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A theory of multiple and inelastic scattering of relativistic channeled particles is developed

starting with relativistic quantum mechanics. We obtain general formulas for the local diffusion

function and local stopping power which enable us to calculate any type of inelastic scattering in-

cluding relativistic effects. By making use of these formulas, the diffusion function and stopping
power due to incoherent bremsstrahlung can be calculated. A simple formula for the local stop-

ping power due to incoherent bremsstrahlung is also presented.

I. INTRODUCTION

In recent years there has been growing interest in rela-
tivistic channeling phenomena. ' Especially radiation by
channeled electrons and positrons, bent-crystal channel-
ing, and crystal-assisted quantum electrodynamics have
been intensively investigated. In all these phenomena, the
effect of dechanneling5 becomes very important when we
try to make quantitative comparisons between theoretical
me&Is and experimental results.

A few authorss s have calculated the dechanneled frac-
tion of GeV electrons and positrons using the diffusion ap-
proximation. In these calculations, a set of phenomeno-
logical diffusion functions is introduced, but this is not
enough from the theoretical point of view. Since the most
important quantity of dechanneling is the mean-square
transverse momentum fluctuation of channeled particles
expressed as diffusion functions, calculations of the
dechanneled fraction are mainly affected by diffusion
functions. Hence, when we go beyond a simple estimation
of dechanneling effects, we should use reliable (non-
phenomenological) expressions of the diff'usion functions.
However, so far, there has not been any theory which
gives a rigorous definition of the diffusion function for rel-
ativistic channeled particles.

Recently, we have developed a quantum theory of
dechanneling and obtained a definition of the local
diff'usion function for nonrelativistic particles ' which is
given by

D; (R&) ge's 6 2(q;+g;/2) (q; —g;/2)
(2tr) '

Ss (q+ g J./2, q —g J./2),
n ~0)

(1.1)
where v is the particle velocity, q is the momentum
transfer, and g& is the reciprocal lattice vector of the tar-
get crystal. S„(Q,Q') represents the generalized inelastic
scattering factor defined by

S„(Q,Q') - H,„(Q)H„,( —Q')b(~e —E„&),
(1.2)

where H' is the interaction Hamiltonian between the pro-
jectile and the crystal. Using Eq. (1.1), we derived a set

of quantum diffusion functions and succeeded in explain-
ing the phenomenological phonon diff'usion function9 and
in revealing the quantum effect of target electron states
for the electronic diff'usion function. '0" We also succeed-
ed in proving that Eq. (1.1) reduces to the general defi-
nition of the classical diffusion function if we neglect the
quantum effect of the target crystaL '2 Thus, we now con-
sider that our quantum formulas are well-defined, and
that they are strong tools for solving dechanneling prob-
lems.

It should be noted that the definitions of the diffusion
function and stopping power should be consistently in-
cluded in the kinetic equation. Equation (1.1) was ob-
tained through the derivation of the Fokker-Planck equa-
tion starting with the Schrodinger equation. In the pro-
cess of the derivation, we used the Wigner distribution
function to link the quantum equation with the classical
stochastic equation.

Here we extend our quantum theory of dechanneling to
relativistic case. To do this, we should return to the basic
relativistic wave equation. If relativistic corrections in
quantum theory were only the mass correction, we would

easily get the relativistic quantum formula for the local
diffusion function from Eq. (1.1) with simple modifica-
tions. However, as we know, in contrast to the classical
equation of motion, the relativistic quantum equation is
not as simple as the Schrodinger equation. Indeed, the
negative-energy solution appears and, for Dirac particle,
the spinor effects. Therefore to obtain the relativisitic
quantum diffusion function we should start again with the
basic quantum wave equation. Besides these problems, we
should include the radiation field in our relativistic theory
because the effect of photon emission is very important for
electron/positron channeling, and also because retardation
effect becomes important for electronic excitation.

In Sec. II, we derive a Fokker-Planck equation for rela-
tivistic channeled particles starting with the Dirac equa-
tion. Definitions of the local diffusion function D(R&)
and the stopping power S(R&) are obtained as coefficients
in the Fokker-Planck equation. In Sec. III, we introduce
the generalized inelastic scattering factor S,"' (Q,Q';so)
in its relativistic form and connect it with the diffusion
function and the stopping power obtained in Sec. II. The
reader who is not interested in the rather complex and
tiresome derivation of relativistic Fokker-Planck equation
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can skip Sec. II and begin to read from Sec. III. Qur final
result of the relativistic diffusion function, Eq. (3.5), will
be intuitively accepted because it has a form of a natural
extension of the nonrelativistic formula, Eq. (1.1).

As an example of the calculations of our formula, we
derive an analytical expression of the local diffusion func-
tion due to phonon excitation, D t")(R~). We show that
the phenomenological D t")(R&) introduced by Beloshit-
sky and Kumakhov is clearly accounted for in our
present result.

The eff'ects of photon emission are considered in Sec.
IV. The channeled GeV electrons and positrons radiate
photons due to the potential caused by thermally dis-
placed target nuclei, which we call "incoherent brems-
strahlung. " The method developed here enables us to deal
with the local effects of incoherent bremsstrahlung which
one had been able to calculate only by the method of vir-
tual quanta. '3

Incoherent bremsstrahlung is the origin of the back-
ground of channeling radiation spectra, which can be
explained by the "local bremsstrahlung probability"
p

'
(k~, R~) introduced here. The diffusion function and

the stopping power due to incoherent bremsstrahlung are
also derived.

following equations:

H, Iq„&-z. Iq„&,

Hrad I Ni) a)xNi I Ni)

(2.2)

(2.3)

e2 Ze2

I I
— I'

Hp, +ea A(r),

(2.4)

