of the parameters contained in u, w,
and X. In this paper we consider some aspects of this
shadow WF. In Sec. II we discuss the presence of a
Bose-Einstein condensate. In Sec. III we consider the cri-
terion of maximum overlap for gs and we obtain the Jas-
trow WF which has the maximum overlap with gs of
Ref. 2. In Sec. IV we formulate a theory of correlations
for gs in the ffuid phase on the basis of an analogy with
the problem of a classical system of triatomic molecules.
Section V contains some additional considerations on the
shadow wave function.
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II. BOSE-EINSTEIN CONDENSATION

A Jastrow WF always has Bose-Einstein condensation
(BEC) if u (r) vanishes at large distance. Here we extend
the proof to the case of the shadow WF. The density of
particles in the condensate no N——o/V can be written in

the form

ON+1
n, = 11m

NV-~ V QN

where p =N / V and QN is the normalization constant
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where AN ——dr1. . .drN and d:-N ——dg'1. . .dg'N. The term ON+1 derives from the spatial integration of the off-

diagonal single-particle density matrix and it reads
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In (5} each particle from 3 to N+1 has two shadow variables but particles 1 and 2 have only one. In order to have a
more symmetrical form we can introduce two additional shadow variables bonded to particles 1 and 2 without changing
the value of 6 since X(r) is normalized. Then we get
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Let us assume that the WF is short range, i.e., positive
constants A, b, e and A', b', e' exist, such that

Iu(r)I &Ar 'for r&b

I
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In view of (9) we can get a lower bound for 6N+1 by re-

placing the second exponential term in (6) by e
where

In addition we assume that u(r) and w(g) have a hard
core:

u(r)=~ for r &a

b = —min [u (r)] .

In addition, from the second of (9) we have

and

w(g}= ao for /&a' .

(8)
exp
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Under these conditions two positive constants exist,
which we call P and P', such that

exp
i =2, 3, . .. , N+1
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g u(r, —s) & —P, g w(g, —s) & —P' (9)

so that a new lower bound for 6N+1 is obtained by multi-

plying the integrand of (6) with the two exponential fac-
tors in (12) and (13). Thus, we finally get,
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for the SEC. Here z, given by

is formally equal to the molecular activity of a suitable
system of classical particles. In fact, let us consider a sys-
tem of classical triatomic molecules formed by a central



4518 L. REATTO AND G. L. MASSERINI 38

particle to which two shadow particles, let us call them
red and blue, are bonded. In the isolated molecule the
distribution probability of each shadow around the cen-
tral particle is taken to be X(z) and these two shadows do
not have any mutual interaction. The intermolecular in-
teraction divided by temperature consists of a particle-
particle interaction u(r) and of an interaction w(g) be-
tween shadows of the same color. No interaction be-
tween particle-shadow and shadow-shadow of different
colors is present. This represents a well-defined system of
flexible molecules, QN is its partition function and z is the
molecular activity. Conditions (7) and (8) are sufficient
for the existence of a thermodynamic limit and z & 00 for
densities for which there is no overlap of the cores. No-
tice that the hard-core diameters a and a' in (8) are finite
but otherwise as small as we like. Therefore, this condi-
tion places only a very small restriction and we conclude
that short-range shadow wave functions possess BEC.

The true WF has a long-range component due to the
zero-point motion of phonons. Thus u(r) has a long
range r tail and the previous proof does not apply.
However, we can carry over the trick used for a pure Jas-
trow function in the present case and reach the same
conclusion: the shadow wave function has BEC also
when it contains the long-range phonon contribution.
Here we have considered a three-dimensional system.
The conclusion remains true in two dimensions when the
phonon part decays like r ' but not in one dimension
where the phonon part has the range of the size of the
system.

Since the shadow WF describes either a liquid or a
solid depending on the choice of u(r} and w(g), the solid
phase described by gs has BEC. n p vanishes only if w(g)
is such that the shadows are completely localized. W(g)
is not necessarily a continuous function (see Sec. IV), and
in particular, it could be the hard-sphere function:
w(g)= N) for /&a', w(g)=0 for g& a'. If the diameter
a' is such that the shadows are in contact, i.e., na' =&2,
z= Do since there is no space to accommodate an addi-
tional molecule and QN+1 ——0. In this case the shadows
form a perfect static lattice and f, coincides with the
standard Jastrow-Slater form for the solid phase with lo-
calization factors, apart from a trivial integration over
the center of mass of the crystal.

