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We derive boundary conditions that connect the quasiclassical propagators for superconducting
metals across magnetically active interfaces. These boundary conditions, combined with the quasi-
classical transport theory, determine the structure of the perturbed superconductivity near such an

interface, and are essential for a quantitative theory of Josephson tunneling and proximity effects
between heavy-fermion superconductors and inhomogeneous structures composed of magnetic and

superconducting materials. We discuss some qualitative features of Josephson tunneling between
conventional and unconventional superconductors.

I. INTRODUCTION

The discovery of superconductivity in heavy-fermion
metals, ' as well as recent advances in the fabrication of
artificial lattices and films of exotic materials, opens new
possibilities for studying the interaction and coexistence
of superconductivity and magnetism. In this paper we
develop the theoretical tools needed to calculate the
influence of magnetically active interfaces on supercon-
ductivity. By "magnetically active" we refer to interfaces
which flip the spin of incident electrons either by spin-
dependent scattering within the interface, or by a
difference in spin-orbit coupling on either side of the in-
terface. We begin by briefly describing some of the re-
cent developments in superconductivity that motivate
our theoretical investigations, and then summarize the
main elements of the theory.

Superconductivity in the heavy-fermion metals
CeCu&Si2, UBe&3,UPt3, etc., is particularly interesting be-
cause it is believed to be unconventional. The observed
thermodynamic and transport properties deviate qualita-
tively from the predictions of Bardeen-Cooper-Schrieffer
(BCS) theory for s-wave (i.e., isotropic) superconductors.
The observed power laws for the temperature depen-
dences of the specific heat, ultrasonic attenuation, and
nuclear relaxation rate suggest to several authors that
the superconducting states of these metals are described
by a spin-triplet Cooper-pair amplitude that is more like
that of superfluid He than that of conventional spin-
singlet superconductors. However, several of the same
authors have since noted that these power laws, and the
inference of anisotropic gaps with points or lines of
zeroes on the Fermi surface, do not lead to a precise
identification of the type of pairing in these superconduc-
tors.

The hope has been that there would be a single experi-
ment in which a yes or no result would determine the spin
and spatial symmetry of the superconducting order for
heavy-fermion materials. In an early paper, Pals et al. '

argue that an ac Josephson effect would serve this pur-
pose. These authors show that Josephson tunneling with
frequency 2 eV/R is forbidden between a conventional
spin-singlet superconductor and an unconventional spin-

triplet superconductor, provided the barrier is nonmag-
netic. In particular they argue that if the transfer Hamil-
tonian,

H = g [[t(k,q)],g„b tt+H. c.), (l)
k, a, q, P

where a&, (b&) creates a quasiparticle on the left-hand
(right-hand) side of the tunneling barrier is invariant un-
der time-reversal and spin rotations, then the convention-
al Josephson effect between a singlet and a triplet super-
conductor does not occur. However, the conclusion of
Pals et al. ' does not necessarily hold if spin-orbit cou-
pling is important. Fenton" has argued that strong
spin-orbit coupling in heavy-fermion materials, combined
with spatial variations of the triplet order parameter near
the interface, conspire to give a Josephson current even if
the interface transmission amplitude is a scalar in spin
space. Sauls et al. and, independently, Geshkebein and
Larkin' have shown that spin-orbit scattering of quasi-
particles at an interface between singlet and triplet super-
conductors can lead to Josephson tunneling with the con-
ventional frequency 2 eV/fi, even if the interface t matrix
is symmetric under time reversal. These arguments are
of current interest since, for example, Poppe and
Schroder' and Steglich et a/. ' have argued, based on
the work of Pals et al. that the observation of a dc
Josephson current between CuCu2Si2 and Al of conven-
tional magnitude is evidence that CeCu2Si2 is a spin-
singlet superconductor. Steglich et al. also failed to ob-
serve Josephson tunneling between UPt3 and Nb, Al, or
UPt3 as a counter electrode. To date there is no incon-
trovertible piece of evidence in any heavy-fermion super-
conductor that forces one to conclude that these exotic
superconductors are, in fact, triplet superconductors (or
other unconventional superconductors) exhibiting, for in-
stance, the kind of novel spin correlations that are known
to exist in superfluid He. In the absence of a smoking
gun to pin down the spin and orbital symmetry of the su-
perconducting order parameters in these materials, it is
important to consider theoretically, in some detail, the
qualitative and quantitative differences between conven-
tional and unconventional superconductivity near inter-
faces.
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Any realistic model for the interface between a heavy-
fermion metal and another material will necessarily be
magnetically active because of spin-orbit scattering in the
heavy-fermion metal. In fact, a transfer Hamiltonian of
the form shown in Eq. (1), in which [t (k, q}] ti is indepen-
dent of the spins of the electrons, is probably never a val-
id representation for the tunneling Hamiltonian if one
electrode is a heavy-fermion metal. ' This is because the
quasiparticle states in a heavy-fermion metal are not
eigenstates of the spin, but rather are coherent superposi-
tions of "up" and "down" spin states with mixing
coefficients determined by the strength of the spin-orbit
interaction at the Ce or U sites. The spin-orbit interac-
tion is expected to be strong in the heavy-fermion met-
als; in consequence, spin-orbit mixing requires a
dassification of the one-electron states in terms of a two-
component pseudospin. ' Thus, any tunneling Hamil-
tonian connecting two dissimilar metals must be magneti-
cally active, if for no other reason than to convert a
quasiparticle in the pseudospin representation appropri-
ate to the left electrode into a different (in general) pseu-
dospin representation appropriate for the right electrode.
If one electrode is a heavy-fermion metal then spin-orbit
mixing essentially guarantees that the pseudospin-
dependent part of the transfer matrix is the same order of
magnitude as the conventional spin-independent ampli-
tude.