(2.5)

where r, r;, and Rt are the position of the channeled parti-
cle, of the ith target electron and of the 1th target nucleus,
respectively. Z is the atomic number of the target nuclei.
We assumed that the charge number of the incident parti-
cie is ~ 1, which corresponds to the sign of Eqs. (2.4) and
(2.5). In this paper we use the Coulomb gauge and the
vector potential A(r) is written as'

A(r) g((2trlk~) ' e~a~e' ' '+c c ], . .

where p„ is the eigenfunction of the crystal and E„ is its
energy, and I N&) is the eigenvector of the radiation field
with energy coqNq in the number representations. The
interaction Hamiltonians Hp, (particle-crystal interac-
tion) and Hp, (particle-radiation field interaction) are
given by

11.DERIVATION OF A FOKKER-PLANCK EQUATION

In this section we derive a Fokker-Planck equation that
describes the kinematics of relativistic channeled parti-
cles. Though our purpose is to derive a well-defined for-
mula of the local diffusion function and stopping power,
derivation of the Fokker-Planck equation is not avoidable
because the definition of the diff'usion function and stop-
ping power should be consistently included in the Fokker-
Planck equation.

The theoretical method is an extension of the nonrela-
tivistic theory of dechanneling recently developed by one
of the authors. 9 In our present article, the channeled par-
ticles are treated as Dirac particles and the target crystal
is regarded as a nonrelativistic system. The radiation field
is considered because the interaction with the radiation
field becomes very important for the case of relativistic
electron-position channeling.

where k~, e~, and a~ are the wave vector, the polarization
vector, and the annihilation operator for the photon X.
For simplicity, we neglect the crystal-radiation field in-
teraction Hamiltonian H, , H, , is mainly related to the
retardation eff'ects of the excitation of target electrons.
These effects will be extrapolated to our formalism in Sec.
III. Neglecting H, „we can consider a system composed
of the crystal and the radiation field as a "reservoir" of
which the Hamiltonian Htt is given by Htt H„„+H„d.
Then Eqs. (2.2) and (2.3) are conveniently written as

H~ I a& -e. I a&,

where I a) and 8, are the eigenvector and the energy of
the reservoir in a state. Further, defining

Hp Hp+V, V (ypIHp, Iyp&,

H' (Hp, —V)+Hp „,
we can rewrite Eq. (2.1) as

A. Preliminary formalism Ht, t Hp+ Htt +H'. (2.6)

H fOt Hp +Hery +H re+ Hp —g +Hp —+Hg-

Hp is the Hamiltonian of the free particle (i1 I ),

(2.1)

Hp a p+pm,

where a and p are the Dirac matrices, '
p and m are the

momentum and the rest mass of the particle. H,~ and
H„,d are the total Hamiltonian of the crystal and the
Hamiltonian of the free radiation field, which satisfy the

We consider a system composed of a channeled particle,
a target crystal, and a radiation field. The Hamiltonian
for the systetn is given as follows:

i e(t) -H et(ot) . (2.7)

As mentioned above, we have assumed that the crystal is
nonrelativistic and use the Coulomb gauge. Thus our
theory does not have a Lorentz covariant form. This is

Since V represents the interaction between the channeled
particle and the crystal without the crystal excitations, V
can be regarded as the crystal potential for the channeled
particle. Thus Hp denotes the elastic motion of the chan-
neled particle and H' generates the stochastic forces
which perturb the channeling motion.

Let us now consider the wave function @(t) for the en-
tire system as a whole which satisfies the wave equation
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not serious since the dechanneling process should be de-
scribed in the coordinate fixed on the crystal. If we
decompose @(t) according to the Yoshioka theory'~ as

e(t) -gy. (x) I a)e (2.S)

then we get from Eqs. (2.6)-(2.S)

function.
First, we define a function by

g(x,x') -gyt(x') y.(x) .

Using g(x,x'), we next define a distribution function

g(p, e;R, T) by

with

t y.(x) -Hpy. (x)+QH.'p(x) yp(x),
t

H.', (x) -(a
I
H'I/j&e"", ~.p-~. -~~.

(2.9)

B. Distribution function

Now we introduce a one-particle distribution function
for the channeled particle. In this paper we assume that
the elastic motion of the channeled paticle is well de-
scribed by classical mechanics which is the case for pro-
tons, GeV electrons, positrons, etc. In this case the statist-
ical distribution of the channeled particle should be
characterized both by the position and by the momentum.
Thus we have to introduce the appropriate distribution

Here we have written the particle coordinate x (t, r) ex-
plicitly. In the above, we took the normalization condition
for our reservoir as (a IP) b,p. Equation (2.9) describes
the time development of the wave function of the chan-
neled particle which is exciting the reservoir into a state.
It should be noted that y, (x) is a four-component spinor.

y.(x) ~ ups. (r~, t)e'~*~ ~", (2.i i)

where L and p, p are the crystal length and the rarticle
momentum along the z direction; ep (p,p+rn ) t . up

up(pp, sp) is a spinor for the incident particle with spin

state sp, which includes a momentum operator p&p acting
on the transverse coordinate r~. However, since the trans-
verse momentum I p& I is very small compared to p, p, we

may neglect p&p. Hence up is determined by the initial
condition and we should average it over sp. Inserting Eq.
(2.11) into Eq. (2.10), we get

g(p, e;R, T) d4xe'~'g(X+x/2, X—x/2), (2.10)

where we used short-hand (collective) notations X (T,
R) and p (e,p). The scalar product p x is defined by
px et —pr.