III. MAXIMUM OVERLAP
FOR SHADOW WAVE FUNCTIONS

Maximization of the overlap integral between the exact
ground state of the system and a trial wave function gives
rise to a variational principle distinct from the common
one based on the expectation value of the Hamiltonian.
The maximum overlap principle for Jastrow-like func-
tions leads to some equality between suitable correlation
functions and this criterion has found some useful appli-
cations. Therefore it is interesting to extend this princi-
ple to the shadow WF.

Let gp(ri. . .IN) be the exact ground state of the
system and consider the family of shadow functions
ps(r, . . .rN

~

u, W, X). The overlap integral
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is a functional of u, w, and X. Minimization of ( gs ~ (Itp&

with respect to these functions is a straightforward exten-
sion of the computation given in detail in Ref. 8 for a Jas-
trow function and we give only the final result. We find
that (Ps ~ fp) is maximum for the functions u, w, and I
such that the following equalities between correlation
functions are satisfied:
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where npp(11 Ip) is the two-body interParticle distribu-
tion function, i.e., the probability density of finding one
particle in r, and another in r2 and nss(g'„f2) is the
analogous intershadow distribution function for shadows
of the same color. s~z is the intramolecular particle-
shadow correlation function. The index (S) means corre-
lation functions computed with respect to the weight
P(RN, =N)P(RN, -N) whereas (mxd} denotes a mixed
average, i.e., average taken with respect to the weight
gp(RN )P( RN, =N ) suitably normalized. The mixed aver-

g(mxcl)(r
~

u&) g(J)(r
~

g&) (22)

where we have assumed that the system is in the fluid
phase so that the correlation functions depend only on
the modulus of the interparticle distance and here we
have used the radial distribution function (RDF):
n(r)=p g (r). Now (mxd) indicates a mixed average with
respect to it'll)s. If pJ —its can be considered as a small
perturbation with respect to gs one finds to linear order

I

ages are exactly the ones computed' in a Green's-function
Monte Carlo (GFMC) computation when gs is used as
importance sampling function.

Ps contains both direct calculations of a Jastrow kind
between the particles given by the pseudopotential u(r) in
(1) and indirect ones mediated by the shadows. Part of
these correlations are still of the Jastrow kind but in gen-
eral also non-Jastrow terms are present. It is interesting
to ask which is their best representation in terms of a Jas-
trow function. To this end we can apply the maximum
overlap principle to (fz(u')

~ gs) considered as function-
al of the Jastrow pseudopotential u' for fixed gs. This
gives the condition



38 SHADOW WAVE FUNCTION FOR MANY-BOSON SYSTEMS 4519

in this difFerence that g~~'=2g' " ' —g' ' so that the max-
imum overlap condition becomes

g( )(r) g( )(r
I

u ) (23)

i.e., the pseudopotential u' must be such to give rise to
the same RDF given by the shadow WF.

We have already solved functional equations of the
kind of (23) via an iterative predictor-corrector method
when the RDF to be reproduced was derived from a
GFMC computation. We have applied the same method
to solve (23) when gpp' is the RDF computed by Vitiello
and co-workers for the shadow WF:

arises from three-body correlations was previously
made. "

IV. THEORY OF CORRELATIONS
FOR THE SHADOW WAVE FUNCTION

The most important correlation functions one would
like to compute with the shadow wave function are the
single-particle np(r) and the two-particle npp(r, , r2} dis-
tribution functions. These, in the first place, are needed
for the computation of the expectation value of the Ham-
iltonian. If the interparticle interaction is v(r), so that
the Hamiltonian reads

u(r)=(b/r)', w(g)=(b h/g)',

X( ) 3/2C 3/2 —cr—
(24)

fi
HN= — gV, +g v(r/),

2m
(25)

0

O
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Let )

FIG. 1. Pseudopotential of the Jastrow component in the
shadow WF of Ref. 2 (McMillan form with b=1.13, solid line),
maximum-overlap pseudopotential with this shadow WF (0}
and pseudopotential of the best pure Jastrow WF (McMillan
form with b=1.20, 0}.