Even though spin is not a good quantum number in
heavy-fermion metals, Anderson' has pointed out that
the superconducting order parameters for these metals
may be classified as either "singlet" or "triplet, " with
respect to a two-dimensional pseudospin space, since all
the heavy-fermion metals, so far, have inversion symme-
try. The argument is simply that if the superconducting
order preserves this symmetry, then the gap matrix (or-
der parameter), defined on the Fermi surface, is either
even parity (singlet) or odd parity (triplet),

b(p) =icrzb, o(p) (singlet),

b(p}=icroz.h(p) (triplet) .

The formalism described below is developed, in part, in
order to calculate the coupling between conventional su-
perconducting metals and unconventional superconduc-
tors, such as heavy-fermion metals.

Another class of systems for which our formalism is
directly applicable are "artijicial layered systems" of mag-
netic materials (metals or otherwise) and superconduc-
tors. Artificial lattices and "sandwiches" af Fe and V
have already proven to be remarkably rich systems in
which to study the interaction and coexistence of super-
conductivity and magnetism. ' Tunneling studies on lay-
ered structures of superconducting aluminum and fer-
romagnetic EuO (Ref. 18) indicate that these materials
behave as a conventional superconductor with an "inter-
nal magnetization" suggesting the Al electrons spend a
great deal of time in the ferromagnetic EuO layer. A
quantitative understanding of these layered magnetic-
superconducting systems requires a theory that treats
specially the boundary conditions on the electronic distri-
bution function and order parameter imposed by a mag-

netic interface. '

Our goal is to derive quasiclassical (QC) equations that
are general enough to describe unconventional supercon-
ductors in the presence of magnetically active interfaces.
The QC theory describes phenomena which vary on
scales large compared to the atomic scale; since the inter-
face represents a strong potential, varying in space on the
atomic length scale, a QC treatment of electronic propa-
gation in this region is not possible. We treat the inter-
face region separately, eventually replacing it by a bound-
ary condition involving a suitably defined interface
scattering matrix connecting the QC propagators on the
two sides of the interface.

II. QUASICLASSICAL THEORY OF
SUPERCONDUCTIVITY KITH

INTERFACES

[er3 b, &, g]~+tvF —Bg =—0,
(2}an algebraic normalization condition,

gg= —m. 1,

(3)

(4)

(3) and a set of self-energy equations that determine 6
and o' as functionals of g. We use the multiplication sym-
bol g, which stands for conventional matrix multiplica-
tion and the following operation in the energy and time
variables:

af(e, t)@ g(e, t) =f e——.
2i Bt2

a
Xg &+

2i Bt)
(5)

The quasiclassical (QC) theory of superconductivity is
formulated in terms of matrix propagators in Nambu
space (=spin&(particle-hole space). These QC propaga-
tors g (p, R;e, t) carry all the necessary quantum-
mechanical information associated with the spin and
particle-hole degrees of freedom. At low excitation ener-
gies (ktt T, %co, yH, b ) «EF, the wave nature of the elec-
tron quasiparticles can be eliminated; this is achieved by
integrating over the quasiparticle momentum [or quasi-
particle excitation energy gz

——vz(p —pz)],

g(p, R;e, t)=——J dg r3C(p, R;e, t),
a

where 6 is the one-particle Keldysh Green's function, an
8 X 8 matrix in which the matrix indices represent the
spin and particle-hole degrees of freedom (Nambu in-
dices), and time ordering (labeled by Keldysh indices).
For a full explanation of our notation see Serene and
Rainer (the factor a, for example, is the quasiparticle re-
normalization constant). The components of g in Kel-
dysh space are simply related to the retarded, advanced,
and Keldysh propagators, containing all relevant infor-
mation on the static and dynamic properties of supercon-
ductors. For bulk systems the theory consists of, (1} a
transport-like differential equation for the matrix propa-
gator g,



4506 A. MILLIS, D. RAINER, AND J. A. SAULS 38

The symbol [f,g ] denotes the commutator feg g— f
Interfaces, like that shown in Fig. 1, pose a special

problem because they represent a strong perturbation,
varying on atomic length scales, that cannot be treated
quasiclassically. The goal is to add to the quasiclassical
equations for the metals on the left and right half-spaces
a boundary condition connecting g '(x =0 ) with

g "(x=0+). This boundary condition has been derived
by Zaitsev, ' and independently by Kieselmann, for
translationally invariant, nonmagnetic interfaces. We
follow closely Zaitsev s derivation for a nonmagnetic in-
terface, and generalize the boundary condition to include
spin-orbit and spin-flip scattering at the interface.

The boundary condition derived below for an idealized
translationally invariant interface will also hold locally at
any point on a warped interface, provided the interface is
smooth on the scale of the coherence length. Transla-
tional invariance along the interface implies that
Gorkov's equation for the full Green's function C(x, x')
(we omit the energy and time variables unless explicitly
needed) reduces to a differential equation in the perpen-
dicular coordinate x for the Fourier transform of C(x, x')
with respect to the parallel coordinates, which we denote
as C(x,x'). The dependence on the conserved tnomen-
tum

p~~
is not explicitly written,

distance 6 is a cutoff chosen to be large compared to the
range of the interface potential but small compared to the
superconducting coherence lengths (kF ' «5«go). In
these half-spaces the Hamiltonian is a smooth function of
x on the scale of the coherence length. We can then use
any of several standard techniques to derive the QC prop-
agators in these half-space regions. We then solve
Gorkov's equation in the interface region by introducing
a scattering matrix that connects the solutions for
x = —5 to the solutions for x =+5. The scattering ma-
trix is not calculated in our theory; the matrix elements
are phenomenological parameters that enter the QC
equations via the interface boundary condition. The only
information about the scattering matrix that we use is
that which is based on the symmetry of the full Hamil-
tonian, including the interface potential. Following Za-
itsev, we than match the half-space solutions (

~

x & 5)
with the interface solutions (

~

x
~

& 5) at x =+5, and ob-
tain the solution to Gorkov's equation for all x. The final
step is to eliminate the unnecessary quantum-mechanical
information in order to obtain a purely QC theory for su-
perconductors in contact with an interface.

