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Generalized moment expansion of dynamic correlation functions in finite Ising systems
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In this paper we study dynamic correlation functions of one- and two-dimensional kinetic Ising
models, in particular, in situations where nonergodic behavior and critical slowing down emerge.
We also investigate in how far nonexponential relaxation as described by a Williams-Watts function
exp[ (t—/r)s] results in such systems. The method we apply is an expansion which simultaneously
takes the high- and low-frequency behavior of observables into account (generahzed moment expan-
sion). This approximation can be applied to kinetic Ising models with arbitrary transition rate con-
stants. Its computational effort does not increase when relaxation times diverge. However, the
method involves the inversion of the transition operator and, hence, can be applied only to finite
systems, the size of which depends on computational resources. We introduce a coarse graining of
the state space which allows to extend the system size further and yields accurate magnetization
correlation functions.

I. INTRODUCTION

Since their introduction by Lenz and Ising in 1925, Is-
ing models have attracted much interest in connection
with macroscopic equilibrium phenomena, in particular
those involving cooperative effects. The models helped to
explain ferromagnetic and antiferromagnetic behavior
and the respective phase transitions. The history of the
model has been presented by Brush. ' Even though the
formulation of the model is simple, exact analytic results
can be obtained in a few cases only. Outstanding is the
derivation of the partition function for the two-
dimensional square lattice by Onsager.

In 1963, Glauber triggered interest in the dynamics of
the Ising model. In a pioneering study he carried out
calculations on time-dependent observables of a (one-
dimensional) Ising model with Markovian dynamics.
Glauber considered, however, only simple rates govern-
ing the transitions between spin configurations in the
field-free case, a constraint which allowed him to derive
an exact analytical result. Later calculations have taken
more complicated transition rates as well as external
fields into account. The different approaches and re-
sults have been reviewed by Lacombe. Recent studies
also investigated the critical dynamical exponent z,
which, close to the critical point, links relaxation time (a
nonequilibrium property) and correlation length (an equi-
librium property). Depending on the choice of transition
rates, z was found to assume values z =2 (Ref. 8), z =4
(Refs. 9 and 10), z in the range 2 to 4 (Ref. 11),z = 5 (Ref.
12), and z in the range 2 to 5 (Ref. 13).

An important application of the dynamic Ising model
is connected with polymers and their cooperative dynam-
ics. The one-dimensional model can describe the kinetics
of helix-coil transitions, ' *' if one interprets the spin
state "up" as conformation state "helix, " and the spin
state "down" as confirmation state "coil" of the polymer
segments. Another interpretation considers the rotation
of side groups of a chain molecule around the molecular

backbone. One associates with each side group a noniso-
tropic physical property which assumes a certain orienta-
tion relative to the backbone. There may be only two dis-
tinct orientations which can then be represented by a
spin- —, model. A property of this kind is the electrical di-
pole moment of polar side groups' ' and, hence, one
expects an analogy between dielectric relaxation of a po-
lymer and dynamic correlation functions of an Ising mod-
el. In this respect it is of interest that the dielectric re-
laxation function A (t) measured by photon-correlation
spectroscopy can be described well by a Williams-Watts
function '

'13

A (t)=exp

Several authors sought an explanation of this nonex-
ponential behavior. ' ' ' Skinner explained this behav-
ior by envoking the mentioned analogy with the Glauber
model 26, 27

In previous investigations of the Glauber model, with
the exception of Monte Carlo studies, the mathematical
methods applied often dictated a particular choice of
transition rates. Glauber himself, for example, chose one
particular type of transition rate (". . . motivated more by
the desire for simplicity than for generality. "} which up
to now is the only type allowing an analytic description.
In this paper we are interested in calculations of dynamic
correlation functions for one- and two-dimensional
Glauber models free of any restrictions with regard to a
choice of transition rates. We will demonstrate that such
calculations can be achieved by the generalized moment
expansion (GME). However, this method is limited
to finite systems. The method allows us, in particular, to
study Williams-Watts behavior of correlation functions of
the dynamic Ising model. We will investigate also noner-
godicity and critical behavior of the kinetic Ising model
which emerge in certain limits of the transition rates.

The limitation of the generalized moment expansion to
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finite systems arises from the requirement of a numerical
inversion of a matrix which describes the transitions be-
tween all spin configurations of the system investigated.
The dimension d of this matrix has to be kept below some
limit (for calculations on a conventional minicomputer,
e.g., a Digital Equipment Corporation MicroVAX com-
puter, d & 2', corresponding to 16 spins}. In order to de-
scribe the magnetization correlation in systems with
more spins we will introduce an effective rate approxima-
tion. This approximation allows us to investigate 25
spins in the two-dimensional case and over 100 spins in
the one-dimensional case.

An alternative numerical method has been applied in
Ref. 13 to finite dynamic Ising models with arbitrary
transition rates. The method casts the corresponding
master equation into Hamiltonian form and seeks the
lowest nonvanishing eigenvalue A,

&
of the Hamiltonian by

the Lanczos method. This eigenvalue appears in the
spectral expansion of the correlation functions
C (t)=Q„P„exp( A,„t ) and —is interpreted as the longest
relaxation time of C(t). However, this interpretation
holds only if Pi is sufficiently large compared to the other

P„, and if the eigenvalues A,„are sufficiently separated. If
the relaxation of C(t} involves two, three, . . . very
different time scales ~&,~z,v&, . . . due to a clustering of
A,„around values ~, ', ~2 ', r, ', . . .the behavior of C(t) is
not properly described. The GME, in contrast, is well
suited to reproduce the spectral expansion for rather ar-
bitrary distribution of P„and }(,„values.

The results obtained on finite systems by means of the
GME, in principle, can be extrapolated to critical behav-
ior of macroscopic systems by finite-size scaling (Ref. 36
provides a review of the latter). In this paper we do not
consider such extrapolations since our issue is a demon-
stration of the GME for arbitrary high-dimensional mas-
ter equations. Also our main example for the application
of the GME below is the one-dimensional dynamic Ising
model which exhibits a particular critical behavior and,
therefore, may be a poor example for finite-size scaling.
Furthermore, finite-size scaling applies only in the limit
of large systems, and it is not clear if systems as small as
investigated, for example, in Sec. V can be considered in
the realm of finite-size-scaling theory.

II. ONE-DIMENSIONAL KINETIC ISING MODEL

We consider X spins cr; with energy

N
H= —J g o;tr;+, . (2.1)

1

ln[coth( J/kT) ]
(2.2)

J denotes the coupling constant. An external magnetic
field h could be taken into account by adding hg, ,cr;
to (2.1). We assume periodic boundary condition, i.e.,
cro=o.z, o.