Under channeling conditions, the wave function for the
channeled particle can be assumed to be transversely
bound in the field of the continuum potential and to be
free along the channeling direction. Thus we may take an
approximated expression as '

fO

g(p, eR, T) dt d r&e
'

e ' 'gy, (R~ —r~/2, T —t/2)y, (R&+r&/2, T+t/2)b~ ~, . (2.12)
a

Because of the plane-wave approximation along the z axis, g(p, e;R, T) is actually not applicable to describe the energy-
loss distribution for the channeled particles. It is not so serious because we concentrate ourselves on dechanneling prob-
lem and particle distribution in transverse phase space. It is well known that the dechanneling length is much smaller
than the stopping length, and so we can regard the energy-loss distribution as another problem.

If we expand p, (r~, t) as y, (r&, t ) ~+jet exp( —ie»t) and perform the integration over t, we get

b(e —
ap

—(e»+ e» )/2),

where e» are the transverse eigenenergy. Since ep»e», we may neglect the last term in the parentheses. Then the t
dependence of y, (R& -r~/2, T —t/2)p, (R~+r&/2, T+t/2) disappears. Hence we obtain from Eq. (2.12)

g(p, e;R, T) f(p&, R&, T)t2x8(e —ep)lap„p„,

where

(2.i3)

f(p&, R~, T) d r~e ' ' gy, (R& —r~/2, T)vp, (R~+r~/2, T) (2.i4)
a

is the Wigner distribution function' in the transverse phase space.
It is well known that the Wigner distribution function turns out to be negative in some regions of phase space. Howev-

er, it does not affect our problem because we do not use f(p&, R~, T) directly for the calculation of dechanneled frac-
tions. To obtain the dechanneled fraction, the distribution function in the transverse energy space F(E~, T) is used. The
Fokker-Planck equation for F(E&,T) can be derived from the Fokker-Planck equation for f(p&, R&, T) [see Eq. (2.24)]
by averaging it over R&, according to the theory by Beloshitsky and Kumakhov.

C. Fokker-Planck equation

Let us now try to derive a Fokker-Planck equation for the distribution function given by Eq. (2.13) or Eq. (2.14).
From Eq. (2.9) we obtain



38 DECHANNELING AND STOPPING PO%ER OF RELATIVISTIC. . .

ZYs(x2) ~ +
a rl r2

—[Hp(r)) —Hp(r2)] y g(x)) -g$[y. (x2)H.'. (x))y. (x() —y. (x2)H.'.(x2)y.(x()],

(2.i5)

where the arrows indicate the direction in which the
differential operates. Now we introduce the variables x
and Xby

X~+X2X X X] X2,

Next we consider the right-hand side of Eq. (2.15),
which represents the inelastic collisional effects between
the channeled particle and the reservoir. Since, in gen-
eral, the coupling between the channeled particle and the
reservoir is weak, we can use the condition

IO

4~ ~lp'z
J (2.i6)

and perform integrations and a spin-average operation / y. /
(( [ yp /

for a~o.
Then Eq. (2.9) can be approximated by

(2.1S)

We get from the left-hand side of Eq. (2.15),

8 + pl. 8
8T ym 8R

8U 8
8Rg 8pg

(2.i7)&f(p&, R&, T)b~,&„2mb(e —sp),

where y sp/m is the Lorentz factor and U(R~) is the
(thermal averaged) continuum potential;5

h

U(Ri) —„dZ V(Ri, Z) .

To derive Eq. (2.17), we used the identity u tau
=(p/ym)utu and assumed that the potential V(r) is
slowly varying in the r& plane.

—(a p+Pm+ V) y, (x) H,'p(x) yp(x) . (2.19)

(2.20)

with

G ( )
' d'p;, ., a+a p+Pm

(2x) 4 82 p2 m 2+&0
(2.2i)

By making use of Eqs. (2.18) and (2.20), the right-hand
side of Eq. (2.15) leads to

Further, assuming that the channeled particle can be well

described by a plane wave at each individual collision, we
can approximately express a formal solution of Eq. (2.19)
in terms of the relativistic free Green's function Gp(x);

y.(x) -„d'x Gp(x —x')H~(x') yp(x'),

d x3~/IJ(x3)Hp, (x3)G)(x2 x3)[H,'p(x2) H~(x])]y/p(x])
a ~0)4

+ g „d xs yj(x2)[Hp»(x)) Hp~(x2)]Gp(x) -xs)H~(xs)yp(xs),
a(eo)

(2.22)

Qo,

where GJ(x) is the complex conjugate of Gp(x). Performing the operating Eqs. (2.16) to (2.22), we obtain after some
manipulations (see Appendix A)

i P„+S„„gp(p,s,R,T), (2.23)
P» P» P»

where p» (a, —p) is a covariant four-vector, and the repeated indices p, v are summed. gp(p, a,R, T) is a function which
corresponds to Eq. (2.12) but is composed only of the coherent wave yp. The coefficients P», $»„are defined as

H' + H'
P»~ —,

' g— dz d xe' "uj '' Gp(x)H~(X —x/2)+Hp (X+x/2)G(f( —x)

' ~1 d d, )8H,.(X+ /2)
[ ( ) )( )]8H' (X—/2)

2„&" 4 . pi 8X» 8X"

where X" (T,X,Y,Z). P» and $»„can be interpreted as a four-momentum damping vector and diffusion functions. If
we further compute P» and $»„we get local stopping power (Pp), local diffusion functions (S;;),and so on (see Appen-
dix A). Though we have used the plane-wave approximation along the z axis [Eq. (2.11)],Eq. (2.23) formally includes
the energy loss. It is not strange, however, because Pp describes the mean energy gain of the reservoir. As the conse-
quence of the crystal excitation or photon emission, we can get the stopping power in spite of the assumption of constant
velocity of the channeled particle (ap, pp, are constant). This situation is very similar to the calculation of the local stop-
ping power by the impact parameter method. Indeed, we can show that our stopping power formula is equivalent to the
formula by the impact parameter method. 's It should be noted that the difference between these relativistic kinetic
coefficients and the nonrelativistic ones9'p is only the spinor factors.

