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The multiple-exchange Hamiltonian used to describe spin-spin interactions in solid He is

developed in terms of Pauli spin operators for an arbitrary number of particles in the exchange cy-

cle. The T =0 mean-field properties of the "up-up-down-down" (U2D2) and canted normal antifer-

romagnetic magnetic phases are then calculated including two-, three-, four-, five-, and six-particle

exchange processes. These properties agree well with experimentally determined melting-curve

values when evaluated using the exchange frequencies calculated by Ceperley and Jacucci.

INTRODUCTION

Nuclear magnetic order in solid He is believed to be a
consequence of the Fermi statistics and exchange of
spin- —,

' He atoms. ' The multiple-spin-exchange model, '

based on the work by Dirac and Thouless, has been suc-
cessful in providing a good description of the experimen-
tal properties of this system. It is based on the observa-
tion that the steric hinderance of the hard cores of the
interatomic potentials can favor the coherent exchange of
more than two particles. The richness of the observed
magnetic phase diagram is understood as the result of
competing ferromagnetic and antiferromagnetic interac-
tions, the former being due to exchange of an odd num-
ber of particles, and the latter to that of an even number
of particles.

Considering only a small number of exchange process-
es (three- and four-particle exchange), Roger, Delrieu,
and Hetherington' were able to give a convincing
theoretical model for solid He. Later work by Roger
demonstrated that two-particle exchange was probably as
important as three- and planar four-particle exchange.
This motivated the development of three-parameter mod-
els which allowed an estimation of the exchange frequen-
cies by fitting the experimental database.

Very recently Ceperley and Jacucci determined the
frequencies of several exchange processes (up to six spins)
using path-integral Monte Carlo techniques. This work
confirmed that the most important types of exchange
were indeed those considered previously. ' However,
the frequencies of a large number of other exchange pro-
cesses were found not to be negligible. It was therefore
desirable to calculate the properties of the ordered phases
taking into account all these exchange processes. They
are calculated at zero temperature in this paper, for the
U2D2 and the canted normal antiferromagnetic (CNAF)
phases.

The ordered phases are described in Sec. I. The
multiple-spin-exchange Hamiltonian is given in terms of

Pauli operators in Sec. II. The magnetic properties of the
U2D2 and CNAF phases are calculated in Sec. III. Sec-
tion IV is devoted to a comparison with experimental re-
sults.

I. THE ORDERED PHASES OF SOLID He

CNAE

0

0

2 2 I/'
LI i I

T(rnK j

PARA

FIG. 1. Experimental phase diagram of melting solid 'He, as
a function of temperature and magnetic field, according to Refs.
8, 11, 12, 14, and 15.

The phase diagram of solid He on the melting curve,
as a function of temperature and magnetic field, is shown
in Fig. 1. Three phases have been observed: a paramag-
netic phase, the low-field ordered phase, and the high-
field ordered phase. These have been described in detail
in recent review articles. '

The structure of the low-field phase is believed to be of
the U2D2 type, illustrated in Fig. 2. This has been
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ph+ + z-
The phonon term H z is not coupled to the exchange
(H„)or to the Zeeman (Hz ) terms and is solved separate-
ly. The spin-dependent part is hence H +Hz. The gen-
eral expression for the exchange Hamiltonian is given by
(2), where all J„arenegative'

H„=g J„(—1) P„. (2)
n, a

The summation runs over all the permutations of all the
N particles. P„is the spin permutation operator of n par-
ticles. An exchange coefficient J„is associated with
each permutation P„ofn particles. The index a distin-

guishes n-particle cycles which are topologically different
(for instance, nearest-neighbor and next-nearest-neighbor
exchanges) and obviously have different exchange fre-
quencies. ( —1) is equal to 1 ( —1) for an even (odd) per-
mutation. Since we are considering only cyclic permuta-
tions, this corresponds to exchange of an odd (even) num-
ber of particles.

For two-particle exchange, P„'is identical to P„.For
n larger than 2, these operators are different, but they
must, by symmetry arguments, correspond to the same
exchange frequency. It is therefore convenient to write
the Hamiltonian as:

FIG. 2. Magnetic structure of the U&D& phase.

demonstrated by Oshero6; Cross, and Fisher using nu-
clear antiferromagnetic resonance, and confirmed by neu-
tron scattering techniques.

At a magnetic field 8, &

——0.451 T (Ref. 10) (at zero tem-
perature) the system undergoes a first-order transition to
the. high-field phase. This phase is characterized by a
high magnetization slowly dependent on the magnetic
field. ' ' The symmetry of the magnetic lattice is in-
ferred from the NMR lines, ' which are only shifted by
the demagnetizing field. ' ' The structure is believed to
be CNAF (canted normal antiferromagnetic) shown in
Fig. 3. This is based on a theoretical analysis supported
by the magnetization curve at very high fields. "'" A
transition to the paramagnetic phase at zero temperature
is theoretically expected at an upper critical field 8,2,
where total polarization is achieved. Experimentally, the
temperature of the paramagnetic —high-field phase transi-
tion is found to increase with field;" ' at fields of the or-
der of 7 T, however, it becomes rather constant (-3
mK) " a reentrant phase boundary is therefore possi-
ble. The upper critical field at zero temperature, B,z, has
been estimated experimentally to be (21.7+1) T. ' De-
tails on the phase diagram at finite temperatures are
given in several review articles" and in a recent publica-
tion. '

TABLE I. Classes of equivalence of (cr, cr, )(o/, .o/)(cr cr„)
elements; heavy lines connect pairs (cr„,cr, ) in the diagrams.