&
=—o.~+,. Even though a spin interacts direct-

ly only with its two neighbors the static correlation
length g grows beyond /=1 (in units of the lattice con-
stant). In the infinite system the correlation length is re-
lated to the coupling strength J/kT by

The interpretation of this expression as a correlation
length does not hold strictly in finite systems. The ap-
propriate definition of a correlation length f~ for systems
of size N and its relationship to g have been reviewed in
Ref. 36.

For the dynamic properties of the model one requires:
(i) only one spin reorients at a time (single —spin-flip mod-
el), (ii) the probability to reorient a spin depends symme-
trically on the neighboring spins, (iii) the probability for
spin fiip remains invariant under inversion of all spins,
(iv) the principle of detailed balance holds.

The most general rates w for transitions o;~—cr;
which comply with these requirements are

a 1+5cr, ,cr; ~,— (1+5)o;(o'; i+~;+, )

(2.3)

A

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
(2.4)

w,„„„=—(1+5)(1+y )

A

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
(2.5)

w =—(1—5)
u

mlX

A

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
(2.6}

The parameters a, y, 5 specify the dynamics. a controls
the time scale of the dynamics. y is a measure of the cou-
pling strength,

y =tanh(2J/kT), —1 & y & 1 .

5, to be interpreted below, can be expressed as

wp«wmix( 1 Y }5=
wp„+ w;„(1—y)

(2.7)

(2.8}

and, for the rates to remain positive, must be chosen in
the range

(2.9)

At the boundaries of the allowed 5 interval (2.9) some
of the transition rates disappear. For exam pie, for
5=+1 holds

wmix I s=i =0 (2.10)

In this limit Bloch domains can be generated and annihi-
lated, but Bloch walls, which separate clusters of up spins
and clusters of down spins, are prohibited to migrate

The transition rates can assume only three values,
wp w t'p and w;„. These values and the spin
configurations connected with them are

wp« ———(1+5)(1—y )
a

T
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along the chain by single steps. Bloch walls can move
only in steps of two lattice spacings through a double-flip
process

1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

(2.11)

For 5= —1 holds

~par I s= —i
= ~antiwar I s= —i =0 ' (2.12)

In this limit the only allowed process is Bloch wall migra-
tion. Creation and annihilation of Bloch domains are
prohibited and, hence, energy is conserved. For 5=0
cluster creation and migration are equally probable, since
the sum of rates of forward and reverse transitions are
equal for creation and migration. %'e collect the rates for
different 5 values in Table I.

Glauber actually proposed dynamics with general 5
values, but he solely examined the case of vanishing 5.
The Glauber solution for the spin autocorrelation func-
tion in an infinite ring is [g as in (A4)]

III. GENERALIZED MOMENT EXPANSION

B,p(t) =Lp(r ), (3.1}

where L presents the transition matrix. A formal solu-
tion 1s

The generalized moment expansion (GME) is an ap-
proximation scheme which can reproduce the long-time
as well as the short-time behavior of dynamical observ-
ables in stochastic systems. It has been applied to la-
teral diffusion in membranes, to Mossbauer absorption
of Brownian particles, ' to equilibrium correlation func-
tions in nonreactive Brownian processes, dynamic
correlation functions in stochastic systems near instabili-
ties, and to observables connected with diffusion in di-
mension d g 1. We present the GME in matrix nota-
tion, suitable for the discrete-state space of a spin system.

Let the state of the system at time t be characterized by
a vector p(t), the ith component of which gives the prob-
ability of observing the system in state i. The state is as-
sumed to be normalized, i.e., g,.p, (t) =1. The time evo-
lution is governed by the master equation

C„(r)=(a,(r)a, (0) &
I iv

p(t) =e"'p(r'=0) . (3.2}
=e ' g Ii(yat )r)" ~

I = —Co

(2.13)

This result can be generalized to finite rings (see the Ap-
pendix):

The matrix element (e '},, of the evolution operator is to
be identified with the conditional probability of finding
the system in state i at time t provided it has been in state
j at time t'=0. The equilibrium distribution is po and
obeys

CN(&) = (o;(t)cr;(0) &

N=e-" y y I, i+Jr(war)
l = 1 j=—oo

X
/

I-i /, N —
/

I —i
/

N
(2.14)

Lpo ——0 . (3.3)

M(t) = ( fgo& = f e"'g, (3.4)

L is nonsymmetric. The left eigenvector of L corre-
sponding to the eigenvalue zero is 1 =(1,1, . . .).

We consider observables M (t) presented as

Our algorithm presented below can be applied only to
finite-spin systems. A comparison of the expressions
(2.13}and (2.14) allows us to estimate how large a finite
system must be in order that its relaxation behavior does
not deviate from that of an infinite system. We found
that for N ~6/ the correlation function Civ(t) differs
from C„by less than 1%. Since our computational
resources (MicroVAX II) allow us to treat up to 16 spins
(100 spina by means of the approximation of Sec. V) we
expect that our results agree with those for an infinite
system up to a coupling constant J =0.5 kT. For higher
Jvalues size effects may become dominant in our results.

g;=go, p, (t'=0) . (3.5}

=( fgo& —( f &(go&

= f'e"'g —X f;po; Xgoy, (&'=0) . (3.6)

Such observables measure the correlation between prop-
erty f at time t and property go at time t'=0, averaged
over the distribution p(t =0). In case f is identical with

go and p(t'=0) =po, M(t) is an equilibrium autocorrela-
tion function. In the following we consider only the devi-
ation of M (r) from the equilibrium value assumed asymp-
totically (t +DO)—

bM(r) =M (t} M(t ~ ~)—

W par

—(1—y)
a
2

0
a(1—y)

Wantipar

—(1+y)
2

0
a(1+y)

w tnix

TABLE I. Transition rates wp w tip and w;„ for
different values of 5.

g =(1—Jo)g=g —pong; . (3.7)

To derive a more convenient expression for bM(r) we in-
troduce a projection operator Jo given by the dyadic
product p01 =lim, e ', which projects onto the equi-
librium distribution po. (1 —Jo} is then the projection
operator onto the orthogonal complement of po. (1—Jo)
applied to a vector g yields
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The sum of the components of g' vanishes, hence, g' is

orthogonal to 1 . We see from (3.6), that a vector g, pro-
jected by (1—Jo), leads to an observable M(t) with a van-

ishing equilibrium value M( oo ). The operators L and Jo
commute and we can rewrite (3.6)

