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Using a recently proposed quantum Monte Carlo technique, we consider moment formation and
magnetic properties of the symmetric Anderson-impurity model for a wide range of parameters and
temperatures. We parametrize the general behavior, determining the approach towards universality
and establishing the range of validity of various approximations.

I. INTRODUCTION

The Anderson-impurity Hamiltonian,'

H= E gkcIacka+ E Vk(clada +d3cka)
k,o k,o

+€4 3 ngo+Unging, , (1)

has been widely used to describe impurity magnetic prop-
erties in metals. In this Hamiltonian, the ¢,,’s refer to
conduction-electron states; the d,’s refer to impurity
states; the g, ’s are conduction-electron energies; the V,’s
refer to hybridization between conduction-electron and
impurity states; €, is the energy of a singly occupied im-
purity level; U refers to the Coulomb repulsion between
two opposite-spin impurity electrons; and we assume that
the impurity states have no orbital degeneracy. We will
consider in this paper the particle-hole-symmetric case of
this model, €, + U =0, which is the most favorable for
the formation of an impurity magnetic moment.
Through the use of the Schrieffer-Wolff transformation,?
which maps the Anderson impurity into a Kondo spin-
impurity model, we expect similar results for the case of a
well-developed impurity moment or for the almost-
symmetric case.

The impurity magnetic susceptibility properties of the
Anderson Hamiltonian have been explored numerically
by renormalization-group techniques at finite tempera-
ture® and by Bethe-ansatz techniques at zero temperature
and numerically at finite temperatures.“‘6 However, the
formation of the impurity moment has not been quantita-
tively considered using either technique, and only a limit-
ed number of finite-temperature susceptibility graphs
have been published.>® It is thus the purpose of this pa-
per to explore and parametrize the local-moment forma-
tion and susceptibility properties of the Anderson-
impurity model in more detail than has previously been
done.

We begin by discussing a recently proposed Monte
Carlo technique’ which gives essentially exact results for
interacting impurity systems. We then present magnetic
susceptibility and local-moment results for a wide range
of parameters, comparing our data with the universal
Kondo curve and also with high-temperature perturba-
tive expansions. We next consider the maximum values
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of the local moment and of the “effective moment” TX,
where X is the impurity magnetic susceptibility, and com-
pare them with zero-temperature Hartree-Fock predic-
tions. Lastly, we consider the effect of band structure on
local-moment development, and conclude with a discus-
sion and summary.

II. TECHNIQUE

We will discuss the technique as applied to the single-
impurity Anderson model, although it is generally applic-
able to any system of electrons where part of the degrees
of freedom describe interacting electrons and part nonin-
teracting ones. It is also applicable in the limit where all
electrons interact, as the single-band Hubbard model, al-
though in that case it is usually less efficient than a relat-
ed approach developed by Blankenbecler, Scalapino, and
Sugar (BSS).® The basic idea of our approach is that in
the Monte Carlo simulation it is sufficient to keep track
of only the Green’s function for the interacting degrees of
freedom, provided its full imaginary-time dependence is
kept. Conversely, in the BSS approach the Green’s func-
tion for all degrees of freedom is needed (interacting and
noninteracting), but only for equal times.

We write the single-impurity Anderson Hamiltonian as

H=H0+H1 » (2)
where
Ho—_— 2 Ekclacka+ 2 Vk(clada+H‘c‘)
k,o k,o
+ €d+—q ano (3)
2 o
and
H =Ul[nging —3(ng1+nq,)] . @

More generally, H, would contain only bilinear terms in
the Hamiltonian, and H, all interaction terms. We write
the partition function as’

Ile

L
Il e
I=1

—AfHy+H,)
Z=Tre PH=Tr o

~

—ATH, —ATH
Oe 1

=Tr , (5)
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with A7=B/L. The interaction terms in H, are then el-

iminated by introducing auxiliary Ising variables!®

exp{ —AtU[nn —L(ny+n )]}
=1Tr,{exp[Ao(n;—n )]}, (6)

where coshA=exp(A7U/2). This brings the Hamiltoni-
an to bilinear fermion form in a 7-dependent {o,} field,
where 7, =1AT.
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I 0 0 e —(AT)K e Vf
—e—A7K, Vi I 0
0 ¢ —ATK, vy
@# =
where K is an N X N matrix for the bilinear part of H,
9)

_ T
H,= za,aK,»jaja R
ij
g

with a;, denoting c or d operators, and i,j running over
all orbital degrees of freedom; and

Vi=Auo,|d){d| (10)

is a potential acting only at the impurity site. More gen-
erally, in a problem involving n interacting degrees of
freedom, V{* would be an n X n matrix.

For both the Monte Carlo updating and the evaluation
of observables we will need the Green’s function, defined
by

gh=0.". (11
Given two arbitrary Ising configurations giving rise to
potentials ¥ and V'’ (we omit u indices for simplicity), the
Green’s function obeys the Dyson equation

g'=g+(g—-De"Y-nIg' (12a)
and its transpose
g'=g+(g'—DI—eV*V)g . (12b)

Equation (12) is most easily established by first finding the
Dyson equation for

g=e'g, (13)

i.e.,

(14)

Its Dyson equation
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Taking the trace over the fermion degrees of freedom
then yields

Z=Tr,, | Il dety, O,[{o,}1], (7

p==%x1

where O, is an NL X NL matrix, with N the number of
spatial sites (or k vectors) for the conduction electrons
plus 1 for the impurity orbital. Written out in the time
direction, 0# is

g'=g—gleV—e "z’ (15)

follows simply from the matrix identity
1/(A+B)=1/4—-(1/4)B[1/(4A +B)],

and Eq. (12) follows by substitution.