Minimization of the energy (the HFDHE2 potential of
Aziz et al. ' was used} at the equilibrium density
pa =0.365 (cr =2.556 A) of liquid He gives the parame-
ters b=1.13, b,h

——1.40, C=4. A11 lengths are in units of
o. Our method to solve (23} consists of a number of
iterations in which the modified hypernetted chain equa-
tion is used to predict u' followed by a Monte Carlo
simulation in which the exact g' ' for the estimated u' is
computed. The iterations are repeated until (23) is
satisfied to within a set limit of error.

In Fig. 1 three pseudopotentials are plotted, the direct
interparticle one u(r) (the McMillan form with b=1.13},
the maximum overlap u'(r), and the best McMillan form
for a pure Jastrow WF (b=1.20). The coupling to the
shadows induces a stronger repulsive pseudopotential at
short distance. In addition one can notice that u' has a
structure at r/o -2. 1, the position of the first minimum
beyond the main maximum of g(r). This feature was
found also in some previous variational computation"'
and here it arises from the many-body correlations in-
duced by the shadows. The conjecture that this structure

npp( ) 2)=np(r))np( z)gpp(r) rz) .

In this section we drop the index (S) on the correlation
functions since all of them are computed with l()s. The
kinetic energy is the sum of two terms

& Ps I

7'
I fs & =~)+'r2

T) = dr)dr2np(r, )np(r, )gpp(r„r2)V u(r),
8m

7 = X" X'(r)+X "(r—)
4m r

+)('( r ) I '(r ) — X '(()
)s

rt

(27)

(29)

where X=lnX, r=r, —g„ t=r, —g') and the average is
taken with respect to l()s. If X is a Gaussian as in (24) T2
is simply given by

3 fi
T2 ———— CN . (30)

2 m

It is interesting to notice that the ihtershadow pseudopo-
tential w ( r ) does not enter explicitly the expression for
the energy so that w(r) can be a discontinuous function
like the hard-sphere one.

The potential energy (26) and the kinetic energy term
T& has the same form appropriate for a Jastrow function,
the only difFerence being that gzz is the RDF deriving
from the shadow WF. The Tz term is absent in the case
of 1()/ but it is present in the case of the Slater-Jastrow
function commonly used to describe the solid phase.

In the case of a fluid phase the single-particle distribu-
tion np(r) is constant equal to the average density and

gpp(I )r2) depends only on the radial distance
I r) —r2 I

so
that the integrals in (26) and (28}become one-dimensional
integrals over this radial distance. This is the situation
we consider from now on. We have already mentioned

the expectation value of the potential energy is given by

& Ps I

I'
I )t/s & =

~ f«)«znp(r) )np(rz)gpp(rl r2)v(r)2 },
(26)

where we have written
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that this problem is isomorphous to the statistical prob-
lem of a classical molecular fluid of flexible triatomic
molecules. The intermolecular interaction is of the inter-
site type so that a particularly convenient theory is the
interaction site description developed for molecular fluids

by Chandler and coworkers. '

In order to be more compact let us introduce the nota-
tion r'; ', i = 1...N, and a = 1,2,3. i is the index of a parti-
cle with its two shadows (the "molecule" ), a = 1

represents the real particle of the ith "molecule, "a=2 is
the red shadow, and a =3 is the blue shadow. The un-
normalized distribution function in the configuration
space of the I r'; )

) variables is

P(Ir, ' 'J)=exp —g g u (r,'' —r,'«')
ay ij

l (J
(r(a) r(«) )

a, y

(31)

where we have introduced two matrices, u for the inter-
rnolecular interactions and t for the intramolecular ones.
These are given by

u(r) 0 0
0 w(r) 0
0 0 w(r)

t = —1nX(r)
—in+(r)

—lnX(r) —lnX(r)

0 0
0 0

(32)

in terms of the functions introduced in (1) and (2). It is
convenient to introduce two kinds of distribution func-
tions, the intramolecular ones

s (r)=(1—5 )(5(r—r', '+r', ')), (33}

and the intermolecular ones

(34)

where the averages are taken with the weight (31). Due
to the particular nature of the interaction matrices (32)
only two of the s are distinct and four of the g «are
distinct and the matrices of the distribution functions
have the structure

0 sps sps

s(r) = sps 0 sss

sps sss'

gps gps

gps gss gss'

gps gss gss

(35)

Intershadow correlations between shadows bound to the
same particle are given by sss and between shadows of
different particles are given by gss for shadows of the
same color and by gss for shadows of different color. In

a similar way sps and gps give the particle-shadow corre-
lations.