A. Half-space (
~

x
~

&5) solutions

f73 —8 x,
I,

r3C(x, x') =5(x —x') I . (6)

We introduce Green's functions 0 (x,x'), defined in
the half-space, S=1 (x,x'& —5) or r (x,x'&+5), and
the model Hamiltonian,

The "Hamiltonian" H represents the kinetic and poten-
tial energies and is discussed in more detail below. Our
task is to solve Gorkov's equation accurately in the limit
kF gp » I, where kF is the Fermi wave vector and go is
the coherence length of the superconducting state. We
accomplish this goal in steps. First we solve Eq. (6) in the
left (right) half-space, —ec &x & —5 (5&x & ac). The

8=e(x)8 "+e(—x)8'+ 0,
x

1

(g2 p2 ) ES+g S+ Q S

2ms

where ms is the quasiparticle effective mass, EF is the
Fermi energy, 0'is the interface potential, b, is the local

V(X)

Fl

I

Er

FIG. 1. Interface potential: The interface represents a strong potential varying on atomic length scales. 5 indicates the arbitrarily
chosen cutoff that separates the bulk from the interface.
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gap matrix (order parameter), and 0 represents the
weak external fields (0 &~EF), in the half-space x ES.
This model Hamiltonian, with second-order derivatives,
is useful for simplifying the derivation of the QC equa-
tions, but is not a necessary feature. The smoothness of
8[x,(1/i )B„] away from the interface [b (x ) varies
smoothly on the scale of $0] suggests the following an
satz, due to Zaitsev, for C(x,x'),

1r G (x,x')= [C' (x x')e't' '"
g

The discontinuity of C &(x,x') at x =x' is obtained by
integrating Gorkov's equation about x =x',

and combining Eq. (15) with the continuity condition,

(x'+O, x')=0 (x' —O, x') .

(15)

(16)

The resulting discontinuities in the envelope functions are

+C' (x x')e't' '"+" ' C ti(x'+O, x') —0 ti(x' —O, x')= ia—, (17)

+C (x x')e't' '

+C' (x,x')e't' ' "+"'] (8)

representing the four possible combinations of incoming
and outgoing waves with momentum p in the x direc-
tion. Equation (8) can be written compactly in terms of
"direction indices, " a and P, which specify the momen-
tum direction along the x axis and take values of +1,

(x x')= g C (x,x')e'~ ' "
v ~p

(9)

8 x, —0 f(x}e

=e +'~ "[H(x,+p )+iu 8„]—f(x) . (12)

One immediately obtains the QC differential equations
(for x&x') for the envelope functions,

[er3 —8(x,ap )+iav B„]C ti(x, x')=0 . (13)

The equivalent differential equation in the variable x' is
(for x~x'),

C .',(x,x')e [er", 8(x,Pp') i yu—'a„.]=0 . —(14)

The magnitude of p is fixed by the diagonal part of the
Hamiltonian,

s[2rnigs(ps)2]1/2 (10}

The prefactors I /u in Eq. (8), where v are the magni-
tudes of the x components of the Fermi velocities, are in-
cluded for convenience; they make the matching condi-
tions in the interface region algebraically simpler. The
velocities are given by

v =p/ms.s s

The envelope functions C' &(x,x'} are smooth functions
on the scale of the coherence length go, except at x =x'
where they are discontinuous functions because of the 5
function 5(x —x ) in the differential equation [Eq. (6)].

One derives quasiclassical differential equations from
Gorkov's equation for the functions C' &(x,x') by per-
forming Andreev's gradient expansion to retain only the
leading order derivatives of the slowly varying envelope
functions. For any function f(x)e 't' ", where f(x)—1

varies on the scale go ))p

and imply 5 functions in the QC differential equations [13
and 14],

[er3 —8(x,ap )+iav B„]C', &(x,x')

=vs5 P(x —x')1,
8 &(x,x')tai[er3 P(x—',Pp ) iPv —t}„]

=u 5,+(x —x')1 .

(18)

(19)

These equations for the envelope functions still contain
considerably more quantum-mechanical information than
is necessary. In particular, the QC propagator we seek is
a continuous function of one variable x. We can reduce
the amount of information by defining envelope functions
of one variable,

C' p(x)=0 ti(x, x+0), (20)

which are related to the QC propagators as shown below.
From Eqs. (18) and (19) for the envelope functions we ob-
tain homogeneous differential equations for C' &(x),

B„C &(x)= s[er",—8(x,ap )]C' ti(x)
iav

s C'~it(x)8[er3 P(x,pps}]-,iPu'

which yield for a =P,

[e73 8(x,ap —), C', (x)]~+iav B„C (x)=0,
and for a&P,

(21}

(22)

[ e7'3 —A (x, ap ) ] C,&(x )

+C'~&(x) [er3 B(x,—ap )I+—iau B„C &(x)=0 .

(23)

Equation (22) is recognized as the QC transport equation,
and we conclude that the diagonal amplitudes C'

~ (x) are
simply related to the QC propagators g s(p, x) and

g (p, x), where p and its rellected partner p are unit vec-
tors along the directions of p=p~~+p x and p=pi —p x.
The off-diagonal amplitudes C+ and C' + are drone
amplitudes, which are useful in deriving the interface
boundary condition (see below), but will eventually be
discarded since they carry no physical information in the
limit kf (o))1.