EM(t) = f (1—Jo)e"'(1—Jo)g . (3.8)

Equation (3.8), or rather its Laplace transform

EM(co) =f dt e "'EM(t)
0

= f (1—Jo) (1—Jo}g
N —L

(3.9}

is the starting point of the GME. bM(t0) can be expand-
ed about co =0 and co = 00

bM(to)- g p, ,( —co)", as to~0,
v=0

(3.10)

bM(co)- —g p
CO p N

as Q) —+ (I} (3.11)

The expansion coefficients are the generalized moments

IMv

p„:—( —1)'f L"g . (3.12}

The moments can also be expressed through EM(t). One
finds

5M(t)=( —I)"p„, v=0, 1, . . . ,Bt"
(3.13)

f dt t"bM(t) =v!p „„v=0,1, . . . .
0

(3.14)

N g
EM(cg)=b, m(co)= g +co

(3.15)

We require b,m(co) to reproduce Nt, high- and NI low-

frequency moments (N„+Nt ——2N) of the exact observ
able bM(co) and will refer to it as [N„,N, ] approximant.
In the time domain hm(co) corresponds to a sum of ex-

ponentials

EM(t)=6m(t)= g a„e (3.16)

The connection between the a„and A,„on one side and
the moments on the other side is given by the 2N rela-
tions

The moments for v) 0 are referred to as high-frequency
moments. The moments for v&0 correspondingly are
called low-frequency moments and weigh the long-time
behavior of EM(t}. po is the initial value AM(0).

The GME approximates b,M(t0) by an [N —1,N] Pade
approximant hm(to), which is chosen as to reproduce a
desired number of terms of the low- and the high-
frequency expansion (3.10) and (3.11},respectively. The
mathematical conditions under which such a two-sided
Pade approximant exists have been investigated.
This approximant can be written in the form

N

g a„A,"„=p„,

v= —NI~ —NI+1, . . . , Nz —2, NI, —1 .

In case of a [1,1] approximation (3.17) yields

(3.17)

Po
a ) =Pp~ (3.18)

p
In case N =2 the solution is obtained by the algorithm
( N( ———m)

2~=I m+&
—Pm+Am

&=I m+&9m+& —9m+~m ~

2=Pm+2 —Pm+&m+) ~

~& = [V+ (V —4xz )' ]/(2x),

%=[V—(V' —4xz)' ']/(2x),

a& =(~2JM „—p „)/[A p+'(I, ,—A, , )],
a2 (~tp +2 p +3)/[A2 (A, /

—A2)]

(3.19)

(3.20)

(3.21)

(3.22)

gI =( I —Jo)L '(1 —Jo)g, p, = fTg', ,

gz=(1 —Jo}L 'g'i P 2= f g2—

(3.23)

(3.24)

Since L is nonsingular in the subspace onto which
(1—Jo) projects (we assume that the null space of L is the
single-equilibrium state pp which is true as long as L is
ergodic, i.e., connects all spin configurations) the singu-
larity of L does not affect the solution of (3.23), (3.24).
However, for a numerical solution one may rather adapt
the following scheme: First construct a matrix L and a
state g by reducing the dimension of L and g by one
through elimination of, say, the last row and column of L
and the corresponding element of g; solve the reduced
equation

Lgi =g ~ (3.25)

fill in a zero for the eliminated component of g, , and ob-
tain g', in the orthogonal subspace by applying the projec-
tor (1—Jo); continue this way for all remaining g,

'. .
We have chosen the following procedure to evaluate

the transition-rate matrix L for the kinetic Ising model.
A spin system consisting of N spins has a state space of
dimension 2 . Hence, L is represented by a 2 X2 ma-
trix. The elements of L are either wp w tp or w

[see (2.4}—2.6}] for allowed, i.e., single-spin flip, transi-
tions and vanish for all other transitions. An efficient
method to assign the proper values to the elements of L is

In case N &2 the solution of (3.17) for numerical pur-
poses is best expressed as an equivalent eigenvalue prob-
lem.

The GME is based on the availability of the moments
p„. The high-frequency moments (v&0) can be obtained
by applying to (1—Jo)g the operator L" and multiplying
the result by f . For the low-frequency moments (v&0}
one needs to evaluate recursively
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L;;=—g L;J.
J

(j&i)
The resulting matrix L has 2 elements in each row but
only N +1 of these are nonvanishing, i.e., L is a "sparse"
matrix. For the solution of the sparse linear equations
(3.25) we used the package Itpack 2c which relies on
adaptive accelerated iterative algorithms. Of the subrou-
tines supplied with this package we found the RSCG
code to match our needs best.

(3.26)

IV. RESULTS FOR THE ONE-DIMENSIONAL MODEL

A. Relaxation of correlation functions for 5=0

As a first observable we consider the spin autocorrela-
tion function CN(t} in the special case 5=0. The analyti-
cal solution for Cz(t) is known in this case [Eq. (2.14)]
and provides a test for the accuracy of the GME.

In Fig. 1 the exact CN(t) and its [3,3] GME are com-
pared for rings of different length N. The close agree-
ment shows that an expansion based on three low- and
three high-frequency moments is suf6cient to reproduce
C~(t} Figure 1 .demonstrates also that the spin auto-
correlation relaxes more slowly in smaller rings.

Next we consider the magnetization correlation func-
tion

based on an ordering of the spin configurations such that
the ith spin configuration is given by the binary represen-
tation of i, a 1 implying spin-up, and a 0, spin down. An
example for a chain of six spins would be that the state
i =14 with the binary representation 001110corresponds
to the spin configuration 1 1, 1 1 1 g.

Let us now consider all transition rates in the ith row
of L. We first consider all numbers ji which differ from i
in their binary representation by a single digit, i.e.,
represent spin configurations which can be reached from
the ith configuration through a single-spin flip. We then
set L; 1

=0 except for j& Ij,,j2, . . . ,j~I. To attribute
the correct value wp w t'p or w ' to I. j one needsc,)
to compare the binary digits of i at positions l —1, I, and
I + 1, when I is the position in which the binary represen-
tations of i and ji differ. After one has filled all off-
diagonal positions of L one obtains the diagonal element
on account of the conservation of probability, i.e.,

1.0

0.8

0.6

0.4

0.2

0.0
40 60 80 100

(&/a)

FIG. 1. Comparison of [3,3] GME and of exact description
for the spin autocorrelation function C&(t) in rings of different
length N~, the latter are evaluated according to Eqs. (2.14) and
(2.13).

ed to determine a„and A,„(Refs. 29 and 30) does not con-
verge.