Now we derive a Fokker-Planck equation which describes the multiple scattering of the relativistic channeled particles.
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Combining Eqs. (2.17) and (2.23), and integrating over e and p„we obtain
r

a+pi a
8T ym 8R&

2 2
[U(R&)+C'(Rz)]' f(p&, R~, T) g '

2 f(p&, R&, T) (p x,y),
J. pg 2kT Qp;2

where (Ap; /2AT) is the relativistic local diffusion function per unit time. In the above, we neglected the damping terms
and the cross terms (S,», etc.) and approximated that go(p, e,R, T) =-g(p, e,R, T). C'(R&) is the polarization potential
due to virtual excitation of the reservoir. For MeV electrons and positrons, of which their quantum levels are well
defined, the polarization potential will become important because it will give the line shift of channeling radiation spec-
tra. For GeV electrons and positrons, it will give small corrections to the continuum potential and may be neglected.

Equation (2.24) is the same Fokker-Planck equation from which Beloshitsky and Kumakhov developed a classical
theory of dechanneling for relativistic electrons. However, as we pointed out in Sec. I, their theory did not give diffusion
functions from fundamental approach.

III. DIFFUSION FUNCI ION AND STOPPING POWER

A. General formulas

We shall now discuss general definitions of the local diffusion functions and the stopping power.
The local stopping power per unit length S(R&) can be obtained from Po (see Appendix A);

S(R ) 1 58 x gg dZ d3 d3p —(p, —p).

v hT vLr, g4 4 4 (2~)3

8 0u JHD (R+r/2)uutHeo(R-r/2)uob(so ep-re 0), (3.1)
a Wo)

where v po, /ym is the velocity of the channeled particle. For reasons of convenience we introduce the generalized in-
elastic scattering factor S,t"'~ (Q,Q';so) defined as follows:

S.'""(Q, Q';so) ggu(]HO, (Q)uu tH~( —Q') uob(he —8,0),
Sp S

where

(3.2)

Ho, (Q) d Re '1' Ho, (R),
b(he-8, 0) means the energy conservation for the reservoir excitation energy C~, and V, is the volume of the unit cell.
Equation (3.2) is just an extended form of nonrelativistic generalized inelastic scattering factor S(Q,Q'). 5 9'0 Using Eq.
(3.2), Eq. (3.1) can be easily transformed to

R 1 'd3
S(R~) ~pe' '' '— g OS

t e ~ (q+gz/2, q —gz/2 so)
~ v 2K a wo)

(3.3)

2 e

v 25T 2vL „,4 " " (2x)

uj[V;HD, (R+r/2)]uu t[V;H,'0(R —r/2)]uob(so —ep —4„).
a ~O)

(3.4)

where g& is a two-dimensional reciprocal-lattice vector and q is the momentum transfer. It is worth noting that the ran-

dom stopping power formula can be exactly obtained from Eq. (3.3) by only taking the term g& 0 (i.e., the average
value over R&). The nonrelativistic formula similar to Eq. (3.3) has been already presented in Refs. 9 and 18 which

gives the same expression as the electronic stopping power by Esbensen and Golovchenko. '9 Using Eq. (3.3), we can get
a local relativistic stopping power due to electronic excitation. It should be noted that the impact parameter method can
hardly give such a local relativistic stopping power, because this method is not able to include the spinor effects.

As shown in Appendix A, the local diffusion function Eq. (2.26) is explicitly given as follows:

In the classical theory of dechanneling, the diffusion functions are proportional to the mean-square fluctuation of force.
Equation (3.4) corresponds to such classical expressions since D;(R~) is determined by V~HO, V~H,'0 which can be inter-
preted as a transition-matrix element due to "force fluctuation. " Equation (3.4) can also be expressed in terms of
S (rel) (Q Q~. ).

D;(R~) ge' '

3 (q;+g;/2)(q; —g;/2) S,"' (q+g~/2, q
—g&/2;eo) .

S~
(3.5)
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Therefore, to obtain a diffusion function and/or stopping
power for a certain inelastic scattering process, all we

have to do is to calculate the corresponding inelastic
scattering factor.

Typical fundamental processes which cause to inelastic
scattering under relativistic channeling conditions are di-
agrammed as in Fig. 1. Diagram (a) shows the static in-
teraction between the channeled particle and the crystal
which corresponds to the phonon excitation and the elec-
tron excitation. The phonon excitation process contrib-
utes only to diffusion and does not contribute to energy
loss, because the phonon energy is negligibly small in our
problem. Diagram (b) shows the excitation of the target
electrons including retardation eff'ects. The retardation
effects partly come from H, „which was neglected in our
formalism. However, as mentioned in Sec. II, we should
also consider these effects for ultrarelativistic
electron/positron channeling. Diagram (c) represents in-

coherent bremsstrahlung due to the thermally displaced
potential, which will be important both for diffusion and

energy loss of electron/positron channeling. Naturally,
there are other processes which can be represented by
higherwrder diagrams, such as bremsstrahlung by target
electrons. Such higher-order processes may increase their
importance when more delicately designed experiments
are performed. However, at present, it is sufficient to con-
sider just the processes shown in Fig. 1 for our dechannel-
ing and/or energy-loss problems.

I

0 p, 0 p, 0

(a) (b) (c)
FIG. l. Inelastic scattering processes of relativistic channeled

particles. The solid lines correspond to the incident particle.
The twin-solid lines show the crystal state. The dotted lines and
the wavy lines represent the static Coulomb interactions and

photons, respectively.