The reference-interaction-site model' (RISM) develops
a theory of correlations via a matrix of direct correlation
functions c(r) defined by an Ornstein-Zernlike —like rela-
tion

h(r)=(co(ecco)„+p(coc(3)h )„, (36)

where

h «(r)=g, «(r) 1, —

co (r)=5 «5(r)+s «(r),
(37)

and {3) indicates both a convolution and a product be-
tween matrices. It is easy to verify that c has the same
structure (35}of g.

In order to have a self-contained theory of correlations
it is necessary to supplement the previous definitions by a
closure relation. For instance the Percus-Yevick (PY)
closure is

c~«(r) =(1 e—" )g~«(r), (38)

and similarly one can introduce the hypernetted chain
(HNC) closure. As in the case of a simple liquid these
closures correspond to a resummation of a suitable class
of diagrams in a cluster expansion of gay. In the molecu-
lar case, ' however, not all the resummed diagrams are
proper, some of them are not allowed in the exact expan-
sion. In any case the closure (38) has been useful for clas-
sical molecular liquids so that some cancellation must
take place. It is difficult to say a priori how accurate this
equation is in the present case and an answer will require
a number of numerical tests of the equations.

A closure like (38) is not enough unless we know the
two intramolecular functions sps and sss. . Since shadows
of different colors do not have a direct mutual interac-
tion, a reasonable approximation is to consider only the
correlation induced by the presence of a link to the same
particle so that

sss (r)= J«'ps(
l

r r
l )Sps(r ) . (39)

c+(r)u+(r) =ln 1—
g+(r)

(40)

A Gaussian approximation for sps should be appropriate,
in particular when X(r) is itself a Gaussian, and the
remaining single parameter can be determined in a self-
consistent way in terms of the cavity function as it has
been done in the case of flexible classical molecules. '

The main interest is in the interparticle RDF gPP(r) on
which the observable properties like the energy and the
structure factor depend. The question we ask is if we can
get a simple representation of the higher-order correla-
tions induced by the shadows in terms of a Jastrow term.
This is the same problem considered in Sec. III but here
we consider this from the point of view of the integral
equation. Let us consider a standard Jastrow function
with pseudopotential u+(r) In the PY .approximation
we have the relation
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where c+ and g+ are the correlation functions for this
Jastrow function. If u+ has to reproduce the correla-
tions of the shadow WF we must have g+(r)=gpp(r).
For the shadow WF the role of c+ is approximately given
by the (11)component of the matrix coecL0 which is

In the PY approximation (38) cps ——0 and css.——0 so that
the effective Jastrow pseudopotential is

u+(r) =ln 1—cpp(r)+2(spsS csssps)r
(r) (42)

In (41}and (42) represents a convolution only.
We have computed this effective Jastrow pseudopoten-

tial for the shadow WF of Vitiello et al. gpp is the inter-
particle RDF computed by them with a Monte Carlo
simulation; we have computed cpp(r) from the Ornstein-
Zernlike relation starting from the simulated gpp suitably
extended to large distance beyond the simulation box
side. We have approximated sps with X(r) assuming that
the many-body renormalization of the intramolecular dis-
tribution is not large at the equihbrium density of He.
Finally czar has been approximated by the direct correla-
tion function of a Jastrow function with a pseudopoten-
tial equal to the intershadow term, i.e., w(r)=(b»/r)
with b,„=1.40. This has been computed with the
modified HNC (MHNC) equation which is known to be a
very accurate integral equation. The general structure of
u+(r) is similar to the maximum overlap pseudopotential
obtained in Sec. III: u + is strongly repulsive at short dis-
tance and there is a shoulder around r/can=2. The de-
tailed shape of u+ depends on the precise choice of c&z
and sz& so we have to wait for the results of simulation
for these functions before we can get quantitative results.