( —1) Number
of elements

DiagramTerm type

(cr, crj )(cr/, cr/)(cr cr„) k

II. THE MULTIPLE-SPIN-EXCHANGE HAMILTONIAN
(o, cr, )(cr/, o )(cr/ cr„)

\ /
\ /

/

/The Hamiltonian of N He particles (spin —,') in a mag-
netic field is written as

(o, cr/)(cr, cr„)(o/, cr )

o a e

I I

I

(cr, cr, )(cr/, .cr„)(cr/.cr )

(cr, cr/)(crj cr )(cr/, cr„)

~ L

FIG. 3. Magnetic structure of the CNAF phase.

MULTIPLE-SPIN-EXCHANGE CALCULATION OF THE T=0. . .



4494 H. GODFRIN AND D. D. OSHEROFF 38

a, n

(3) where the sum is taken over the six different pairs (/M, v)
among the four particles (i,j,k, 1) and

P; =(1.+o; a, )/2, (4)

where the cr, are the Pauli matrices.
The three- and four-spin permutation operators are ob-

tained as products of two-spin permutation opera-
tors. ' ' For three spins

where Pz Pz——and P„=(P„+P„')for n ~2. The sum-

mation runs over all distinct cycles of n particles and type
a. The two-spin permutation operator Pz (or P, } has
been given by Dirac:

jk/ (0' aj }(ak al }+(ai al }(aj ak }

—(cr;.ak )(crj cr/-) .

Since ring exchanges with five and six particles are con-
sidered in this paper, it has been necessary to make simi-
lar expansions for the corresponding permutation opera-
tors. Using the same techniques, symmetry arguments
and patience, the following expressions are obtained. For
five spins:

P;jk P;/P;——k ———,'(1+o, cr'l )(1+o; ak ) .

Using the identity

(a; o)(o.; a„)=o,o„+ia;(cr,Xo„),

~5 Pijklm +( ijklm }

1 1+ $ o„cr„+
2

rti (
G/t. van

P (V ( 'g (&

the former expression becomes

P k
———,'[1+o, a, +o ok+crk o;+ia, (ojXak)],

and hence

The first sum is taken over the ten different pairs (p, , v),
and the second sum over the five combinations of four
spins among the five-spin cycle. The expression of 6 is
given by formula (8).

For six spins,

= —,'(1+cr; a +o crk+crk a;)

and for four spins

&4=P;Jk/+(P;/k/ }

= —,
' '1+ g „a. a+6; Jk/

P(V

(6) 6 Pijklmn + ( ij klmn }

1 1+ $ ap 0'v+
2 P(v

where

Gpvqc +~ij klmn
P(V('g(&

(10)

&jk/ „=[(0;aj)(ak al)(cr .0„)+(a,ok)(cr/ 0 )(cr„o,)]
[(cr; o—, )(ak o. )(cr/ cr„)+(cr/.ok)(a/ o„)(cr a;)+(ok al)(cr 0;)(o„cr)

+(0/ 0 )(a„OJ)(0;0/, )+(0 0„)(cr;ak)(aj 0/)+(0„0;)(OJOl)(Crk Crm)]

+[(cr; a/)(aj 0„)(.ak. cr )+(.cr, cr )(o„o,)(o, o„)+(cr„cr„)(a,o, )(cr cr, )]

+[(a; o, )(ak o„)(olo)+(o, a.k)(ol a;)(o' o'„)+(crk ol)(a o, )(o„o,)]
[(cr; a/)(crj—.a )(crk o„)].

This can be written in a more compact form:

SijkImn
C(i,j,k, l, m, n)

( —1) (0 a//)(ar as. )(cr, a&.) .

The sum is taken over the 15 combinations of
(i,j,k, i, m, n) in three different pairs. ( —1) is 1 for the
cyclic combinations. There are two of them, given by the
first term (within brackets) in formula (11), and they can
be represented by diagram 1 of Table I. ( —1) is —1 (1)
if a combination is obtained by an odd (even) number of
transpositions between different pairs. For instance, the
six combinations given by the second term (within brack-

ets} in formula (11) are obtained by 2n + 1 transpositions
from the cyclic combination. These are represented by
diagram 2 in Table I. Similar arguments explain the oth-
er diagrams of Table I.

More rigorously, the products (oaj/}(az ' a.s}(a, cr.&).
are grouped in classes of equivalence. Elements in the
same class are connected by the cyclic permutation. A
new class is obtained by applying transpositions between
different pairs of any element and then the cyclic permu-
tation to cover the whole class. The sign ( —1) is given
by the parity of the class of equivalence. This is also
verified, obviously, for the four-spin operator G,jkr.

These very simple rules govern the generation of
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higher-order terms in the expansion of the permutation
operators in terms of Pauli matrices. It is straightfor-
ward to derive similar expansions for seven, eight, or
more spin cycles.

III. MULTIPLE EXCHANGE IN bcc SOLID He

A. Exchange cycles

each type found in a bcc lattice with N atoms has been
computed by group theory techniques, using the transla-
tional and point group symmetry of the lattice, and the
symmetry of each cycle to ensure that a given cycle is
only counted once.

The notation used by McMahan and Guyer' provides
an excellent description of the exchange cycles, but it is
not adequate in the context of calculations. A more com-
pact notation has been used in this work, described in
Table II.