The precise connection between the amplitudes C (x)
(a=+) and the QC propagators is obtained by explicitly
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integrating Eq. (8) with respect to g,
g s(p, x) =m[2C'+ ~(x)—i 1],
g (p, x) =a[2C' (x)+i 1], (24)

we are then left with

, —'a„e",6(, )=5(—
l

(31)

for p.x & 0. The complete set of equations governing the
QC propagators in the smooth half-spaces is obtained by
deriving normalization conditions for the function
C ti(x). Starting from Eqs. (18) and (19) for the full en-

velope functions, we follow Shelankov to derive the nor-
malization conditions for the one-variable envelope func-
tions. The technique is to de6ne auxiliary functions,

Bs(y}=C, (x,y)C' ti(y, x'), (25)

Integrating this equation with the boundary conditions,

a I (y) =0, y ~—oo,
(27)

a "(y)=Q, y ~+ oo,

gives & (y} in terms of C &(x,x'),

iyar(y)=[ —5 re(y —x)

+5,„6(y —x')]C','~(x,x'),
i y tt r(y) = [5 re(x —y)

—5„e(x -y)]C.",(x,x ) .

(28)

Finally, taking the limit x'~x +0 with x &y &x' we ob-
tain the required normalization conditions,

C ',r(x)C rtt(x)=ia5 0' (ti)x,

C" (x)C'rtt(x)=iP5rttC''ti(x) .

(29)

(30)

The multiplication rules for the diagonal (in direction
space) envelope functions C «(x) imply Eilenberger's
normalization condition [Eq. (4)].

Equations (22), (29), (30), and (24) for the functions
C «(x) give a complete QC description of the smooth
half-space regions

~
x

~
& 5. The drone amplitudes

C + (x} and C' +(x) are unnecessary at the QC level;
these functions, which represent interference between in-
coming and outgoing waves, play an important role in the
interface region where a QC solution is not possible. In
particular, they force the boundary condition connecting
the QC envelope functions to be nonlinear.

B. Interface solution (
~
x

~
&5}

In the interface region, —5 & x & 5, the dominant
terms in Gor'kov's equation come from the large ( & EF)
interface potential. As in the nonmagnetic case we can
then neglect the order paraineter A(x), the weak external
perturbations 0', and the small excitation energy, er3;

that are functions of y with (x,x } and direction indices
as parameters (note that there is no summation on y).
Using Eqs. (18) and (19) we obtain the following
differential equation for the auxiliary function:

iya 'tie(y)=[ —5 r5(x —y)+5r+(y —x')]C,ti(x, x') .

(26)

~,C(x,x )g 8„...., x, ' a„. =5(x —x )1.
2

1+H normal x» ax
l

A
(1—r3)

(33}

where 0„„,&
is an operator in spin space.

We want to construct solutions in the interface that
match the solutions we have for the smooth half-spaces,
which we represent by the envelope expansion of Eq. (8).
Since we are ultimately interested only in the connection
between the QC amplitudes C '

ti(x = —5 } with
C' "ti(x =+5), we need only solve the Gor'kov equation
for the case x'&x, in which case we can solve the simpler
equation

8„., „x,—'. a„e~,C(x,x ) =0 .
1

(34)

in order to obtain the desired boundary condition con-
necting C 'ti(0 ) with C "tt(0+) [since the envelope func-
tions are smooth on the scale of (os we set
C '( —5)—C' '(0 —) and C "(+5}-C' "(0+)], it is useful to
study the solutions of Schrodinger s equation at the Fer-
mi surface,

x, —a„g(x)=0,
1

(35)

where P(x) is a four-coinponent spinor in Nambu space
(the Keldysh index is irrelevant and will be dropped un-
less explicitly needed). The general solution of (35) in the
regions x =+5, where the potential is flat, is

and

(
I
)

i /2 (36)

P(x)=, g»I}"e 'i'"; x=+5 . (37)

The coefficients P and P" are constant Nambu vectors,
which are constrained only by the condition that Eqs.
(36) and (37) represent the same solution of Eq. (35). This
leads to a linear relation among the coeKcients

I I r rP+, ,»I},,P+„P" „which can be expressed in terms of
an interface transfer matrix, M ti,

The Hamiltonian is just the normal-state Hamiltonian in-
cluding the interface potential f (x},which is diagonal in
particle-hole space, but not necessarily diagonal in spin
space. In fact we are particularl interested in spin-active
interfaces. In Keldysh space „„,&

is proportional to
the unit matrix, while in particle-hole space 8„„a~has
the simple representation,

(1+wq)
~normal Hnormal X» ~ ax

l
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4 pPp.
P=+1

(38)

The Nambu matrices l&++, M+, etc., are diagonal in

the particle-hole subspace because the interface Hamil-
tonian does not mix particle and hole solutions. The 1&
matrices in general depend on the incoming momentum

p, the unit normal to the interface and the interface mag-
netization, among other variables. We make explicit
these dependences only when necessary. The hole solu-
tions are constructed by simply taking the complex con-
jugate of the particle solutions. This then implies

M~p(1+r3} M p(1 —r3)
~p + (39)

(44)

which implies the condition,

M+y3M =y3 . (45)

(46)

from Eq. (44) we obtain the unitarity constraint on S,

This condition is equivalent to the unitarity condition
that is imposed on the scattering S matrix, which con-
nects the "incoming" amplitudes with the "outgoing"
amplitudes,

S„$,3 P'+

S2) $32

with the transfer matrix M & related to M & by
SS+=l . (47)

M++ (p(() M+ (p(()

M +(p(() M (p(()

M ( —p)() M + ( —p(()

M ~ ( —p(() M++ ( —p(()
(40)

—1 —1S S~i S22
M=

S))S2) S)2 —S))S2) S22
(48)

The explicit connections between the particlelike ele-
ments of M in direction space and the corresponding ele-
ments of S are

Note that conjugation interchanges the direction indices
and inverts p~~, and that the coefficients M++, etc., are
2X2 matrices in spin space.