C~(t) =CN(0)exp (4.4)

where ~~&, j can be interpreted as the mean relaxation
time. In Fig. 2 the 5 dependence of ~~, &~

is shown. We
find ~t & & ~

to be rather constant in the center part of the 5
interval [—1,1], but to increase towards the boundaries.

2.5

N=9

B. Glauber dynamics for 5+0

In the preceding section we found for 5=0 that the
GME reproduces well the spin autocorrelation function
and the magnetization correlation function. We want to
consider now the spin autocorrelation function Cz(t) for
5&0. An exact analytic solution does not exist for Cz(t)
in this case. We determine first the most simple approxi-
mation to CN(t), namely its [1,1] GME. This approxima-
tion can be represented as

T

&M(r)M(0))= g &,(r), (0)) .
i j =1

(4.1) 2.0

The relaxation of the magnetization in finite rings was
determined earlier to be monoexponential:

a 1.5
OG0

M(r) =M(0)e -"-&". (4.2) 1.0

Hence, the magnetization correlation function is monoex-
ponential as well 0.5

& M (t)M(0) ) = & M (0}M(0})e (4.3) —1.0 —0.5 0.0 0.5 1.0

The [1,1] GME yields this relaxation time exactly. If, for
example, a [2,2] GME is attempted, the corresponding
moments in Eqs. (3.19)—(3.22) yield vanishing x, y, and z.
If one attempts a [3,3] GME the eigenvalue routine need-

FIG. 2. Mean relaxation time v~&» as a function of 5 in a
ring consisting of 9 spins; ~~&, j is shown for two coupling con-
stants J.
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An increase of the coupling strength J/kT causes an in-
crease of the relaxation time. This effect will be discussed
further in Sec. IV C below.

1. Nonergodic behavior for 5~—1

With 5 approaching —1 the rates wpar and wan~lpar van-
ish and the corresponding spin flips become forbidden.
These spin flips alter the energy of the system, i.e., in the
limit 5~ —1 the energy remains constant. The space of
all spin configurations is then divided into equal energy
subspaces, which are not linked by the dynamics, i.e., the
system becomes nonergodic. The eigenvalue A, =O of L
becomes degenerate and an equilibrium state exists for
each subspace. In a system with N spins, N even, there
are N/2 constant energy subspaces [(N —1)/2 for N
odd]. For that reason the GME, which requires the in-
version of (1—Jo)L(1—Jo) in the course of solving Eq.
(3.23) cannot be applied. However, we like to argue that
an application of the GME near 5= —1 should reveal a
most interesting behavior of the spin system, namely a
slowing down of relaxation processes due to the emer-
gence of nonergodicity.

Close to 5= —1, relaxation of any observable takes
place first within each constant energy subspace. After
quasiequilibrium within each such subspace is reached,
relaxation between the different subspaces takes place on
a much slower time scale. This behavior of relaxation on
very distinct time scales can be reproduced well by the
GME, but not by conventional expansions based solely
on high-frequency moments. As a demonstration we
compare in Fig. 3 the [3,3] GME with a [6,0] GME, the
latter being based on the moments JMo,p„.. . , p~. The
[6,0] GME describes solely the initial phase of the relaxa-
tion correctly, but fails to account properly for the late
phase, which corresponds to the slowly decaying com-
ponent of the [3,3] description.

In order to test the validity of the GME we construct
an alternative description of the slow-relaxation phase.
This description derives from the fact that the initial fast

1.0

relaxation leads to quasiequilibria within the equal-
energy subspaces. If the quasiequilibrium value of an ob-
servable b,M(t) inside a particular subspace vanishes as,
of course, the long-time equilibrium value does, then this
subspace will not contribute to the slow second com-
ponent, since the observable has fallen off to its final
value already. In case of the spin autocorrelation func-
tion and an initial distribution p(t =0)=pc, the only
quasiequilibrium equal-energy subspaces that contribute
a nonvanishing term to the slow-relaxation phase are the
ones with all spins up and with all spins down. Both sub-
spaces consist of just one state. Even though these two
states have the same energy, they are not linked by transi-
tions of the w~;„ type. All other equal-energy subspaces
are symmetric in the sense that for each state the sub-
space contains also the inverse state (with all spins
Qipped). Therefore, the observable considered has van-
ishing quasiequilibrium values in all subspaces except the
two spaces with all spins parallel.

We express the separation of fast and slow contribu-
tions to CN(t) by

C~(t}=(1—a„,„)Ct„,(t)+a„,„e (4.5}

2

(1+ —2JlkT)N+(1 e
—2JlkT)N (4.6)

with ZN being the partition function of the one-
dimensional ¹pin model. Even though the rate w „,is
small, if 5 is close to —1, each of the N spins in an all-
parallel state can Hip according to w „and, in this way,
establish the connection to the other subspaces. Hence,
the relaxation time ~,&,„is given by

where Ct„,(t) describes the fast relaxation [Ct,(0)=1,
Ct„,(t ~ Oe }=0].We refer to r»,„as the relaxation time
of the slow phase and to a,&,„as the respective amplitude.
Since in the two all-parallel subspaces the expectation
value of the spin correlation function is ( o; ) = 1, the am-
plitude a,],„is twice the thermal equilibrium probability
of being in an all-parallel state, i.e.,

~ NJ/kT2
Z

'
N

0.8
1 2

wv„(5, y )N a(1+5)(1—y )N
(4.7)

0.6

0.4

0.2

0.0
10 20 30 40 50

t (1/a)

FIG. 3. Comparison of a [3,3] and a [6,0] description for the
spin autocorrelation function CN(t) in a ring consisting of 9
spins.

The minimal GME, which can resolve two distinct re-
laxation processes, is the [2,2] approximation. We find
excellent agreement between the above estimates of ~,&,„
and a„,„on the one hand and ~~& 2~, and a~2 z~, for the
slower of the two exponentials in the [2,2] GME, on the
other hand. Some data are presented in Table II. The
table shows, in particular, for N = 10 and J =0.5kT in
how far the approximation (4.5) improves as 5 ap-
proaches —1.

In case of the magnetization correlation function there
is a slow component as wdl. The arguments given above
lead to the same relaxation time v;&,„,but the amplitude
a,&

„has to be multiplied by a factor of N, because the
all-parallel states contribute comparatively more to the
magnetization correlation than to the spin autocorrela-
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TABLE II. Amplitude and relaxation time of the slow component of the spin autocorrelation func-
tion C~(t) in the limit 5~ —1 as evaluated by means of the [2,2] GME (r(z z) &,a(z z), ) and by means of
Eqs. (4.6) and (4.7).