The multiple-spin-exchange Hamiltonian involves a
sum over all the possible permutations of the X particles.
However, only some permutations including a limited
number of particles are supposed to have significant prob-
ability. ' The exchange cycles considered here are listed
in Table II and shown in Fig. 4. The number of cycles of 1s

B. Alternative expressions for the Hamiltonian

For the exchanges considered here the Hamiltonian (2)

——,
' g J N(1+ o; o 1 )+—,

' g T (1+cr; cr + cr "ok +o k cr, )
l &J (ijk)

Q K 1+ g o„cr„+G;Jki+ —,
' g I' 1+ g o„cr,+

(ijkl) p & v (ijklm) p & v P(V(g(6

S 1+ g cr„o,+
(ij klmn) p & v P(V(Yf(6

GI vge+~ikJImn (12)

It is convenient, for the calculation of some properties, to write this Hamiltonian as

1) (1)
H= — go oZ 2 I Jl(J

Jk (k

g o, o, — +O(cr )+O(cr ) .
l (J

J (2)

gcr, o (13)
I &J

The constant term has been omitted for clarity; the terms of order o [i.e., of the form (cr; o J )(ok o &)] and order o
can be easily obtained; they will not be needed in this paper. The superscript on the summation symbol indicates that
sums are taken over nearest neighbor (1), second-neighbor (2) pairs. The Jk obviously contain contributions of JkN, but
also from T, K, F, S, etc. For instance, the exchange T& requires exchange of two nearest-neighbor pairs and a
next-nearest-neighbor pair.

Using the number of cycles of each type and the number of neighbors of each type (see Table II) it can be readily
shown that

TABLE II. Type and number of exchange cycles.

Exchange type

Nearest-neighbor
Second
Third
Fourth
Fifth
Sixth
Seventh
Triangular 1

Triangular 2
Four-spin planar
Four-spin folded
Four-spin diamond
Four-spin eight
Four-spin lozenge
Four-spin square
Five spin
Six-spin crown
Six-spin planar

This work

J1N
J2N

J4N

JSN

J6N

Ti
T2

Kp
KF
K„
Ka
KL
Ks
F
Si
S2

Notation
Ref. 1

JNN

JNNN

Kp
KF

Refs. 16 and 7

(1)
(2)
(3)
(4)
(5)
(6)
(7)

(112)
(113)

(1;23)
(1;22)

(1122;31)
(1212;11)
(1212;14)

(2 '33)
(1 2;52341)

( 16.36.43)

(1 523523 417)

Nu~ber of cycles

4N
3N
6N
12N
4N
3N
12N
12N
12N
6N
6N
24N
12N
12N
3N

24N
4N
12N
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FIG. 4. Type of exchange cycles considered in the bcc lattice. (a) Two-particle exchange; 1: nearest neighbors; 2: second neigh-

bors; 3: third neighbors. (b) Three-particle exchange; 1: T&(112); 2: T2(113). (c) Folded four-spin exchange E+. (d) Planar four-

spin exchange Kp. (e) Diamond four-spin exchange K&. (f) Eight four-spin exchange K&. (g) Lozenge four-spin exchange KL. (h)

Square four-spin exchange Kz. (i) Five-spin exchange F. (j) Crown six-spin exchange S&. (k) Planar six-spin exchange S,.

J& ——J~N —6T~ —6T2+3Kp+3Kp+ zKL, +9K& +6K~ —'2 F+ zS~+ z'S

J2 JpN 4T) +2K/ +Kp +8K/ +4K/ +4KL +2K@ 4F+S2 7

Kp K~ S) S2J,=J,N
—2T, + +2K~+ —F+ +

2 2 2 2

Ki S) F S2J4=J4N+ + ——+
2 8 2 8

S2
J5 ——J5N ——', F+ 4S2,~ J6 J6N~ J7 J7N+

(14}

It should be noted that the sign of J N, T, K, S is negative; the JA. can be either positive or negative.
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C. Magnetic properties of the paramagnetic phase

Although the finite-temperature properties are not studied in this paper, it is straightforward to derive the expression
for the Curie-Weiss temperature Ow as a function of the exchange parameters. Only the quadratic terms in the spin
variable cr of the exchange Hamiltonian contribute to 8~ (see, for instance, Ref. 1). Using the expression 13 for the
Hamiltonian and the number of cycles (pairs) of each type (given in Table II) for the bcc lattice the following result is
obtained:

0w
——4J

& +3J2+6J3+ 12J4+4Js+ 3J6+ 12J7

which can be written in terms of exchange coeScients as

8w =4JiN+ 3J2N+ 6J3N+ 12J4N+4JSN+ 3J6N+ 12J7N —36T, —36T2

(15)

+ 18K@+18Ep+ 36EL, +72Eg +36KB +9ES 60F+
2 S1 + S2 (16)

It should be noted that the compensation of terms with
different signs may be important. Moreover, exchange
processes involving a large number of atoms are expected
to have small probabilities, but they are weighed by a
larger factor than two or three spin-exchange coefficients
and can have substantial contributions to 8w.

I

tion of & H & in the high-field (CNAF) phase, noted as
& H &0, in terms of the reduced magnetization mH =cos8

=o +bmH+cmH+dmH — mHBp,

with

D. Magnetic properties of the CNAF phase at zero temperature

The N spins are located on two interpenetrating cubic
sublattices (noted A and B) which are supposed to be ful-

ly polarized at absolute zero. The magnetic induction Bp
is chosen to be in the z direction. The angle between Bp
and the sublattices magnetization is 8. Hence, the
reduced magnetization of the system is m =M/M,
=cos8; the saturation magnetization is

M, =—,'fiy(N/V), y the gyromagnetic ratio of the He
nucleus, and V the volume of the system.

The mean value of the energy can be calculated
neglecting fluctuations using the approximation'

the expression (12) for the exchange Harniltonian, and
the Zeeman Hamiltonian

Hz ———X bio'; B .