The columns of the Green's function, r3C(x, x'), in the
interface region, fulfill the Schrodinger equation (35), and
the rows of r3C fulfill the adjoint equation,

P(x')8„«» x', — =0, (41)

where P denotes the transposed spinor in Nambu space.
The adjoint of (38) gives,

4a X ( pampa&
P=k&

(42)

and we then conclude that the expansion coeScients of
C; i.e., the envelope functions C 'p(0 ) and C "p(0+) are
connected by

C '.,(0-)=y Q.„C„'„(0+)4+p .
p, v

(43)

This boundary condition supplements the equations for
C' p(x) [Eqs. (22) and (23)].

C. Symmetries of the scattering matrix

The transfer matrix M & must reflect the syrnrnetry of
the interface potential. In the following we discuss the
restrictions on M

& imposed by symmetries of the inter-
face Hamiltonian. It is convenient for this purpose to
drop the direction indices (aP) in favor of a compact ma-
trix notation. We denote by M a 4X4 matrix acting on
spin and direction indices, and introduce a set of Pauli
matrices in direction space, (y„y2, y3), in addition to the
usual Pauli matrices in spin space (o &, o 2, o'3).

We require the interface potential to conserve particle
current. From the continuity equation expressing conser-
vation of probability we have for the two-component par-
ticlelike spinors (and similarly for the holelike spinors),

which may be written more conveniently, using the uni-
tarity of S,

S2&
M=

0

0 1

S —s+
S22

(49)

(1) Spin-current conservation,

M+y3crM =y3o,
S+crS =n .

(2) Time-reversal symmetry,

M(n p ~)=yio2M*(n —p —~)o3yi

$(n, p, p)=o2S (n, —p, —}M)o2 .

(50)

(51)

(3) Reflection symmetry in a plane perpendicular to

M(n, p, ~)=~3M(n, lI„,p, lI„,I )o3,

S(n, p, p) =o 3$(n, Il„~p, II„„}M,}o.3
(52)

Note that the reflection 11„ in the (x,y) plane changes
only the sign of the z component of a polar vector, while
for an axial vector it is the x and y components which
change sign.

(4) Rotational symmetry,

J

Similar relations hold between the hole components of M
[Eq. (40)] and the corresponding hole components of
S~p S~p(1+7 3——) l2+S~p(1 r3) l2; it is—then straightfor-
ward to show that S p(P~~)=Sp ( —Pl)".

In addition to particle conservation, the interface
Hamiltonian may possess additional symmetries includ-
ing, (1) spin-current conservation, (2) time-reversal sym-
metry, (3) reflection symmetries, and (4} rotational sym-
metry. The transfer matrix M, or the S matrix, will obey
the following additional constraints.
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M(n, p, )u) = U (R)M(Rn, R p, Rp)U(R),

S(n, p, p}=U (R)S(Rn, R p, Ris)U(R} .
(53)

—SliC'+ —0' ~S i~l+S&]C ++S i+I

The M and S matrices depend on the unit normal n of the
interface, the momentum of an incoming wave p with
n p) 0, and in general the magnetization p of the inter-
face. The operator U(R) generates a rotation R in spin
space.

Spin-current conservation is particularly restrictive;
combining (50) with current conservation gives
Mo =crM (or So'=crS}, implying that the interface
reflects and transmits either spin configuration equally.
Note that time-reversal invariance of the interface alone
does not guarantee spin-current conservation; in particu-
lar spin-orbit scattering, in general, leads to spin-current
nonconservation. '

D. ELIMINATION OF DRONE AMPLITUDES

The boundary condition [Eq. (43)] involves the drone
amplitudes C+,C + which are the amplitudes for the
rapidly oscillating parts of the Green's function. These
amplitudes are useful in deriving the boundary conditio&,
but they do not carry any relevant physical information
in the quasiclassical limit; thus, following Zaitsev, ' we
eliminate these amplitudes since they have fulfilled their
purpose. The price one pays for the elimination of the
drone amplitudes is a set of nonlinear boundary condi-
tions connecting the remaining quasiclassical amplitudes.
The elimination procedure is not unique; different alge-
braic elimination schemes lead to apparently different
boundary conditions. ' However, these different
boundary conditions must be physically equivalent, and
can be transformed one into another.

We use formula (49) for the scattering M matrix in
terms of the S matrix to obtain the following two rela-
tions from the general boundary condition [Eq. (43)]:

0++ —C'+ S22—S228 ++S22C S22
I521~ ++~ 21

(54)

—S 228 + —8 +S22+S 22++S22

C ++=S2id++S 2+, ,

C ' =R,+2C' ' S

(58)

For spin-inactive interfaces, the S matrices commute
with the C matrices, and we obtain the standard condi-
tion of continuity for fully transparent interfaces,

++
I
++ (60)

(61)

In the general case of spin-active, partially transmitting
interfaces the multiplication rules in Eqs. (29) and (30)
must be used to discover the QC boundary condition.
The basic relations which are used to eliminate the drone
amplitudes in the general case are,

(C ' —i)eC ' =(C'' +i)eC '

=C', NC' =C', eC

C + (8" +i)=C" +NI(C ++ i)—
I++=o

(62)

=C'" C'" +=C ++C'+ =0.
Multiplying Eq. (54) by C ++ on the left and by
(8 ++ —i) on the right gives

C'++S22C " S 2+2(C i+ i)—
=C' ++8$2, C i+S 2+, ( C' ++ i ) . —(63)

The analogous manipulations applied to Eqs. (55)—(57)
yield

C' " @S2+2C'++S22@(C
" +i)

=C'" gS i+2C
' S,2(C ' +i), (64)

(8++ i)S |+IC
' —S,iC++

(57}

The boundary condition for a transparent interface
(S» ——S22 ——0) is easily obtained from the above equa-
tions,

=S,+2C' ' S,2

(55)

=(C ++ i)S 2+iC—+iS2iC'++,
(C ' +i)ISS„C '++S i+i8 '