0.5
1.0
0.5
0.5
0.5
0.5
1.0
0.5
1.0

—0.9999
—0.9999
—0.99
—0.999
—0.9999
—0.99999
—0.9999
—0.9999
—0.9999

N

6
6

10
10
10
10
10
14
14

[~ 2) )(a ')

13978.0
92 672.0

72.5
823.2

8 373.0
83 893.0
55 607.0

5 893.0
39 716.0

&slow~ &

13982.0
92 664.0

83.9
&39.0

8 390.5
83 905.0
SS S98.0

5 932.0
39 713.0

[2,2], 1

0.3027
0.7814
0.1316
0.0915
0.0876
0.0872
0.5275
0.0258
0.3310

&slow

0.3024
0.7814
0.0872
0.0872
0.0872
0.0872
0.5274
0.0249
0.3310

tion function.
The possibility to observe the nonergodicity discussed

above is limited to finite systems, since the amplitude
a,&,„falls o8' quickly with growing system size. On the
other hand, since a,~,„ increases with J/kT, for each
finite number of spins one can find a (possibly huge) cou-
pling strength J/kT such that nonergodicity occurs.

2. Nortergodic behauior for 5~+1
When 5 approaches the value +1, w;„vanishes. As

in the case 5~ —1, dynamical decoupling of the state
space occurs and nonvanishing quasiequilibrium values of
observables within the subspaces lead to slow com-
ponents of the relaxation functions. Because successive
creation and annihilation of Bloch domains can move
Bloch walls in steps of two lattice spacings [see (2.11}],
the decomposition patterp into subspaces is length depen-
dent and complicated. We do not want to further ela-
borate on this point here.

C. Critical dynamical exponents

Figure 2 demonstrates that the relaxation of Ctt(t}
slows down for increasing values of the coupling strength
J/kT, i.e., for decreasing temperature. In this section we
consider the slowing down of the magnetization correla-
tion function near T =0 and infer from Eq. (4.3) that the
relaxation time for this observable in case 5=0 diverges
like

This exponent is recovered by the GME not only for
vanishing 5 but for a wide range of 5 values, provided 5 is
kept independent of J. To reach this result, we computed
the mean relaxation time r~& &~

as defined in Sec. IV B for
the magnetization correlation function in finite rings and
compare it to the static correlation length g for the
infinite system. We found z to be rather independent of
the length.

For a J-dependent 5 value

(4.11)

40

30
~ ~ ~ ~ ~ g — 5

which amounts to w;„=w „Deker and Haake as well
as Kimball' found z =4 in case of an infinite spin chain.
The same exponent had been determined by Pandit, For-
gacs, and Rujan for finite rings. ' We have tested the
critical behavior for finite rings with N =5 and N =12 by
choosing 5 according to (4.11) and increasing J/kT. In
Fig. 4 we compare g and the mean relaxation time z(~ ~)

of the magnetization correlation function. The slope of
w( f) in a log-log plot corresponds to z =4, i.e., finite and
infinite rings agree in this respect. Of course, this treat-
ment could be improved if one would represent the

~a e J~ T, for JrkT~ ~ . (4.8) xxxxx

X

In the same limit the static correlation length g [compare
Eq. (2.2)] diverges like

10
X

X
X

X
X

X

g ~e~', for2JykT
kT

(4.9) 0 X X

X
X

The relaxation time diverges as some power of g, the ex-
ponent z connecting ~ and g is called the critical dynami-
cal exponent. z depends on the choice of transition rates.
In case 5=0 Eqs. (4.8) and (4.9}yield a relation

(4.10)

i.e., an exponent z =2 (see Ref. 8).

0.0 2.5 5.0 7.5 10.0

1n(f}

FIG. 4. Mean relaxation time ~[»~ of the magnetization
correlation function as a function of the static correlation length

g in the infinite system. 5 depends on J according to Eq. (4.11).
The slope of the line amounts to sec g .
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r
2 —y

then v,&,„diverges like

(4.12)

+slow

abscissa in Fig. 4 by (N as determined by finite-size scal-
ing. However, the fact that r(g) in Fig. 4 appears to
coincide for N =5 and %=12 suggests that finite-size
scaling is not essential in this particular situation.

In Sec. IV B we described a slow phase of the spin au-
tocorrelation function as well as of the magnetization
correlation function in the limit 5~ —1. The slow phase
resulted from a dynamical decomposition of the spin
configuration space into subspaces, i.e., from nonergodi-
city. We characterized this phase in terms of a relaxation
time r,~,„and an amplitude (for the spin autocorrelation
function) a,~,„. Clearly r,&,„will increase for increasing
coupling strength. If we connect 5 and J through

Since we are considering the same observables as Bu-
dirnir and Skinner, with the sole difference that our sys-
tems are finite, we test our relaxation functions for
Williams-Watts type behavior and compare the exponent
p to Budimir and Skinner s results. This behavior does
not apply in a strict mathematical sense since finite sto-
chastic systems with first-order kinetics can always be
represented through a series of exponential decays. The
behavior can only be verified within certain error bounds,
i.e., the attitude in our paper is that the Williams-Watts
function is merely an expression which encapsulates well
certain rnultiexponential decays.

In order to obtain the Williams-Watts parameters a, ~,
and p we modify our expansion schetne. Instead of ap-
proximating the observable by a sum of exponentials we
approximate it by a Williams-Watts function. This
amounts to replacing Eq. (3.16) by

'P

bM(t)=bw(t)=a exp (3.16')
7

8J/kT
4N kT

(4.13)

For a Williams-Watts function only po and the long-time
moments)M „exist [see Eqs. (3.13) and (3.14)]. The latter
are related to a, r, and p through

which yields again an exponent z=4. The relaxation
time r,~,„ for 5~ —1 is inversely proportional to the
number of spins N. Furthermore, the corresponding am-
plitude a,&,„vanishes exponentially with growing X.
Therefore, the occurrence of the slow phase and the criti-
cal dynamical exponent z =4 are finite-size effects limited
to small systems.

a oo

p &

———, dtt exp
V! 0

a w'+' v+1
p p

(4.14)

We require that EM(t) and hw(t) agree with respect to
the moments po, p „and p z. Then the relations (3.17)
have to be replaced by

D. Williams-Watts description of the correlation functions
po ——a, (4.15)

The time dependence of observables of photon correla-
tion spectroscopy experiments as well as dielectric relaxa-
tion experiments on polymers is often interpreted in
terms of the Williams-Watts function Eq. (1.1). ' The
good agreement between experimental data and this
empirical function motivated the search for a simple
physical model which yields relaxation functions of the
Williams-Watts type. Skinner examined the (infinite)
one-dimensional Ising model in the limiting case 5= —1.
He determined the spin autocorrelation function, which
turned out to be of Williams-Watts type with an exponent
p=0. 5. By numerical Laplace transformation of the
spin-spin correlation function he further calculated a
magnetization correlation function which could be fitted
well by a Williams-Watts function with P=0.74. Bu-
dimir and Skinner examined the Glauber model for
6=0,+1 by means of a continued fraction approximation
to the spin autocorrelation function. Since this approach
is equivalent to a high-frequency expansion, the results
can be trusted only in the short-time domain and the au-
thors determined numerically a cutoff time up to which
the evaluated correlation functions are reliable. Again
their solutions could be well fitted in the specified time
domain by Williams-Watts functions with values for p be-
tween 0.648 and 1.