The evaluation of the expectation values of the products
of Pauli operators is simplified by the symmetry of the
magnetic lattice. For instance, if a spin in sublattice A is
considered, the first neighbor will be in sublattice 8, the
second neighbor in A, etc, ; this is summarized in
Table III. Therefore, the terms of the form g(o; cr~}.
will provide a magnetization dependence of the energy
only when o; and cr. are first, fourth, seventh, etc.,
neighbors.

Calculation of the sums involved in four- and six-
particle operators require one to find and classify the
quadruplets and sextuplets according to their spin
configurations. In the CNAF phase a11 cycles of a given
type (e.g., Kz, Kp, etc.) have the same spin configuration
irrespective of their position or orientation in the lattice.
It is therefore straightforward to construct classification
tables (available on request) which allow a direct evalua-

6J3N 4J5+

b =4( —J)~ —3J4w —3J7++6Tt+6T2
—12K„—6K~ —6KL ),

c =12( Kp Kz+—4F)—,
d =8( —S) —3SB},

and k~/ye=0. 6424 T/mK. Minimizing the energy with
respect to the magnetization leads to a simple result for
the zero-temperature magnetization curve mH(Bp ):

4k~
Bp = ( bmH +2cmH +3dmH )

yh
(18)

TABLE III. Neighbors of an atom in sublattice A in the
CNAF phase (a is the lattice parameter).

Neighbor

First

Second

Third

Fourth

Fifth

Sixth

Seventh

Eighth

Sublattice Distance

a&3/2

a +11/2

a&3

2a

a &19/2

a&5

The upper critical field B,z corresponds to total polariza-
tion (mH ——1):

4k~
B,2 (b +2c+——3d ),

yR
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16k~
( J/N 3J4N+6T]+6T2 3Kp

yfi

+ 12F—12K~ 6—K~ —6KI —2S i
—6Sq ),

(20)

and the magnetization of the CNAF phase at zero field is
mo..

2 2 c
mo=mH(B& ——0)=

3d
—1+ 1 —3

bd
c2

(21)

when b is negative and c and d are positive as observed
experimentally. ' This spontaneous magnetization at
zero field is not directly observed in practice since this
system undergoes a first-order transition to the U2D2
phase. However, the low value of B,&

allows an accurate
extrapolation of mH to BO=O. ' This "pseudoferromag-
netic" phase has been predicted in earlier works (see Ref.
1 and references therein) which considered four spin (Kp
or Kp) exchange.

The expression derived here includes several types of
exchange not considered in Ref. 1. The main effect is a
renormalization of the terms a, b, and c in the expression
of the energy, and the introduction of a new term (d). As
will be shown later on, these corrections are important,
and dominate the magnetic behavior of the CNAF at
high polarization (m = 1).

The main interest in the multiple-spin-exchange model,
however, results from the fact that only a limited number
of terms in the expansion of the energy in powers of m

[Eq. (17)] is expected to be important. It is obvious from
the preceding calculations that the coefficient of the m'
term will contain contributions from exchange cycles in-
volving j)i particles. Since the exchange frequencies are
expected to decrease rapidly as a function ofj (at least for
relatively large rings), the major contribution to the
coefficient of m will come from rings of i particles.
Among these, rings of i nearest neighbors are expected to
dominate: cm is dominated by Kz and K~, dm by S,
and S2, etc.

In the CNAF phase, nearest neighbors are on different
sublattices. The Hamiltonian (12) has the following im-
portant property: The contribution to the energy of an
exchange of n nearest-neighbor particles, where n is any
even number of particles and J„the corresponding ex-
change frequency, is

( H )„=Nk& 2J„cos"8=2Nkz J„m"

(for two particles it is Nk~JNNcos 8 due to the definition
of J). Therefore, Kp and Kp only contribute to the m
term, S, and S2 to the m, etc.

Of course, higher-order exchanges will renormalize
these coefficients. It should be kept in mind, however,
that exchange processes with an odd number of particles
necessarily contain 2" neighbors (or even more distant
ones), and their frequency is expected to be much smaller
than that of smaller rings of nearest neighbors. There-
fore, for sufficiently large i, the coefficients of m' in the
expression of the energy must be positive.

Hence, a term in m due to eight or more spin ex-

changes is expected to be much smaller than dm, and
positive. This general discussion obviously does not ap-
ply for the first terms in the expansion which contain
contributions of small rings; the coefficients a and b, for
instance, are renormalized by a large number of exchange
processes [see Eq. (17)) and even their sign cannot be in-
ferred a priori.

The magnetization curve in the CNAF phase [Eq. (18)]
results from a simple combination of these coefficients,
and provides a direct probe of the relative importance of
the various exchange processes; this point will be dis-
cussed further in Sec. IV.

E. Magnetic properties of the U2D2 phase

yr=Q +UmL +NmL — mLBO

with

u = —(2J,N+2J2N+2J3N+ . . —8T,

4T2+2Kp+ 8K—„+4K'+8KL +2KS ),
u = —(2J)N+ J2N+4J3N+ . —16T)

—20T2 + 12K' +8K~ +40K ~ +20K~

+ 16KL +4Ks —36F+4S, + 12S,),
tu = (2Kp 12F+4S—, +12S2—) .

(22)

The magnetization curve ml (Bo) is obtained by
minimizing the energy with respect to mI ..

4k~
Bo= (umL+2wml ) . (23)

According to this formula, the magnetization in the
U2D2 phase is not linear in magnetic field. For low
values of mI (low fields), Bo- (4k&/y A)umL.