(65)

Since multiplication by the S matrices does not affect the
Keldysh indices or the energy and time dependence of the
C' or S matrices, we drop the multiplication symbol ,
except where it is essential. Two additional relations fol-
low from Eq. (43), which we replace by the analogous re-
lations to Eqs. (54) and (55},with the right- and left-hand
sides interchanged,

C ++—C' + S, i
—S i+ C ' ++S I+ C ' S„

+& )'~ 21~ ++~21

(56)

=(C' ' +i)eS»C" S i+2@ C' '

The four nonlinear boundary conditions, Eqs.
(63)—(66), contain some redundancy; we require only two
independent conditions for a full description of the inter-
face. A minimal set of boundary conditions is derived
below for the special case of a weakly transmitting
boundary (

i S,2 i
«1). The boundary conditions in the

weakly transmitting limit are obtained perturbatively
from the Eqs. (63)—(66) and the solutions for a perfectly
reflecting interface. For the perfectly reflecting interface
(S,2 ——S2, ——0) we obtain from (63) and (64),
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C'++S22C " S 2+2[ C'++ —i

+(S,+, } '(C'" +i}S,+,]=0,
The term in parentheses is invertable, so that

C'++ISS22C' ' =0 . (69)

which leads to

C'++gS22C'" g(S2+C +++C" S2+,)=0.

(67) Analogous arguments applied to Eq. (64) yield,

C' " S 2+2C' ++ =0 .

(68) Next we use the identity,

(70}

(71)

C ++ —S22C
" S 22

—l =0,
or, equivalently, using Eqs. (23),

(72)

which follows from the algebraic rules [Eq. (43)]. Insert-
ing Egs. (69} and (70), and using the unitarity condition,
S 2+2

——S 22', we obtain boundary condition for the right-
hand side of a perfectly reflecting interface,

Another useful relation is
A + A ] A ] A A
S 22

—S 22
—S 22 S21S 21 (78}

Using these rules we can write Eq. (63), up to corrections
of order

I S,2 I, in the form

—l C ++ S22C

g "(p&x'&e&t) =S22g (p&x';E&t)s 22 (73) =C ++S2, C'++S 2+, S(C'++ i) .—

C ++ —S11'C '
S11 i =0—,

g '(p&x' e t)=&&s, , 'g '(p&x'&e&t)s„.

(74)

(75)

For a weakly transmitting interface there are correc-
tion terms to the above boundary conditions which can
be obtained by expanding the general boundary condi-
tions [Eqs. (63)—(66)] through second order in the S-
matrix elements f,2 and S2„which describe the
transmission properties of the interface. It is useful to
note that the following quantities are of second order (or
higher) in the off-dia onal matrix elements:
C +~S22C &

C ' S22 ++, C ++ —S22C" S22
—i, S zz' —S zz, and the equivalent terms for the left-hand
side of the interface. A useful consequence is that

0 ++ss228 s 228 0 ++ —o(
I s12 I

)

Similarly, one finds,

(76)

for x' on the surface. Note that condition (73) reduces
for a magnetically inactive surface (S22 commutes with

g "I} to the standard condition g "(p,x', e, t)
=g "(p,x', e, t} Starti. ng from Eqs. (65} and (66), argu-
ments similar to those leading to (72) give us the bound-
ary conditions for the left side of a perfectly reflecting in-
terface,

(79)

Similarly, we obtain from Eq. (64)

lS22C' S 22 C ++
=(C'++ i}&SS2—1(C ++ i)S 2+1—C'++

+i (C'++ —i)S21S 2+1C ++ .

(80)

The second term on the right-hand side is the correction
term of order

I
S,2 I

coming from the replacement of

S,+, by 122' —S22'S»S2+, on the left-hand»de of Eq.
(64). We can cancel two terms on the right-hand side of
Eq. (80) to obtain

lS22C S 22 C ++ —(C ++ 1}S2—1C ++S 21&81C'++ .

(81)

By adding Eqs. (79) and (81) and using the identity [Eq.
(71)],as well as the relation

(C+++S»C" f22') '= —(2C++ i)+0( I—S» I'),

(82)

c' " es 22C++es22C' =o(
I s121 ) . (77) we obtain

i ( 0 ++ —$22C' " S 22' i )= C' ++ S2,—C ++S 2+ ( i C ~+ —1)+( C ++ —i) S2—, C' + ~S 2+les&(iC ++ ) .

The terms of third order in the C amplitudes cancel on the right-hand side of Eq. (83), and we obtain

(C +~ —S220 S22 —l)= —l [S218++S21&8++]N

(83}

The algebraic steps leading from Eqs. (63) and (64) to Eq. (84) can be repeated starting from Eqs. (65) and (66) to obtain
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(C'++ —S,,
'C'' S„—i)=+i [S2+,C ++Sz„C'++]~ .

We finally write Eqs. (84) and (85) in terms of the QC propagators evaluated at the interface,

(85)

g "(p",x";e,t) S—22g (p" x&";e t&)S2z
——— [S2, (g (p' x&';e &t)+t~)S2+, , g (p x&";e &t)]@2' (86)

g '(p '&x', e&t) S—„'g '(p', x', e, t)S„=— [g '(P '&x'&e&t)& S 2+, (g "(p "&x'&e&t)+ter)Sii ]~ .
2K

(87)

For equilibrium properties it is convenient to use the Matsubara propagators which depend on the Matsubara frequen-
cies e„=(2n +1)n.T. These propagators are related to the equilibrium retarded and advanced propagators in the stan-
dard way, and identical arguments to those above give the following boundary conditions for systems in equilibrium:

g "(p",x";e„)—S22g (p, x";e„)S22
—— [Sz, (g (p,x', e„)+to.)S 2„g (p",x";e„)],

2m
(88)

g '(p ', x', e„)—S ii~g '(p'&x';e„)Sii ——— [g '(p ', x';e„),S 2i(g "(p ",x";e„)+in )S2) ] .2' (89)

Note that the matrix product refers only to multiplication of Nambu matrices.
Our notation for the four momentum directions p ', p ', p ", and p" is shown in Fig. 2. Equations (86)-(89) establish

the boundary conditions at a weakly transmitting interface, and generalize those derived by Zaitsev who assumes the in-
terface to be spin inactive. An important consequence of the above boundary conditions is that spin current

Q
J; =N(EF) f v~T g —,'Tr[i&o, g (p, R;e„)]

4m.
(90)

is not necessarily conserved by the interface. The boundary conditions derived by Zaitsev necessarily imply that spin-
current is conserved, in addition to particle current.