(4.16)

P z=-Qr 2
(4.17)

Numerical solution of the nonlinear system of equations
(4.15)—(4.17) yields a, r, and P in an unambiguous way.
Equations (4.15)—(4. 17) provide a simple and systematic
description of a multiexponential decay in terms of a
Williams-Watts function. It is the optimal description in
case the whole time regime is taken into account. We
note, however, that if a Williams-Watts function is fitted
to an observable only in a finite-time interval there may
be discrepancies with our approach.

In order to test the variant of the GME established by
Eqs. (3.16') and (4.14)—(4.17) we consider the spin auto-
correlation function C~(t) for the case with known
analytical solution, i.e., 5=0 [see Eq. (2.14)]. p, and

p 2 can be obtained by integration according to Eq.
(3.14). We find
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2N

1+(1 y2)1/2
(4.18)P—

&,

= 2+a(1 —y )
( 1 y2)1/2

7

y2)1/2

p= ''+'+
2a(1 —y )

a2( 1 y2)3/2

3N
'N

1+(1 y2)1/2

r
( 1 y2)1/2

y

N
lY

1+(1 y2)1/2

y

(4.19)'N

+ ya2( 1 y2)

exact spin autocorrelation, for all 5 values except near
the boundaries +1 where finite-size effects become impor-
tant. For J~0.5kT the correlation length g is so large
that finite-size effects are always important and the
Williams-Watts description fails.

The Williams-Watts exponent P for the magnetization
correlation function for the whole range of 5 values is
shown in Fig. 7. For 5=0 the relaxation of (M(t)M(0) )
is strictly monoexponential [see Eq. (4.3)], hence, for all
coupling constants J holds P= 1. In the range
[—0.8,0.95] the correlation functions for the J values
considered remain rather monoexponential and can be
approximated well by Williams-Watts functions with
P & 0.9. For such values of P the nonexponential charac-
ter of the correlation function is not very distinct. Close
to the boundaries the slow phases and, nonergodicity
determine the relaxation process and the relaxation func-
tion are not of the Williams-Watts form.

In order to compare with the result of Budimir and
Skinner for an infinite ring we take the limit N —+ 00

1
P —i=

a(1 —y )
2

y'+2
2a2( 1 y2)2

(4.20)

(4.21)

In Fig. 5 the exact solution, Budimir and Skinner s
Williams-Watts fit and an approximation based on po ——1,
p „and 1M z as given by (4.20) and (4.21) are shown.
Both approximations are in good agreement with the ex-
act solution. The Williams-Watts parameters are a =1,
w= 11.36a ', P =0.675 (Budimir and Skinner) and a = 1,
&=11.65a ', P=0.732 (GME).

We like to investigate how for the spin autocorrelation
function the choice of transition rates, i.e., of 5,
influences the Williams-Watts exponent P. Figure 6
presents P for the whole range of 5 values. Typical values
of P lie between 0.75 and 0.8. The decrease of P below
0.75 near 5= —1 is connected with the onset of nonergo-
dicity which results in a slow-relaxation phase. We found
that for J (0.5kT the Williams-Watts representation
agrees well with the [3,3] GME, i.e., with the numerically

V. EFFECTIVE RATE CONSTANTS AND REDUCED
TRANSITION MATRIX

A. One-dimensional systems

The GME has the advantage of a free choice of transi-
tion rates and of a numerical effort which does not
diverge as relaxation times increase. The advantages
come at the price of a restriction to finite systems. The
accessible system size N is determined by the dimension d
of the transition matrix L and, actually, is rather small.

1.0

act sol.
0.8

moments

0.6

S

0.4

1.00

J = 0.5kT
0.90 N=10
0.85
0.80
0.75
0.70
0.65

0.2

M ~ st st & sa m sa m ss ~ sa sa ~ i0.0
10080604020

0.60
—1.0t (&/~) 1.00.5—0.5 0.0

FIG. 5. Relaxation of the spin autocorrelation function
C„(t) for J = 1.0kT. The exact solution is compared to
William-Watts functions which result from a least-squares fit to
a short-time continued fraction approximation (WW&, ) and from
a modified GME based on the moments po, p &, and p
(WWm~m

FIG. 6. Parameter P as a function of 5 for J=0.5kT of a
Williams-Watts description of the spin autocorrelation function.
The Williams-Watts parameters were determined from po, p
and p z.
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1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60

—1.0 -0.5

0.5 kT

1.0 kT

1.5 kT

10

0.0 0.5 1.0

correspondingly into subsets. The flip of any single spin
causes M to change, i.e., there are no transitions within a
subset. The energy of the system is an example of an ob-
servable which is not suitable for the introduction of
effective rates because there are energy conserving spin
flips.

In the following we consider, therefore, the magnetiza-
tion correlation function (M(t)M(0)). In a system of N
spins the maximum and minimum value of M is +N and
—N, respectively. Because any spin flip changes the
magnetization by +2 units, M assumes N+1 different
values Mk,

FIG. 7. As in Fig. 6, but for the magnetization correlation
function. Mk ———N, —N+2, . . . , N —2,N . (5.1}

In order to describe correlation functions (O(t)O(0) ) for
larger systems we collect individual spin configurations
into subsets of configurations such that the observable 0
assumes identical values for all configurations in a subset.
We require that a flip of a single spin necessarily intro-
duces a transition to a different subset. We then derive
an approximate description which disregards variations
of the distribution inside the chosen subsets and considers
only transitions between subsets. These transitions are
described by the "effective rate constants. "

The observable suitable for this idea is the magnetiza-
tion M= g,. ,o, . M takes on the same value M„ for
many different spin configurations which are collected

po(Mk }= g po(i) .
(M(i) =M„]