Since mI ——M/M „M„,=(N/V)(yfi/2), and the sus-

The magnetic properties of the U2Dz phase are more
difficult to evaluate than those of the CNAF phase stud-
ied in the preceding section. Because of the lower sym-
metry, the spin configuration of a particular ring of i
spins will depend on the position and on the orientation
of the ring in the lattice. To perform the sums over all
the cycles involved in the exchange Hamiltonian, the spin
configurations for each type of cycle have been classified
and counted; for example, there are 24 quadruplets of the
type A A AB per S2 exchange cycle in the U2D2 phase
(the tables are available on request).

Two of the four sublattices contain spins totally
aligned in a direction which makes an angle 8 with the
magnetic field Bo (spins of type A), and the other two
sublattices contain spins totally aligned, with the same
angle and symmetric with respect to Bo (spins of type B).
The angle between spins A and B is therefore 20. The re-
duced magnetization of the U2D2 (low-field) phase is

mL ——cos8. Using the classification of the spin
configurations the mean value of the energy is obtained
easily:
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ceptibility X=poM/Bo (where go=4@10 ), then

X=C /T' =p+ /(2U Vks )
yA
2

(24)

F. Energy difference between the CNAF and U2D2 phases

with T*=2v; C is the Curie constant.
It has been assumed that v is positive; otherwise the

U2D2 phase would have a spontaneous magnetization (as
in the CNAF case), and would not be the stable phase at
Bo——0

IV. CALCULATION OF THE MAGNETIC PROPERTIES
OF bcc He ON THE MELTING CURVE

Most of the experiments at very low temperatures have
been performed with solid He on the melting curve; it is
therefore particularly interesting to calculate the magnet-
ic properties with the equations derived in the preceding
section and the exchange coefficients calculated by Ceper-
ley and Jacucci.

A. CNAF phase (on the melting curve)

From Eq. (17), the coefficients of the energy expansion
are

The difference of the energies between the two phases
at zero field is given by formulas (17), (21), and (22), and
should be positive:

(E)„
=a+bmo+cmo+dmo —u . (25)

B B

a =(0.213+0.015) mK,

b =(—2.21+0.27) mK,

c =(3.56+0.20) mK,

d =(0.555+0.069) mK .

(26)

The difference of the energies should vanish at the lower
critical field B„.Equating expressions (17) and (22), and
using the magnetization curves [expressions (18) and (23)]
one obtains an implicit equation for B„,which can be
solved numerically for a given set of exchange frequen-
cies.

The magnetization curve is given by the expression

Bo = ( —5.7+0.7)mH +(18.3+ 1)mH +(4.3+0.5)mHs

(27)

where Bo is given in T. Therefore, the upper critical field
1s

G. Exchange frequencies
B,z ——(16.9+1.4) T, (28)

The exchange frequencies for the processes studied
here have been calculated by Ceperley and Jacucci using
path-integral Monte Carlo techniques. Their latest'
results are summarized in Table IV, after scaling with
a Griineisen parameter I =8 logJ /Blog V = 18, for V
=24.22 cm, the molar volume at melting pressure and
low temperatures. This correction is small (7.5%), and
the exact value of I is not important within present error
bars.

and the reduced magnetization at zero field mo is

mo ——(0.54+0.05) . (29)

It is approximately equal, within this range of parame-
ters, to ( b/2 )c'~ . —

The experimental values for these quantities are'

Bo——( —9. 1+0.6)mH+(23. 8+2)mH+(7. 6+2)mH T
(30)

B,2 = (22.3+0.4 ) T,

TABLE IV. Exchange frequencies from Ref. 7, scaled to 24.22 cm'/mole.

Type of exchange

J2N

Tl
T2

Kp
KF
K~
K~
KL
Ks
F
Si
S2

{1)
(2)

(112)
(113)
(1,23)
(1 '22)

(1122;31)
(1212;11)
(1212;14)

(2;33)
(1 2;52341)

(1 '3 4')
( 1;523523;417)

Exchange frequency (mK)

—0.487+0.015
—0.067+0.005
—0. 193+0.010

—0.0057+0.0009
—0.269+0.016
—0.034+0.004

—0.0065+0.0016
—0.000 54+0.000 25

—0.012+0.0035
—0.0020+0.0006
—0.0016+0.0002
—0.037+0.008

—0.0108+0.0011
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and mo=(0. 587+0.002) when fitting the magnetization
curve to Eq. (17). For several other types of fit,
8,2

——(21.7+1) T and mo ——(0.583+0.006). The results
of the present calculation and the experimental values of
Ref. 10 are shown in Fig. 6. Clearly, the agreement be-
tween theory and experiment is good. The sign and the
magnitudes of the coefficients of the expression for the
magnetization are correct. There is, however, a sys-
tematic tendency toward lower theoretical values. The
fact that mo (essentially the ratio of exchange frequen-
cies) is correctly predicted indicates that all exchange fre-
quencies could be systematically underestimated.

Theory and experiment are consistent (within error
bars} is all exchange frequencies are increased by 37%
(Fig. 5}. However, such a large discrepancy is not con-
sistent with the excellent agreement between theory and
experiment in the paramagnetic phase (see Sec. IV C and
Ref. 7). Furthermore, it is far outside combined experi-
mental and theoretical error bars.