E. JOSEPHSON CURRENT THROUGH A MAGNETIC INTERFACE

Weakly transmitting interfaces provide a "weak link" that is necessary for a supercurrent to flow across an interface
separating two superconductors. Here we derive a formula for the Josephson current in terms of the transmission am-
plitudes S2, for a spin-active interface. The equilibrium (dc) particle current flowing in the superconductor with RES
(=l or r) is

5
j =N(Et;) f vFT g —,'Tr[rig (p, R;e„)],

4m.
(91)

where N(EF) is the quasiparticle density of states at the Fermi energy. In the rest of the paper g is the Matsubara
propagator.

Here we are interested only in translationally invariant interfaces so we assume j =j x, in which case particle con-
servation requires j =j =j, independent of x. Thus, we have the freedom to calculate the particle current using the
propagators g (p s,x;e„),evaluated at the interface. We then express the current calculated on side S =l, r of the in-

terface as

dn~
=N(E )v f'(x )T gKFVF XP

(92)
K'= ,'Tr[r", [g '(p', x', e„) -g'(p', x', e„)]1, —

where the integration is over that portion of Fermi surface with x p &0, and x =0+(0—) for S=r(l). We now
make use of the boundary conditions for a weakly transmitting interface. From Eq. (88) we obtain,

K'=K"= Tr[r3[g '(p', x', e„),Sz+g "(p",x";e„)Sz,]I,
8m

(93)

and it is straightforward to show that the boundary condition for weak transmission conserves particle number. Thus,
the main result for the supercurrent flowing across a weakly transmitting interface is given by (choosing S =l),

j '=N(E~)vF' f (x.p'). T Q Tr[r3[g '(p', x';e„) S 2 g "(p",x";e„)S2i]I .
+ 4m. Sm.

(94)

The propagators that define the current in Eq. (94) are to be calculated in the limit of a perfectly reflecting interface. In
general the calculation of the QC propagators at one interface requires a numerical calculation along the lines of
Buchholtz and Zwicknagl's calculation of the triplet order parameter b, (p,x) for a nonmagnetic interface; once the or-
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der parameter is known the QC propagator can be obtained quite easily by solving the QC transport equations. Self-
consistent solutions for the order parameter A(p, x) and propagator do not currently exist for magnetically active inter-
faces, but these calculations can be carried out with the aid of the boundary condition given in Eqs. (73) and (75).

Some qualitative results for the supercurrent can be obtained by evaluating Eq. (94) with the bulk propagators, but
we emphasize that except for s-wave superconductors in contact with a nonmagnetic, perfectly reflecting interface this
is a procedure which may yield only qualitatively correct results, particularly in unconventional superconductors where
presumed spin and orbital correlations associated with the Cooper pairs may be destroyed by the interface potential.
Since the results to follow are at best qualitatively accurate, we assume for simplicity that the Fermi surfaces of both
metals are spherical and have the same volume.

First consider a nonmagnetic interface, in which case S2, ——s2, 1. The supercurrent, when evaluated with the weak-

coupling bulk propagators (note that we assume only unitarity states, in which 5 b, = —
~

b,
~

1),

t E„7.3 —5 ( p, x )
g (p, x;e„)=m.(e+[&

/
)

(95)

gS

becomes

0 b, (p x)
—b, (p x) 0

(97)

ImI tr, ;„[b,'(p, O —)b," (p, O+ )] II'=+(~+)"F'2 f 4
("'p) ~s2i I T& 2 i 2 i/2 z ~ z in (96)

+ 4"
n (&n+ I

~
I

) (&n+
I

~"
I

For conventional s-wave superconductors, with b, =
~
6

~

e', we recover the Josephson current-phase relation with
the maximum supercurrent calculated by Ambegaokar and Barato8;

1=4 ~'»~ + ~F F ~ ~ ~ »/» t »/2
~ I ~ 2 I I

2
]
g

~

2)1/2( 2
~

It l
~

2)1/2

where the angular brackets denote the appropriate average of the transmission probability over the Fermi surface.

The more interesting cases are those in which at least
one side of the interface is an unconventional supercon-
ductor. If for example the left-hand side is a convention-
al s-wave superconductor and the right-hand side is a d-

wave superconductor, then in the limit T~"'"'p~ T&
"'"'

and T—T& "'"', the supercurrent becomes,

1 1
I = ~N(EF)"F X

I ~. I«.+
I ~. I

)

p ~ 2Im I T
p (98)

In general, a supercurrent flows between an s- and d-wave
superconductor provided the d-wave order parameter
60(p) =g~ 2 C~ I t~ (p ), has a nonvanishing amplitude
with m =0 relative to the x direction. Note that this
conclusion does not depend upon any momentum depen-
dence of the transmission amplitude s2& and is obviously
not restricted to the d-wave case, but is valid for any
singlet order parameter.