(5.2}

The effective rate for transition from subset Mk to subset
MI, —2 is

Correspondingly there are only N+1 subsets of spin
configurations with equal magnetization. For the sake of
simplicity we denote these subsets by the same symbol
Mk as the value of M in this subset. i and j denote states
in the full configuration space. With M(i) being the mag-
netization of state i, the equilibrium probability for Mk
being populated is

1
w (Mk ~M„—2) =

po(MI, )
w(i ~j)po(i} (5.3}

The inverse rates w(Mk —2~Mk) can be obtained from the principle of detailed balance. We can then construct for
the intersubstate kinetics the "reduced" transition matrix L„d. Working with L„d instead of L, we can apply the GME
to the magnetization correlation function as we did in the full state space. The suggested approximation decreases the
dimension of the transition matrix from 2 for L to N+1. L„d has tridiagonal form and, hence, the long-time mo-

ments p „are easy to obtain. The moments po and p+, of the magnetization correlation function are reproduced ex-

actly by the effective rate approximation.
To establish L„d the sum in Eq. (5.3) has to be carried out. We note that there are just three distinct values for

w(i ~j}:w;„, w „,and w,„„„.The equilibrium distribution po can take on only a few values, since the energy E is

limited to the range —NJ (E (+NJ and can only be changed in units of 4J. I.sbeling the energy levels E, = —NJ,
E, =( N+4)J, . . . w—e need then to determine the numbers P~(Mk, EI), A~(MI„EI), and MN(Mk, E&) which specify

how many transitions of type w „,m,„„„,and m;„ there are for the spin configurations with energy EI from the sub-

set Mk to the subset Mk —2. One can derive the following expressions for these numbers:

N
PN(M„, E

N —Mk

2
—1

I —2

N +MI,
2

—2

I 1, if I &2,

1, if 1=1, MI, ——N —2, (5.4)

0, else,
T

N —Mk —1
2
I —2A~(MI„E( )= . N

N +Mk
2

—2
if 1)3,

1, if I =2, Mk ———N,
0, else,

(5.5)
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Mx(Mt Et}= 2N

N —Mk

2
—1

N +My
2

—2
if I &2 .

0, if l=1. (5.6)

With these coefficients we obtain for (5.3}

N+1 po(Et )
w (Mk ~Mk —2) = g [Ptv(Mk, Et )wz„+ Atv(Mk, Et )w,„„»,+Mtv(Mk, Et )w;„],

po k

N+1
po(Ml, )= g [Ptt(Mk, Et)+ Atr(Mk, Et)+Mtv(Mk, Et)]pp(Et) .

(5-7)

(5.8)

In Figs. 8(a)—8(d} the GME for the magnetization corre-
lation function in the full state space and in the reduced

space are compared. The results from the reduced space
agree well with those from the full state space in a major
part of the 5 interval, particularly, in the region close to
the lower bound 5= —l. Only in the limit 5~+1 the

results in the reduced-state description are poor, since in

this limit two successive Ilip processes [see (2.11)]become
important, which are not correctly accounted for by the
effective rates.

In Sec. IV B we found a slow component of
(M(t)M(0) ) in the limit 5—+ —1, which should occur in

small systems only [see Eqs. (4.6) and (4.7)]. For increas-

ing N the amplitude a,&,„decreases rapidly. In Fig. 9
(M(t)M(0)) is presented for different values of N. The
slow component diminishes with increasing N, i.e., it
represents a small system effect. Figure 9 demonstrates
the high accuracy of the reduced state space approxima-
tion in comparison to the GME in the full state space in

this parameter regime.

B. Two-dimensional systems

F(t)= (M(t)M(0) ) (5.9)

or the magnetization intensity correlation function

G(t)=(M2(t)M2(0)) . (5.10)

We assumed again periodic boundary conditions. In or-
der to specify the dynamics completely one would have to
choose five independent parameters instead of three pa-
rameters for the one-dimensional system. We like to

The GME can also be applied to two-dimensional Ising
systems. In the following we will only consider Ising
models on a square lattice, although other lattice types
could be treated equally well. Our computational
resources (MicroVAX II) limited us to 16 spins in a full
state-space description. This implies that we can only
treat 4 X4 square lattices which is very small and allows
only to investigate qualitative features of two-dimensional
kinetic Ising models. As observables we consider either
the magnetization correlation function
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FKJ. 8. [3,3] GME of the magnetization correlation function
(M(t)M(0)) in the reduced state space and in the full state
space. The number of spins is N =12, the coupling constant
J =1.0kT.

FIG. 9. Comparison of magnetization correlation functions
(M(t)M(0) } for rings of diff'erent size N (N =10, 14, 30, 60).
For N = 10 and 14 the correlation functions are evaluated in the
full as well as in the reduced space, for N =30 and 60 the corre-
lation functions are calculated only in the reduced state space.
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avoid the huge number of possible rate constant combina-
tions and rather restrict our study to standard Monte
Carlo rates. These are

~
—5E/kT

—5 k (5.11}
1+~

—5E!kT

where u specifies the time scale and 5E the energy
difference between the initial and final states. In order to
describe larger systems we applied also the approxima-
tion involving a reduced state space of substates collect-
ing spin configurations with identical magnetization Mk.
The definition of effective rates is the same as in the one-
dimensional case, i.e., Eq. (5.3). For the two-dimensional
case, however, we did not succeed to simplify the sum in
(5.3) and, hence, were limited to systems with up to 25
spins.

The infinite two-dimensional Ising model has a phase
transition at a critical temperature kT, =2.269 J. Below

T, the spins are oriented preferentially parallel. In the
field-free case no orientation is preferred and the expecta-
tion value for the magnetization vanishes. In a finite sys-
tem the transition is smeared out but can still be ob-
served. Below T, the all-parallel states are by far the
most probable states. But the other states are occupied
with some small probability and, on a very long time
scale, transitions from the all-up state to the all-down
state and vice versa occur. On the other hand the initial
relaxation process which aligns spins of different orienta-
tion takes place on comparatively fast scale. This
difference has been described by Stoll, Binder, and
Schneider in connection with a Monte Carlo simulation.
The [2,2] GME can resolve these different time scales. In
contrast to the Monte Carlo simulation the computing
effort does not increase when one of the time scales be-
comes slower and slower.

In Figs. 10 and 11 the relaxation times ~Iz z~ &
and

T[p p] p of the [2,2] GME for F(t) are shown as functions
of temperature. The relaxation time v.