Since S,"' (Q,Q';go) given by Eq. (3.2) only describes
the first-order perturbation, this expression is not applic-
able to the processes shown in Figs. 1(b) and 1(c). To
calculate these processes, we have to extend
&,"' (Q,Q';so) up to the second-order perturbation. The
second-order formula, S,'("')(Q,Q', ao), can be expressed
by a similar formula to Eq. (3.2) if we introduce the
"compound matrix element" K,o(Q) (see Appendix 8);

~ d3p' H~p(p p )u u Hpp(p po)

(2)r) ' ~, p «o) so —
gg

-
@go

Then S'("')(Q, Q';go) is given by the formula

(3.6)

(3.7)S'(""(Q,Q';go) - " ggu(|Ko. (Q)uu tK~( —Q')uob(ag —8.o) .
Sp S

It should be also noted that S'("')(Q,Q;go) becomes the usual second-order transition probability per unit time. A de-
tailed calculation of Eq. (3.7) for the incoherent bremsstrahlung process will be given in the next section.

B. Phonon diffusion function

Here we show a calculation of phonon (nuclear) diffusion function D (")(R&)using the general formula derived in Sec.
III A. Within the Einstein model, the interaction Hamiltonian H' is given as

V (r —bR) —«V (r —bR))), (3.8)

where V, (r) is the atomic potential and bR is the thermal dis lacement of the target atom. In the above, we replaced the
ground-state average &((o~ (' ' ' ) ~()o& by the thermal average & &&. Inserting Eq. (3.8) into Eq. (3.2), we obtain

S.(")(q+g~/2, q
—g, /2;go) -2' V.(q+g~/2) V.(q —g~/2)

x( -M(g ) —hr(q+g /2) — (q —g /2)) gg( ) t )~( )
Sp S

(3.9)

where V, (Q) is the Fourier component of'V, (r), exp[ —M(Q)] is the Debye-Wailer factor, and N is the atomic density
of the crystal. As can be seen, the difference between the present form and the corresponding nonrelativistic form is just
the spinor factor. This spinor factor is easily calculated as

—,
' g g(u(tuu 'uo) =-1 —

q '/4Q.
Sp S

The term —
q /4@ represents the spinor effects. However, under channeling conditions, we may take as q « gII because

the momentum transfer
~ q ~

is much smaller than the incident momentum. Thus the phonon diffusion function becomes
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the same form as the nonrelativistic formula and can again be expressed by the simple formula'

D " (R~) =Dg p(R-~)+pDI. (Rg),
where Dx pa-nd DL are the formula of Kitagawa-Qhtsuki ' and the formula of Lindhard:22

Dx p(R&) D,»a, mP(R&), DL(R&) =
2 p~ 2

U'(R&) +U '(R&)
v Rg

where

(3.10)

P(R&)-
z exp —

3

r$ R~

Pi , Px

is the distribution of the thermally vibrated target atom in the transverse plane. p&, d, and rp are the two-dimensional
mean-square amplitude of the thermal vibrations, the interatomic distance of a channel string, and the channel radius,
respectively. D„„s, is the diffusion function for a random material which should be suitably chosen for relativistic
case. Equation (3.10) includes a parameter p which will be approximately taken as unity. Our result Eq. (3.10) is con-
sidered as an extended form of the expression proposed by Beloshitsky and Kumakhov for relativistic channeled elec-
trons ' on the basis of phenomenological discussions, as mentioned in Sec. [.

IV. DIFFUSION FUNCTION AND STOPPING POWER DUE TO INCOHERENT BREMSSTRAHLUNG

In this section we calculate the diffusion function and the stopping power due to incoherent bremsstrahlung in detail. 23

The incoherent bremsstrahlung processes [Fig. 1(c)] becomes important for high-energy electron-positron channeling.
Indeed, this process gives the background of channeling radiation spectra, and contributes to the energy loss of electrons
and positrons. In the present article we do not consider bremsstrahlung due to electronic collisions but concentrate our-
selves on bremsstrahlung by thermally vibrated target nuclei.

For the incoherent bremsstrahlung process, the compound matrix element Kp, (Q) defined by Eq. (3.6) is composed of
Hamiltonians Eqs. (2.5) and (3.8). Hence it becomes

I gt I lt

Kp, (q+k~) + e(2z/k~) ' Hp„(q+kq) g + (4.1)
~ s' Sp ep0- ks En p ep ep+)rq

where the initial state 0 represents that the crystal is in its ground state without photons, while the final state a is that the
crystal is excited in n state with a photon k&. It should be noted that, in addition to the process in Fig. 1(c), Eq. (4.1) in-
cludes another process that the particle emits a photon before a collision with a target nucleus. Neglecting the recoil en-

ergy of the nucleus E„p, we get the inelastic scattering factor for incoherent bremsstrahlung:

S„g,(q)„+g~/2, q)„—g~/2;ep) - Hp„(q+ k&+g~/2)H„'p ( —q —k&+ g~/2) x [spinor part] b(8p 8~ —q —),& k$),(,) (2ze) '
C

(4.2)

where

~ (uju')(u'te~ Nu) ~ (use~ au')(u'tu)
spinor part

sa s ~ s' ep 8p0-)rz ~ s' ep ep+)rz

is identical to the ordinary spinor factor in the celebrated Bethe-Heitler bremsstrahlung cross section. Then the stop-
ping power and the diffusion function can be obtained by using Eqs. (3.3) and (3.5);

S ' (R~)-ge'8 — g k& S ' (q+k&+g&/2, q+k& —g&/2;ep),
i Rl'd&de

I~

d3kD"'(a.) -ge".".— ' g ' (q'-g'/4) S.'4,'(q+k, +g./2, q+k, -q./2;e) .
v " (2sr) ~ ~ (2n) ~p)

(4.3)

(4.4)

We can also obtain a "local incoherent bremsstrahlung probability,
"

3k

p
' (k~, R&) 3

ge' —
J 3 S„(,(q+k&+g&/2, q+k~ —g&/2;8p)