There is a simple alternative explanation. It should be
noted that the magnetization curve can be written as

8,= y x„+,m"2i +1

i=0

when all exchange processes are considered. Within the
limited subset of cycles considered here, Bo=x ', m

+x3m +xsm, and the analysis of the experimental
data of Ref. 10 was performed imposing this functional
form. It is possible that higher-order exchange cycles, al-
though having relatively low frequencies, are so
numerous that their overall contribution is not negligi-
ble. This would give rise to two effects: First, the
coefficients would be renormalized (i.e., x +x;), and
second, higher-order terms (x2;+, with i & 2) would con-
tribute. The renormalization of the coefficients is difficult

to evaluate. The expression of the coefficients b and c
[Eq. (17)] suggests that renormalization tends to reduce
the magnitude of the coefficients (therefore making the
discrepancy worse), and that this effect is small.

The contribution of higher-order terms can in principle
reconcile theory and experiment. As shown previously,
these terms have positive coefficients x2,-+, for i ) 1. The
experimental estimate of 8,2 (Ref. 10) indicates that

B. U2D & phase (on the melting curve)

From Eq. (22), the coefficients of the energy expansion
are

u =( —0.237+0.092) mK,

v =(+2.03+0.27) mK,

m =(+0.326+0.036) mK .

(31)

The magnetization curve mL (Bo ) is given by the expres-
sion

g x„+,=5 T.
I =3

The relatively slow decrease of these coefficients
(x3 18.3; x5 =4.3 T) suggests that this is indeed possi-
ble. A theoretical calculation of x7 would be a crucial
test: If x7-1 T, the above condition can be fulfilled.
Since the major contribution to x7 should come from
rings of eight nearest neighbors, the calculation can be
limited to only a few new exchange cycles.

The high-order terms are only important at very high
fields, near B,2, where an almost complete polarization of
the spins is achieved (m =1). Experiments in this field
range can bring an experimental answer to this problem.

Bo(T}= ( 5.2+0.7)mL +(1.7+0.2)mL (32)

20—

E

10—
IX
O
LLI

7—
"~/Xi/

Bcg

For small magnetizations (i.e., small Bo) the susceptibility
is X=po(M/Bo)=(C/T'), C is the Curie constant,
2.61304 X 10 (mks) for V =24.22 cm /mol, and
T =2U

T' = (4.06%0.54) mK .

It should be noted that for magnetizations smaller than a
tenth of the saturation value (mL &0.1}, mL is linear in
field within 0.3%, and this phase can be described by a
constant susceptibility

X=(6.44+0.85) X 10 (mks)

=(5.12+0.68) X 10 (cgs)
J E

-&X,
I I I I I I I I I I I I I I I IIIIIIIII

10 20 30
X; (EXPT.) {mK)

FIG. 5. The x; coeScients of the magnetization curve
Bo=x I m +x2m '+x3m ' and B,2 ——x, +x2+x3, determined
theoretically (this work) compared to the experimental values
(Ref. 10) of Osheroff, Godfrin, and Ruel.

(see Figs. 6 and 7).
The experimental values for these quantities are given

in Ref. 10. The largest value of mL observed in the U2D2
phase is 9.14% of the saturation magnetization. Accord-
ing to the previous calculation only very small departures
from a linear law are expected in mL (Bo) for these small
values of mL. The experiment confirms the linearity
within error bars =3%.

The measured susceptibility is X=(5.41+0.08) X10
(cgs), and therefore T*= (3.84+0.06) mK, in good agree-
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FIG. 6. Zero-temperature magnetization of solid 'He (nor-

malized to the saturation magnetization) as a function of mag-

netic field, for a molar volume of 24.22 cm'. The open circles
connected by dashed lines are the experimental values deter-
mined by Osheroff, Godfrin, and Ruel (Ref. 10). The results of
the present calculations are indicated by solid lines.

C. Paramagnetic phase (on the melting curve)

According to formula (16}, the Curie-Weiss tempera-
ture on the melting curve is

ment with the theoretical values. This is particularly
surprising, since the theory neglects zero-point spin fluc-
tuations. According to theoretical estimates, ' the sus-
ceptibility should be reduced by approximately 20% from
its predicted value.

It should be noted that if, as suggested after the
analysis of the CNAF phase, the exchange constants were
underestimated by 37%, then a large disagreement be-
tween the calculations and experiment would result here,
for the U2D2 phase. Moreover, correction for quantum
fluctuations would make the discrepancy even worse.

Sp =4J]N+ 3J2N —36T& —36T2+ 18K'+ 18Ep+36EL

+72K ~ +36K~ +9Eg —60F+7- 5S] +22. 5S2

(33)

where only the terms with known exchange frequencies
have been retained.

Therefore Sn ——( —1.81+0.5) mK. The cancellation
of terms of opposite sign and their magnitude is sketched
in Fig. 8. Surprisingly, the value of 8 is of the order of
4J&N, the first term in the series, due to an almost exact
cancellation of the following terms. It should be noted
that even if J,N, T„and K~ are the leading terms,
several others have to be considered to obtain a
moderately accurate value of 8~.

The calculated value has the right sign and magnitude
according to recent experiments Sn ———(1.8+0. 1)
mK. It has to be pointed out, however, that this value is
substantially lower in magnitude than that found in ear-
lier NMR experiments.

The coefficients J; in the expression (13) for the Hamil-
tonian can be calculated as a function of the exchange
frequencies using the formula (14):

J, =( —0.364+0.082) mK,

J2 ——(+0.257+0.048) mK,

J3 ——( —0. 159+0.010) mK,

J4=( —0.011+0.002) mK,

J5 =( —0.0057+0.001) mK,

J,=O,

J7=( —0.0014+0.00014) mK .

These are often more convenient for calculating thermo-
dynamic properties of He in the paramagnetic phase.