V. FINAL CONSIDERATIONS

We believe that the shadow wave function represents
an important advance in the variational theory of quan-
tum systems. In a sense it gives a way of interpolating
between a simple Jastrow function when w(r) in (2) is
vanishingly small to the standard Slater-Jastrow function
with localizing factors when w(r) is the hard-sphere
function at close packing. However, the path-integral
analogy already mentioned in the Introduction indicates
that $$ is more than an interpolation form; it is a way of
incorporating in the wave function some of the complex
non-Jastrow terms which must be present in the exact
ground state in terms of just three functions [u (r), w(r),
and X(r)]. It is easy to predict that much of the theoreti-
cal deve1opment based on Jastrow functions mill be ex-
tended to the new wave function. Here we have dis-
cussed the presence of a Bose-Einstein condensate, the
maximum overlap between shadow WF and the exact $0
and between shadow WF and Jastrow WF and the devel-
opment of a theory of correlations for $$. Now we want

cpp( r) +4(sps cps )„

+2(spsecssspS )r +2(Sps css''$ ps ~r ' (41)

to touch briefly upon two other questions. The first is the
question of the self-bound state. He has a self-bound
ground state (N particles form a droplet) whereas quan-
tum hard spheres, for instance, do not. This difference
does not show up with the usual Jastrow functions be-
cause these do not possess a proper volume but a finite
density must be imposed with a suitable boundary condi-
tion. In fact, the Jastrow pseudopotential' reflects the
short-range part of the interatomic potential v(r), but
there is no signal of the attractive well, for instance, of
the Lennard-Jones potential. Also the shadow WF of Vi-
tiello et al. does not describe a self-bound state: in the
molecular analogy all the intermolecular forces are repul-
sive. We believe, however, that the intershadow pseudo-
potential w must refiect some aspects of v (r). Again the
path-integral analogy is useful. The interaction between
single beads of different "polymers" is reduced by the fac-
tor 1/n, where n is the number of beads of a "polymer, "
so that the attractive well of v(r) is washed out and only
the hard part plays a role. This is the contribution con-
tained in the Jastrow term u (r) in Ps. However, at the
level of "polymers" all the interbead interactions add up
so that the attractive part of v (r) should show up at this
level. The intershadow pseudopotential w(r) is a way to
represent the correlations between "polymers" and there-
fore it should have an attractive well if v(r) has one.
This idea should be tested by a variational computation
and the form we suggest is

w(r) =5v (r /1 ), (43)

i.e., a rescaled pair interaction both with respect to the
intensity by means to 5 and to the length scale by means
of l. A WF giving self-binding will be important for the
study of the free surface of liquid helium, for instance.

It is known that the best Jastrow function falls short of
the exact ground-state energy by about 10%, i.e., about
0.7 K per particle is missing at the equilibrium density of
liquid He. Most of this difference can be recovered'
with an extended function Q=QJQ, „&„with a special
form for the triplet term:

PtflplCt H p 1 J
l

(44)

i g'. -G. —g. /A,

exp ——G .G. = dg. e ' 'e
4 i (46)

we obtain

A».t= fd= Nexp —-~ 'g0,' icos(0, G, ).
J . J

(47}

The integrand in (47) is not a function of definite sign but
if the main contribution to (47) derives from regions

GJ ——g 1(rj, )rj, ,
if~j)

where 1( r) is a short-range function.
The shadow WF implicitly contains three-body terms

and the question is if it can represent the triplet term (44).
This triplet can be considered a product of Gaussian in
6, and by introducing the Fourier representation
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where g G & I, we can approximate cos(g, G, ) by

expI —
~

g. G.
~

/2I. In fact, it can be shown that

A.,i,t= fd:N-exp —~ 'gkj exp
J . . J

(48)

is equal to the form (44) where the exponential function is
replaced by (I+A,G )

'~ . The structure of (48) differs
from the shadow function (2) because there is a coupling
between each shadow variable and the positions of two
particles via g, GJ. This suggests that a more general
shadow WF which incorporates these triplet terms is

tt =exp[ —
—,
' g u(r;, )]f d:-ivexp[ —g to(r;, )) g &(

I rt, —41)exp —
2

I(r~ —4) Gk I

2

l,J i&j k

(49)

where the Gaussian in g in (48) has been replaced by the
more general function X and each integrated g, variable

by g' —rj.
It has been shown that the shadow WF can give a

solid phase with an energy even lower than the standard
localized WF. Our proof that this WF has Bose-Einstein
condensation raises again the question of the existence of
BEC in the solid phase. If the initial suggestion' was
based on a WF which very badly represented a quantum
solid, now we have a WF which presently gives the best
variational description of solid He. It will be interesting
to compute the size of this condensate.
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