(2x) ss. v (2sr) n ssp) 2x 3' (4.5)
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which is a probability for the emission of a photon k& per unit length at position R~. Equation (4.5) includes a factor

H0„(q+ k, +g ~/2)H„'0( —q —k„+g~/2),

which is just the same factor appeared in S " (Q, Q';e0) [see Eq. (3.9)], and becomes

V ( +1 + /2)V ( +k /2)( -m(s ) -m(e+4+s, /r) -m(s+(, -s /z))

Inserting this factor into Eq. (4.5), we get

p '
(k&,R&) -ge' ' —

3 V, (q+k&+g&/2)V, (q+k& —g&/2)

x(e s' —e ~ ' s' e ~ ' s' )[spinor part]b(e0 —
es, -z —)r,

—
k),). (4.6)

Since the analytic form of [spinor] is given in textbooks, the numerical calculation of Eq. (4.6) is straightforward.
However, here we try to derive a simple analytical form of Eq. (4.6). Since the Debye-Wailer factors in Eq. (4.6) be-
come small when )g& ( & I/p~, the main contribution to the summation over g~ comes from )g~ ( & I/p~. Then, for the
largemomentum-transfer region, (g& [ & I/p~ or (R&( & p&, wecan neglect the second term in the parentheses and the
g& dependence of V, (Q) in Eq. (4.6). Thus we approximately get from Eq. (4.6),

p ' (k~,R~) =-ge' 'e ' —
3 ~ V, (q+k)„) ~ [spinor part]b(~ —

es, —
q

—)„—k~) p„„'jomP(R~),

(4.7)

where p„b„'d, is identical with the well-known Bethe-
Heitler bremsstrahlung probability per unit length. '

From this formula we can see that the spectra, which cor-
respond to the background of channeling radiation spec-
tra, have similar energy profiles to the random incidence.
Such a behavior of p

'
(k~, R~) agrees well with experi-

mental results. ~ It is worth noting that the incoherent
bremsstrahlung probability has temperature dependence
through the Debye-Wailer factors [Eq. (4.6)] or P(R&)
[Eq. (4.7)]. For an estimation of background spectra, we
introduce a ratio of p(b')(k&, R&) to p(b' (k&)„„d, by

p '(kR)
p (4)random

In general, I depends both on k~ and on R~. However, if
we use the approximated formula, Eq. (4.7), I becomes
equal to P(R&). For plannar channeling cases, P(y) has
a value —10 near the atomic planes. Thus the back-
ground spectra for electron channeling radiation become
larger than the radiation spectra for random incidence be-
cause the distribution of impact parameters of channeled
electrons is peaked at the atomic planes. These effects
have been also observed by experiments. On the con-
trary, the background spectra for channeled positrons are
greatly suppressed because their impact parameter distri-
bution is peaked at the middle of the channel.

Next we derive a simple formula of the local stopping
power due to the incoherent bremsstrahlung. Substituting
Eq. (4.5) for Eq. (4.1) we can rewrite S(b')(R~) as

where S„„d, is the Bethe-Heitler bremsstrahlung stop-
ping power for random materials. For the extreme rela-
tivistic particles, S„„'d,m becomes'

Sran'g)om ~4Ne0[ln(183Z ' )+2/9]y,

where

Z 2 e 2

137 m

Equation (4.9) will be useful for the estimation of the en-
ergy loss of channeled electrons. It should be noted that
the diffusion function D (b')(R&) will also be expressed by
a formula like that of Eq. (4.9);

(4.10)

Finally, we point out that the exact numerical value of
Eq. (4.9) will be similar to that of the phonon diff'usion
function D(")(R~). Thus the more accurate form of the
approximated formula of S( ")(R~) should include the
"one phonon part" as in Eq. (3.10), which becomes im-
portant in the region R~ &&p~. Since, however, in the re-
gion R~&&p&, the real screened atomic potential cannot
give a sufficient momentum for electrons, its contribution
to S(b')(R&) will be negligibly small compared with the
contribution from the region R& ~pj. Thus we consider
that the simple formula Eq. (4.9) will be sufficient for
qualitative discussions.

d kS"'(R.)-+,4p"'(4, .)
(2x)

If we substitute Eq. (4.7) into Eq. (4.8), we obtain

(4.8)

(4.9)

V. CONCLUDING REMARKS

We have developed a dechanneling theory for relativis-
tic Dirac particles. General definitions of the local diffu-
sion function and the local stopping power are obtained
which enable us to calculate various types of local
diffusion function and/or local stopping power from the
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first principle (without phenomenological assumptions
which have been used previously). As an example of cal-
culation, we derived the nuclear (phonon) diffusion func-
tion. Our result gave a theoretical basis for the phenome-
nological estimate by Beloshitsky and Kumakhov.

The present theory also includes the interaction be-
tween the channeled particles and the radiation field. The
local stopping power and the diffusion function due to in-
coherent bremsstrahlung are derived, and a simple formu-
la for the stopping power is obtained. Our formula ex-
presses the intuitive prediction by Beloshitsky and Trikali-
nos:s "The bremsstrahlung energy loss on nuclei may be
calculated with the Bethe-Heitler formula averaged over
the atomic density distribution in the channel analogous
to the multiple scattering from the thermal vibrations. "

There still remain to be considered some local diffusion
functions and local stopping power. In particular, the
electronic diffusion function including the retardation
effects should be derived because the electronic diffusion
function has an important role in the dechanneling prob-
lem for all kinds of relativistic charged particles.

Finally, we note that our analytical expression of the lo-
cal bremsstrahlung probability [Eq. (4.7)l and the stop-
ping power [Eq. (4.9)l are simple estimates; therefore to
obtain additional quantitative information on the local
stopping power and the radiation probability, we should
perform rigorous (numerical) calculations of Eqs. (4.6)
and (4.S).