Ceperley and Jacucci have calculated several impor-
tant parameters of the high-temperature expansions of
the susceptibility and the specific heat (including the
Curie-Weiss temperature also derived here). The agree-
ment with experimental quantities is good.

1.0

0.8

neo.6

D. Calculation of the energy

The energy of the ordered phases is calculated in this
section with the exchange constants of Table IV, i.e., for
melting solid He. The exchange Hamiltonian (12) has a
constant (spin independent} term; therefore the energy
per particle of free spins at T =0 is not zero, but

0.4

0.2

Ep
———(2J )N + 2 J2N

—6T]
—6T2 + 2 KF + 2 Kp +6K g

+3Ks+3KI + ,'Ks —3F+ ,'S, + ,'S—2). ——(34)

FIG. 7. The calculated magnetization of the U2D2 phase as a
function of the magnetic field. Note that deviations from linear-

ity are small for fields &8,&, where the U2D& phase is stable.

At melting density, Eo =(0.428+0.074) mK.
The energy per particle in the CNAF phase is given by

Eqs. (17) and (18) with the values of the parameters calcu-
lated previously (26). Similar results for the U2D2 phase
are given by expressions (22), (23},and (31).

The difference between the energy of the UzD2 phase
and that of free spins at T =0 and Bo=0 is therefore
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EL Ep=u Ep=( 2 J2N+2Ti 2T2+ &Kp

——KF —2K' —KB —5KL

——,'Ks 3F—+ ,'S,—+—3S~ } . (35)

At melting density, EL Ep—= —(0.664+0.036) inK.
This value is close to that found in earlier calculations.
With T, = —0. 167 mK and KF =Kp = 0.264 mK
(Iwahashi, Miwa, and Masuda' ) EL Ep=——0.598 mK;
with J,N

= —0.377 mK, T, = —0. 155 mg, and

E~ = —0.327 mK (Stipdonk and Hetherington )

EL —Eo= —0.800 mK; and for T&
———0. 130 mK and

Ep= —0.385 mK (Roger, Hetherington, and Delrieu')

EI —Ep = —0.838 mK. This quantity has been deter-
mined experimentally by Fukuyama et al. ; ' ' their
value, ( —1.24+0.02) mK, is substantially larger in mag-
nitude than the calculated one. This discrepancy is not
surprising. Iwahashi and Masuda and Roger, Delrieu,
and Hetherington' calculated that the energy gain due to
spin fluctuations is of the same order of magnitude as the
mean-field value of the ground-state energy. Their con-
clusions are consistent with the present results. High-
order exchange processes, however, will decrease the cal-
culated energy of the U2D2 phase (see the discussion of
Sec. IV A).

The energy of both phases is shown in Fig. 9. The en-

ergy of the U2D2 phase displays the classical parabolic
dependence on the magnetic field. In low fields
( & 1 T), it is approximately constant: EL -u =( —0.237
+0.092) mK. The energy of the CNAF phase is almost
linear in magnetic field, since the magnetization is practi-
cally constant and equal to its zero-field value
mp ——(0.54+0.05 }. It can be described in low fields, to a
good approximation, as

EH -EHo aBO,

with

-0.1,

E -02

03
LLI

-0.4

-05
0

}

0.1 0 2 0.3 0.4 0 5 0.6 0.7 0.8

Bp (T)

FIG. 9. The calculated energy of the CNAF and U&D2

phases at zero temperature, as a function of the magnetic field.
The experimental value of the lower critical field B„is 0.451 T
(Ref. 10). Note that the energy of free spins is 0.428 mK at zero
field (see text).

EH ——a+bmo+cm p+dmo — moBo2 4 6 7~
B

and, numerically, as

EH -( —0. 115+0.09)—(0.42+0.04)Bp mK .

The difference of the energies of the two phases at zero
field is EH EL ——(0. 122+0—. 13) mK, taking into account
the fact that the errors are weakly correlated.

Therefore, the U2D2 phase is found to be the stable
phase at zero field, but with a substantial uncertainty,
which originates mainly from that on u and b

The lower critical field is extremely sensitive to this un-
certainty; equating EL and EH only allows one to state
that 0&B„&0.8 T. These results can be compared to
the experimental values

B„=(0.4513+0.0005) T, and the reduced magnetiza-
tion at low fields ( -B„)is (0.595+0.0005)M„,=mH, .

Within realistic approximations, EH ——EHO —aBO with
a =yirimH, /2k~ =0.463 mK/T, and

2—
E

0—

I I I I I I I I I I I

J)N Jp N T) T~ KpK+AKLKBKS F

EXCHANGE CYCLES

I I

s) sp

ALL?

FIG. 8. Schematic representation of the predicted Curie-
Weiss temperature as the number of exchange cycles considered
is increased. Due to a substantial cancellation of terms with op-
posite signs, the final value is practically equal to the nearest-
neighbor contributign.

EL =ELo pBo Vg/NkBpo=EL0=0. 0788Bp

where the energies per particle are in mK and Bo in
Tesla, and X=5.41 X 10 (cgs) =6.80X 10 (mks). '

The difference of energies of the U2D2 and CNAF
phases at zero field and temperature is EHO —EL p ——aB„
—0.0788B„=(0.192+0.004) mK. This value is there-
fore very accurately determined by the experiment. '

The theoretical result obviously agrees with the experi-
ment, but with substantial error bars. A better theoreti-
cal determination of the exchange coefticients is clearly
needed. It appears, however, that within the present ac-
curacy ( -0. 1 mK) the reduction of the energy with
respect to the mean-field value, due to spin fluctuations,
is of the same order of magnitude (-0.6 inK) for both
ordered phases, although some difference could be ex-
pected. Within the two-parameter model, this difference
has been calculated' to be -0.25 mK. A spin-wave cal-
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culation similar to that given by Iwahashi and Masuda
should be performed including the exchange cycles con-
sidered here to determine the ground-state energy.