Equation (96) may also be applied to the case of a su-
percurrent flowing across a nonmagnetic interface be-
tween two triplet superconductors. An interesting appli-
cation is the Josephson current flowing between two
vessels of superfluid He- A separated by a weakly
transmitting interface. In this case the order parameter
on side S(= l, r) is parametrized by a triad of orthonor-
mal vectors (n„m„ l, =m, Xn, ),

b, =l, (m, +in, ) p,
FIG. 2. Interface scattering kinematics: The four possible

scattering states, for a given value of the conserved parallel
momentum pI~, are labeled by their momenta, all on their
respective Fermi surfaces.

with 1,(x, ) =+x. There are two distinct cases; either (i)
1„=it or (ii) 1,= —lt, which yield very different results for
the supercurrent. For case (i) we choose mt ——y, nt ——z
and then m, =cosay+sinaz and n, = —sinay+cosaz.
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j—f (p.x)
~
sz, ~

Im[h&(p). b, „'(p)]-sina .
+ 4m.

In case (ii) with I„=—
l& the Josephson current is identi-

cally zero, the result originally obtained by Ambegaokar
et al. This vanishing of the supercurrent occurs be-
cause the right and left order parameters have opposite
projections of the orbital angular momentum along the x
axis; i.e., h, &-xe'~ and 5„-xe '~, where (() is the azimu-
thal angle in the y-z plane. The sensitivity of the Joseph-
son current to the relative orientation of the two triplet
order parameters across the interface is a generic feature
of Josephson tunneling between triplet superconductors,
and may be relevant to the lack of a Josephson current
between two electrodes of UPt3. '

For a triplet superconductor in contact with a singlet
superconductor through a magnetically inactive interface
we immediately obtain the result of Pals et al. ,

' namely
that the Josephson current vanishes identically. Joseph-
son tunneling between singlet and triplet superconductors
is possible if the interface is spin active. ' The transmis-
sion amplitude for a spin-active interface has the form,

S2
S2, (p)

S",2 ( —p)
(101)

SI~ —SI~ +m)~ CT

The supercurrent, calculated assuming the bulk propaga-
tors in Eqs. (95) and (96), is given by Eq. (92) with

Im[b, od w]K'=m
(p +~go~ ) (p +~/~ )

w=(m2, st ™f2s2,)+i (m2) Xm)p),
(102)

The angle of rotation of the orbital axes plays the role of
the relative phase between the superfluids, and we find a
Josephson current proportional to

active interface, the interface potential is invariant under
time reversal and reflections in a plane perpendicular to
the interface; the corresponding transmission amplitudes
satisfy, '

s;, (p((, n) =sf;( —
p((, n),

m, (p~~, n)™,;(—
p~~, n)=&; (nXp~~) .

(103)

(104)

The kernel K' in Eq. (102) that determines the current be-
comes,

K'- Re(cz, s z& )1m[ho ~'(n X p1)], (105)

indicating that current depends on (i) the relative phase
of the singlet and triplet order parameter, (ii) the orienta
tion of the triplet order parameter, and thus the underly-
ing crystalline axes of the triplet superconductor, relative
to the interface, and (iii) the relative phase of the spin-
orbit transmission amplitude c2& and the spin-
independent amplitude sz, . These latter two features are
unique to unconventional superconductors in contact
with a conventional s-wave superconductor. They imply
that Josephson tunneling between triplet and singlet su-
perconductors is sensitive to the internal structure of the
interface and the type of contact made between the inter-
face and the unconventional superconductor, but in gen-
eral Josephson tunneling between a conventional super-
conductor, like Al and an unconventional superconduc-
tor, perhaps UPt3, is not excluded. We emphasize again
that these conclusions are based upon evaluating the
current in Eq. (94) with the bulk propagators, which do
not take into account the distortion of the order parame-
ter by the interface. For unconventional superconductors
the surface may lead to qualitative changes in the order
parameter near the interface. Quantitative calculations
of the structure and properties of unconventional super-
conductors near magnetically active interfaces, with the
"tools" developed in the paper, are left to the future. '

in agreement with the form of the Josephson current be-
tween a singlet and a triplet superconductor obtained in
Ref. 12. The general feature of Eq. (102) to note is that
the Josephson coupling depends on the relative phase be-
tween the spin-dependent transmission amplitudes m;.
and the spin-independent amplitudes s, ., in addition to
the phase difference between the singlet and triplet order
parameters. In our model no spatial variations of the or-
der parameter are necessary for a Josephson coupling, in
contrast to a recent result of Fenton. We would obtain
Fenton's result if we assume full reflection symmetry at
the interface of the superconductor-oxide-superconductor
junction, and include the gradients of the order pararne-
ter near the interface. However, there is no reason to im-
pose this symmetry, particularly for a nonsymmetric sys-
tem such as a Josephson contact between an exotic (i.e.,
heavy-fermion) superconductor and a conventional super-
conductor.

The symmetry of the interface does constrain the inter-
face scattering matrix. For the most symmetric spin-

III. SUMMARY

The main results of this paper are the boundary condi-
tions [Eqs. (63)—(66)] relating the QC propagators for two
metals in contact through a magnetically active interface,
represented by an interface scattering matrix whose ele-
ments are related to the transmission and reflection
coefficients of the interface. These boundary conditions
supplement the QC transport equations for the bulk su-
perconductors on either side of an interface and provide
the necessary constraints to determine the structure of
the perturbed superconducting region near an interface.
Any quantitative calculation of the properties of inhomo-
geneous superconductors in contact with magnetic inter-
faces must start from an accurate calculation of the su-
perconducting order parameter near the interface. The
derivation of the boundary conditions for magnetically
active interfaces given here follows closely the work of
Zaitsev for a nonmagnetic interface; however, the same
results can also be obtained by generalizing the T-matrix
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method developed by Kieselmann to magnetically active
interfaces. Finally we want to re-emphasize that our
boundary condition applies to perfectly smooth inter-
faces. Real boundaries always exhibit some degree of
roughness, which is particularly important for interfaces
with unconventional superconductors. The effects of
roughness on superconductivity will be discussed in a
forthcoming publication.
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