ACKNOWLEDGMENT

The authors thank E. Tamura and S. Namiki for valu-
able discussions.

APPENDIX A

Here we derive Eq. (2.23). First, we compute the
second term of Eq. (2.22). For simplicity, henceforth we
omit the four-dimensional notation from the variables.
Using Eq. (2.11) and expanding Hp„(xq) around x(, we
get

~' dx3 yJ(xq) [Hoa (x() Hoa (xz) lGp(x( —xs)H,'p(xq) yp(xq)
~ ~p)4

8 H().(x()
(xg —x))™dxg u(t

'
Gp(x) —xs)H~(xs)upg, (xg,xg) .

m-) m! ~o) 8x)

If we denote that

(Al)

(m) |1 Ho. (x))
A (x(qx3) uII Gp(x) xg)H~o(xg)up

o +0) 8x)

and rewrite functions of x and x' as

f(x,x') -f(x —x'~ (x+x')/2)

and then multiply (Al) by exp(ipx) and integrate it over x, we obtain

fO

dx e'&"g(g)) dxe'P" g ( —x)4 4
~ m! 4

X&+X3 X3+XP
gP X3 XP (A2)

where 7'(A) ) represents Eq. (A 1 ). By using an identity

'm
dxe')"x f(x)- i—

4 dx e'I"f(x),

and the Taylor expansion, Eq. (A2) becomes

a
00 oo oo m

7(~~)- Z Z Zm-) k-oI-o m!k!I! Bp

' m

dx e'~' dx4 4 3
X3 XP

2

'k'
X3 X&

2

gk I»Xk 1 3 , gp(x~ —x~~X) . (A3)

Since gp(x ~
X) is a very slowly varing function of X, we may neglect the terms which satisfy 1 = 1. Further, taking the

low-order terms which satisfy k+m ~ 2 (this approximation corresponds to an assumption that the space-time correla-
tion of the interaction between the particle and the reservoir is swiftly damped), Eq. (A3) becomes convolutional in-
tegrals over xq. Hence, using Fourier transformation, we obtain
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7 (A3) —t
8Hp. (X+x/2)dxe'»'" uI|

'
Go(x)H~(X —x/2)up gp(p&)I ~0)

O'Hp. (X+x/2)+—
&

dxe'»' u(t 2 Go(x)H o(X x/2)uop," a ~p) 8X2

+ l 8, , t 8Ho. (X+x/2) 8H~(X—x/2)
2 ap ~ ""..»"'

s

g()(p~)

8' ', , 82Ho. (X+ /2), dxe' u(t 2 Go(x)H~(X —x/2)u() go(p~)

8Hp. (X+x/2)
dx e'»' u(t Gp(x )H~ (X-x/2) up.~o) 8X

+1;,aHp (X+x/2) 8H' (X-x/2)

gp(p&)

&n the above, since Go(x) has a sharp peak at x 0, we assumed that the factors which include Gp(x) to be almost in-
dependent of p. Performing the same manipulations to the first term of Eq. (2.22) and combining it with the result in the
above, we get

s

I +
i dx e'»' u(l Gp(x)H,'()(X—x/2)+H('), (X+xl2)GI|(—x)

a ~0) t, ) 8Hpa(X x 2
~ ( ) )( )i

8Hap(X x 2

Averaging Eq. (A4) over Z and the initial spin state sp, we obtain Eq. (2.23):

dZ q g'7(A4) ~l P» +9»» gp(pg).
$0 P» P» P»

To calculate P» and $»„further, we use the expression
lO d3

Gp(x) ie(t) —
3 guu te ' '"+i8(-t) 3 gvv te'»'",

(2sr)' s (2sr)' s

a
up gp(p+)

p

82up, gp(p&) .

(A4)

(AS)

where v v(p, s) denotes a negative energy solution. Because of our assumption that the coupling between the incident
particle and the reservoir is weak, the final state of the particle will be in a positive energy state. Thus we neglect the neg-
ative energy solutions of Gp(x).

For example, let us compute Pp..
s

t + H' — 2
Pp —,

' g— dZ d xe'»' u(I
' Go(x)H~(X —x/2)+Ho, (X+x/2)GJ(-x)

Noting that

8Hpa (X+x/2) . q I i eaa(T+ll2)

and an identity that

8 OO 1
dt e'"8(+ t )-~ iP +srb(e), —

we obtain
ls 9 3

9 —'gg — dZ d r e' & & ' C~u)Hp, (R+r/2)uutH~(R —r/2)uo. 2stb(e —e —C,o).
s, s L (2z)' a ~0)

Computing other coeScients, we finally obtain
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where

1
' '

r
' S p —t«, —r),

~
«JHo. (R+r/2)««Hu(R —r/2)««

a ~ L " " " (2ir)3 .~p) ep
—

ep
—e.p

d3
dz d r

3
e

' C,pujHp, (R+r/2)uutH~(R —r/2)up 2srb(so ep |a p),
(2sr)3 .~p)

'
r

(
&p i ~~ 1 3 d p —i(p, -i,).r p 11Hpa(R+r/2)--—Z.Z- — dz d r 3e ud

2 sa ~ L" " " (2sr)3 a ~o), 8R
uu tH,'p (R —r/2)

t 8H.'p (R —r/2)

x uo 2srb(eo —
ep

—Cao),

dZ d r e
' ' 8 pu(|Hp, (R+r/2)uu tH'p(R —r/2) uo 2&b'(ep ep @ o),

s&i~PJ i gg 1 'dZ
'

3
' d p -i(p, -p) r~ ~

~

4 4 (2~)3

&Hoa (R+r/2)
x u

az,

In the above, we used an identity of b function;

t 8H,'p (R —r/2)

a~,
up 2sr8(ep —

eo
—g,p) .

f(x)i)(x —x()) -f(x())b(x —xp),

and neglected the coefficients Sp; and 8;p. As explained in Sec. III, (t)e/t), T) and (t3p; /2AT) represent the stopping
power and the diffusion function per unit time, respectively.