E. Conclusions

The multiple-spin-exchange Hamiltonian has been
developed in terms of Pauli spin operators for an arbi-
trary number of particles in the exchange cycle. The
properties of the ordered phases at absolute zero and the
Curie-Weiss temperature in the paramagnetic phase have
been calculated considering a large number of exchange
cycles, using the exchange frequencies derived by Monte
Carlo techniques by Ceperley and Jacucci.

A good agreement is obtained between theory and ex-
perirnent. It should be pointed out that the theory has no
adjustable parameters. The description of the magnetic
properties of the U2D2 phase is excellent, although
corrections for quantum fluctuation have been neglected.
In the high-field phase, however, some systematic
discrepancies are observed. These could be due to
higher-order exchange rings which contribute to high
powers of the magnetization in the expansion of the ener-

gy. As discussed before, all coefficients are expected to be
small but positive for high-order terms. The energy of
the ordered phases, however, is reduced by zero-point
spin fluctuations, not considered in the present calcula-
tion. This well-known limitation of the mean-field theory
is compensated by the fact that the effect is of the same
order in both phases.

The calculated properties of the paramagnetic phase
are in good agreement with the experimental values (see
Sec. IV C and Ref. 7). It is clear that the model gives an
excellent description of the magnetic properties of solid
He. Some important questions are still open: the effect

of spin fluctuations, of higher-order exchange processes,
etc.

A more accurate Monte Carlo evaluation of the ex-
change parameters is certainly needed, since present un-
certainties are larger than 10% for several exchange
coeScients. It would also be desirable to have an evalua-
tion of the exchange coefficients for eight nearest-
neighbors rings; this would allow one to estimate the un-

certainty associated with higher-order processes in the
description of the high-field phase.

From the experimental point of view, investigations of
the CNAF phase at very large magnetic fields, near the
upper critical field B,z, are clearly needed. Multiple-
spin-exchange effects are easily identified in this phase.

It appears that the properties of the solid He magnet
can indeed be calculated from first principles, without
any adjustable pprarneters; and although more work is
needed, the success of the present description is certainly
encouraging.

ACKNOWLEDGMENTS

We are grateful to M. Roger, M. C. Cross, D. S. Fish-
er, and R. Bhatt for many valuable comments and discus-
sions. We are particularly indebted to D. M. Ceperley
for sharing with us his results prior to publication.

M. Roger, J. H. Hetherington, and J. M. Delrieu, Rev. Mod.
Phys. SS, 1 (1983).

2M. C. Cross and D. S. Fisher, Rev. Mod. Phys. 57, 881 (1985).
3P. A. M. Dirac, The Principles of Quantum hfechanics (Claren-

don, Oxford, 1947), Chap. IX.
D. J. Thouless, Proc. Phys. Soc. London 86, 893 (1965);86, 905

(1965).
5M. Roger, Phys. Rev. B 30, 6432 (1984).
H. L. Stipdonk and J. H. Hetherington, Phys. Rev. B 31, 4684

(1985);M. C. Cross and R. N. Bhatt, ibid. 33, 7809 (1986).
7D. M. Ceperley and G. Jacucci, Phys. Rev. Lett. 58, 1648

(1987) [note that the frequency of 6(16; 36; 4') is 0.036 instead
of 0.36 mK].

D. D. Osheroff, M. C. Cross, and D. S. Fisher, Phys. Rev. Lett.
44, 792 (1980).

A. Benoit, J. Bossy, J. Flouquet, and J. Schweitzer, J. Phys.
Lett. (Paris) 46, L-923 (1985)~

' D. D. Osheroff, H. Godfrin, and R. R. Ruel, Phys. Rev. Lett.
58, 2458 (1987).
H. Godfrin, G. Frossati, A. S. Greenberg, B. Hebral, and D.
Thoulouze, Phys. Rev. Lett. 44, 1695 (1980); H. Godfrin,
these d' etat, Universite de Grenoble, 1981.

E. D. Adams, E. A. Schubert, G. E. Haas, and D. M.
Bakalyar, Phys. Rev. Lett. 44, 789 (1980).

' D. D. Osheroff, Physica 1094110B,1461 (1982).
A. Sawada, H. Yano, M. Kato, K. Iwahashi, and Y. Masuda,
Phys. Rev. Lett. 56, 1587 (1986).

' D. S. Greywall (unpublished).
t A. K. McMahan and R. A. Guyer, Phys. Rev. A 7, 1105

(1973).
D. M. Ceperley (private communication).

SW. P. Kirk, Z. Oleiniczak, P. Kobiela, A. A. V. Gibson, and
A. Czernmak, Phys. Rev. Lett. 51, 2128 (1983), and references
therein.

' K. Iwahashi, Y. Miwa, and Y. Masuda, J. Phys. Soc. Jpn. 53,
3088 (1984).
H. Fukuyama, A. Sawada, Y. Miwa, and Y. Masuda, in

Proceedings of the 17th International Conference on Low Tem

perature Physics, edited by U. Eckern, A. Schmid, W. Weber,
and H. Wuhl, (North-Holland, Amsterdam, 1984), p. 275.

'H. Fukuyama, H. Ishimoto, T. Tazaki, and S. Ogawa (unpub-
lished).
K. Iwahashi and Y. Masuda, J. Phys. Soc. Jpn. 50, 2508
(1981).