~z z~ &
which can be

identified with the slow component of F(t) [Eq. (5.9)]
diverges as the temperature becomes lower, because the
barrier between the two quasiequilibrium states becomes
higher. ~~z z~ z corresponding to the fast phase also exhib-
its a slowing down near the critical temperature T, of the
infinite system, however, its value remains finite.

Next we consider the magnetization intensity correla-
tion function G(t). The very slow transitions between
the two all-parallel states do not contribute to G(t), and
the relaxation process includes the alignment of non-
parallel spins only. For this observable we tested the
GME by evaluating the operator e ' numerically and
computing the time evolution of the system by applying
e" ' to p(r'=0) successively. This can be done in the
2 X2 and 3 X 3 systems and results in an excellent agree-
ment with the [3,3] GME in either the full- or the
reduced-state space as shown in Fig. 12.

Finally we present in Fig. 13 for systems of different
sizes the temperature dependence of the mean relaxation
time r(, il of G(t) evaluated in the reduced-state space.
The critical slowing down of the relaxation near T, is
found to emerge already for the small systems studied
here.

10

CO

CO

CO

bO
O

10

The relaxation times for systems with N =3,4, 5 show
pronounced maxima at temperatures T (N) near the
critical temperature T, of the infinite system. The sys-
tems investigated appear to be too small to reproduce the
finite-size scaling behavior of T (N) discussed for the
specific heat by Fisher and Ferdinand and by Fisher.

VI. SUMMARY

We applied the generalized moment expansion (GME},
an approximation scheme for dynamical observables in
stochastic systems, to finite (size N) Ising models.

First we considered the one-dimensional Glauber mod-
el with transition rates (2.3) for 5=0. We demonstrated
the quality of our expansion by comparing the [3,3] GME
approximant to the spin autocorrelation function with an
exact expression, i.e., (2.14). We then considered transi-
tion rates for arbitrary 5 in the range —1&5&+1. We
identified a slow phase in the spin autocorrelation func-
tion for 5= —l. In this limit dynamical processes be-
come nonergodic.

For the magnetization correlation function we investi-
gated the critical slowing down of the relaxation process
near T=0. %'e found that the critical dynamical ex-
ponent z, known for the infinite system to assume the

2T. 10

AT (J)

FIG. 11. Same as Fig. 10, but ~~z» z instead of 'T[z z] I.

RT (J)
FIG. 10. Relaxation time rl, ,l, of the [2,2] GME in the re-

duced state space for the magnetization correlation function
F ( t) of an N X N spin lattice.
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value 2 (Ref. 8), takes on the same value for finite systems
rather independent of the size N. For a temperature-
dependent 5 as described by (4.11) we determined an ex-
ponent z =4. In the limit 5~ —1 a temperature-
dependent 5 yields also the exponent z =4, which in this
case arises from nonergodic behavior and appears only in
finite systems.

In order to study nonexponential Williams-Watts be-
havior of correlation functions we suggested a modified
expansion scheme based on the moments po, JM „and
p 2 of the exact correlation function, which directly
determines the Williams-Watts parameters a, r, and P.
For vanishing 5 as well as for 5 values not close to the
boundary of the 5 interval [—1,1] the spin autocorrela-
tion function was found to agree well with the Williams-

t (l./a)

FIG. 12. Comparison between the magnetization intensity
correlation function G ( t ) for 2 X 2 and 3 X 3 spin lattices evalu-
ated exactly and evaluated by means of [3,3] GME in reduced
and full state space.

Watts form (@=0.7, see Fig. 6}. Close to the boundaries
the relaxation process is characterized by nonergodic be-
havior with two very distinct relaxation times. The mag-
netization correlation function is found to be rather
monoexponential, i.e., P= 1, for most values of 5.

The numerical effort required for the GME method re-
stricts applications to systems with 16—25 spins, depend-
ing on computational resources. To extend this size limit
we introduced a coarse graining of the state space by col-
lecting spin configurations into subsets and neglecting the
detailed distribution in these substates. Choosing subsets
to collect all configurations'with identical magnetization
we reduced the dimension of the transition matrix from
2 to N + 1 and obtained accurate magnetization correla-
tion functions for larger systems except near 5=+1.

We finally applied the GME and the reduced state
space approximation to two-dimensional Ising models.
We determined magnetization (intensity) correlation
functions and, thereby, reproduced critical slowing down
in these systems.

In conclusion we like to remark on the possibilities to
increase the dimension of master equations treated by the
GME. Master equations are represented by sparse ma-
trices. The computational effort of the GME is mainly
determined by the number of nonvanishing matrix ele-
ments. The largest number of nonvanishing matrix ele-
ments treated in our examples on a minicomputer was
6&(10s. The storage of today's supercomputers (large
rapid access memory and solid state disks) allow one easi-
ly to increase this number by two orders of magnitude.
Also, the processing units in recent supercomputers are
well suited to solve rapidly the linear equations to obtain
the generalized moments. We expect that the GME will
be a valuable tool for the study of stochastic systems with
critical behavior.
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APPENDIX: EXACT SOLUTION FOR THE
SPIN AUTOCORRELATION FUNCTION IN

A FINITE RING

Glauber's derivation of the spin autocorrelation func-
tion (trk(t)o';(0) ) in the special case of vanishing 5 can
readily be generalized to finite rings of length N by modi-
fying one step in the original derivation. We will use the
same notation as Ref. 3 and start from Glauber's Eqs.
(60) and (61). Since we want to impose periodic boundary
conditions, we require ro(t) to be equivalent to rN(t)
Equations (60) and (61) are then to be replaced by

kT (J)
FIG. 13. Comparison of mean relaxation times ~~»~ of the

magnetization intensity correlation function G(t) for systems of
different size; G(t) has been evaluated in the reduced state
space.

d
r (t)= —2r (t)+y[r, (t)+r +,(t)]dat

for m &0, and

(Al}
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ro(t) = rlv(t) = 1 . (A2)

At equilibrium the left-hand side of Eq. (Al) vanishes.
To solve the resulting equation we set

equilibrium Eq. (A3) leads to a modification of Glauber's
Eq. (75)

N

(crk(t)o J(0) ) =e ' g g Ik &;N(yat)

(A3)

This solution meets boundary condition (A2) and satisfies
(Al) when s) is chosen identical with Glauber's original s),
namely,

I
J-l

I
&-

I
J-l

I

X N

(A5)

[ l ( l y2)1/2]1

y
(A4)

In the limit N~ 00 only the terms i =0 and i =1 contrib-
ute, and Glauber's results (75) is recovered

For the correlation function (crk(t)o;(0)) in thermal
(ok(t)o J(0))=e ' g It(yat )ri ~

"+' ' . (A6)
l = —oo
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