APPENDIX B

The derivation of the compound matrix element 1(Cp,. The iterated expression of i)i, (x) up to the second order is

it .(x) —= d'x'Go(x —x')H,'o(x') i)so(x')+ d'x' d'x" G(i(x —x') H.'s(x')Gp(x' —x ")Hpp(x ")i)so(x ") . (B

The second term of the right-hand side of Eq. (81) represents the second-order interaction. Let us consider the factor

„d4x" H.'ts(x')Gp(x' —x")Ht/p(x")itrp(x") .
p ~0)

The relativistic Green s function Gp(x) given in Eq. (AS) can be rewritten in the form

(B2)

dG(i-+ie(~t)g ~ uute '+e'i". (B3)~s" (2sr)3

It should be noted that ez and p take negative values for the negative energy states. By using Eqs. (2.11) and (B3), Eq.
(B2) becomes

d4x" H,'ti(x')foie[~(t' —t")]1,guute '+" ' e't' ' ' Ht' p(ri")e' ~'
p~p) 4 (2sr)3 ~s

upe'~'e '~
((ppr ~t") (B4)

Since Gp(x' —x") has a sharp peak around t'=t ",we can take vsp(t ")out of the integral over t" in Eq. (B4) and get

3

d 3 rr d p ~ ap«» u nO«) lCrrar ip (r' —r") 1 /'Sa rlrrar' '( r r) ( r) ( r)
2sr + s'p ~o) ep ep )6 I.

where we defined

3 rf&b
3 r d p ~ Hap(r)u u Hie(r ) i(p —p&). (r —r') i@~i

(2sr)3 ~.p ~p)

(BS)

(B6)
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If we insert Eq. (B6) into Eq. (Bl), we obtain

9r, (x) „d x'Go(x —x')H,'o(x')yo(x')+ d x'Go(x —x')K~(x')lvo(x').

Thus we can conclude that if we want to take account of the second-order inelastic scattering effects, we only have to sub-
stitute K,o for H~ in the first-order expressions. Since K,o(x) K,o(r) e we get K,o(q) by the Fourier transforma-
tion.

Present address: Department of Physics, Tokyo Gakugei Uni-
versity, Nukuikita-machi, Koganei-shi, Tokyo 184, Japan.

Relatioistic Channeling, edited by R. Carrigan, Jr. and J. El-
lison (Plenum, New York, 1987).

2Coherent Radiation Sources, edited by A. W. Saenz and
H. Uberall (Springer-Verlag, Berlin, 1985).

R. Carrigan, Jr., in Ref. 1, p. 339.
4J. C. Kimball and N. Cue, Phys. Rep. C 125, 69 (1985).
5Y. H. Ohtsuki, Charged Beam Interactions with Solid (Taylor

and Frances, London, 1983).
V. V. Beloshitsky and Ch. G. Trikalinos, Radiat. Eff. 56, 71

(1981).
~V. V. Beloshitsky and M. A. Kumakhov, Zh. Eksp. Teor. Fiz.

82, 462 (1982) [Sov. Phys. JETP 55, 265 (1982)].
sV. A. Muralev, Phys. Status Sohdi B 11$, 363 (1983}.
9H. Nitta, Phys. Status Solidi B 131,75 (1985); H. Nitta, Ph. D.

thesis, University of Waseda, 1987 (unpublished).
Y. H. Ohtsuki and H. Nitta, in Ref. 1, p. 59.
H. Nitta, Y. H. Ohtsuki, and K. Kubo, Phys. Rev. B 34, 7549
(1986).
H. Nitta, S. Namiki, and Y. H. Ohtsuki, Phys. Lett. 128A,
501 (1988).

~3R. Wedell, Radiat. Eff. 3$, 165 (1978).
~4W. Heitler, The Quantum Theory of Radiation (Clarendon,

Oxford, 1954).

~5H. Yosihoka, J. Phys. Soc. Jpn. 12, 618 (1957).
A. W. Saenz, A. Nagl, and H. Uberall, Nucl. Instrum.
Methods Phys. Res. Sect. B 13, 23 (1986).

7M. Hilley, R. F. O' Connell, M. O. Scully, and E. P. Wigner,
Phys. Rep. 106, 121 (1984).
S. Namiki, H. Nitta, and Y. H. Ohtsuki, Phys. Rev. B 37,
1448 (1988).
H. Esbensen and J. A. Golovchenko, Nucl. Phys. A298, 417
(1978).

2oY. Yamashita, Phys. Lett. 104A, 109 (1984).
2~M. Kitagawa and Y. H. Ohtsuki, Phys. Rev. B $, 3117 (1973).

J. Lindhard, K. Dan. Videnski. Selsk. Mat. -Fys. Medd. 34,
No. 14 (1965).
Recently, J. U. Andersen presented a theory of incoherent
bremsstrahlung for MeV electrons (J. U. Andersen, in Ref. 1,
p. 163}. The important differences between our theory and
Andersen's theory are as follows: In our theory, the in-

coherent bremsstrahlung effects are characterized by the local
coordinate R, and the channeled electrons are considered as
Dirac particles. This is in contrast to the work by Andersen.
M. Gouanere, D. Sillou, M. Spighel, N. Cue, M. J. Gaillard,
R. G. Kirsch, J. C. Poizat, J. Remilleux, B.L. Berman, P. Ca-
tillon, L. Roussel, and G. M. Temmer, Nucl. Instrum.
Methods 194, 225 (1982).