Note that we may use Eq. (12) as a matrix equation for
all components of g at the impurity site (or sites in a more
general case) only,

8ia=8aa+8aa—Die¥ "V —Dggy , (16)

where g;; is an L XL matrix. Given gy for a
configuration with potential V, we can obtain the impuri-
ty Green’s function for a configuration V' by inverting an
L X L matrix,

gia=II —(gga—D(e"V—D1""g,y . (17

Similarly, we can obtain the Green’s function for arbi-
trary sites for a potential V' if we know it for the poten-
tial ¥ and we also know g, from Eq. (17),

8oa=8ca+8ale” V' —Igiy , (18a)
8ac=8ac+(8oa—DUI —e~ V' V)g, , (18b)
géc’ :gcc’+gcd(e V- V_I)géc’ . (180)

Initially, we find the Green’s functions in the absence
of impurity potential (U =0) by standard techniques.
For the single-impurity symmetric Anderson model, the
impurity Green’s function is

1 —iw 1-r

ghubin=5 3 e Veltia,) (19)

n
and
0 1

8daliw,)=— I , (20)

iw,—V? -
k 10On—Eg



with w,=(2n +1)m/B. As in most previous work, we as-
sume that ¥V, is independent of k and that the conduction
band has a constant single-particle density of states p.
For an infinite conduction band,

1
i, —iAsgn(w,) ’

g lin,)= @21
where A=7p¥? is the half width at half maximum of the
impurity state caused by impurity-conduction hybridiza-
tion. We also treat moment formation for the case of
finite conduction bandwidth D.

We next compute the impurity Green’s function in the
presence of an initial potential (chosen, for example, ran-
domly) from Eq. (17). The Monte Carlo procedure then
consists of attempting to flip sequentially the Ising spins,
and accepting or rejecting the move using the standard

Zial, 1) =ga(11, 1)+ [gaall, D=8, ,Ne ™" —1)

which follows directly from Eq. (12).

To summarize, for the Monte Carlo updating we need
to know the Green’s function at the space and time site of
the field being updated. In the present procedure, we
keep all time components of the Green’s function at the
impurity site, which are continuously updated through
Eq. (23). Thus each updating involves L2 operations
(n2L? for n impurities). Alternatively, in the BSS algo-
rithm all equal-time components of the Green’s function
are used for the updating (at all N interacting and nonin-
teracting sites), so that an updating involves N2 opera-
tions. Clearly, as far as computer time is concerned, the
present approach wins only for problems with relatively
few interacting sites compared to noninteracting ones.
However, it turns out that the present approach is stable
at low temperatures while in the BSS approach instabili-
ties appear that prevent one from going to very low tem-
peratures. This different behavior is related to the
different eigenvalue structure of the space and time
Green’s functions.

To compute observables, we use the fact that Wick’s
theorem applies due to the bilinear form of Eq. (5) when
Eq. (6) is used. We measure the local moment

(o2)=((ngy—ny)*) 24)

and the impurity magnetic susceptibility in the z and x
directions

L—-1

XZ=A’T 2 ([n,”('rl)—ndl('rl)][ndT(O)——ndl(O)]> (25)
=0

and

L—1
X,=Ar 3 ([d}(r)d (r))+d ] (r)d ()]
1=0

x[d}(0)d,(0)+d(0)d;(0)]),  (26)

which should be identical from rotational invariance.
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Metropolis algorithm. Under a proposed change
0,—0;=—0,, the ratio of determinants between the
new and old configurations is given by®

det(O,[0;])

= = —gk Vb=Vt _
® det(O,[0;]) 1+[1—ghi(1,D)](e 1),

(22)

as can be easily found using g, Eq. (15). Because of
particle-hole symmetry, the product R =R _ R _ is al-
ways positive in the symmetric Anderson model. If R is
greater than a number between O and 1 randomly select-
ed, the move is accepted; otherwise, it is rejected. If the
move is accepted, all time components of the impurity
Green’s function for the new configuration are obtained
from the old through the relation

1

1+[1—gg(L,D]

eV,'~V, gd,,(l,lz) , (23)

—1)

Using the two different definitions of X allows us to pick
the one with less statistical error, and also to check for
statistical error consistency.

For both {02) and for TX, and TX,, the error due to
the Trotter approximation of Eq. (5) is proportional to

(Ar)? for Ar sufficiently small, and remains finite as
T —0.!"!2 Thus for each temperature and set of parame-
ters, we take measurements for smaller and smaller
values of At and plot these results versus (A7)?, until we
have reached the error regime linear in (A7)%. We then
extrapolate to the exact A7=0 limit. This procedure has
allowed us to study larger U and, hence, greater moment
formation than previous Monte Carlo studies.”!* 4

We show three sample graphs of (A7)? extrapolation in
Figs. 1-3. Figures 1 and 2 illustrate a “worst-case” ex-
trapolation (i.e, large U and ). Figure 3 illustrates a
more representative case for TX.

As a test of the algorithm, we made extensive compar-
isons of Monte Carlo and exact diagonalization results
for an impurity on a two-site lattice. We also computed
Monte Carlo calculations with renormalization-group re-
sults; as can be seen in Fig. 4, agreement is quite good.

III. FINITE-TEMPERATURE BEHAVIOR
FOR INFINITE CONDUCTION BAND

A. Tx

We show in Fig. 5 TX versus log, for A=1 and U =0,
1, 1.5, 2, 3, 4, 6, 8, 12, and 16 for the case of a flat
conduction-band density of states of infinite width. We
also show on the same graph the corresponding universal
Kondo curves,!® with Kondo temperatures T, =0.324,
0.169, 0.121, 0.0867, 0.0436, 0.0216, 5.18x1073,
1.20Xx 1073, 6.16 1073, and 3.02%x10~%. The Kondo
te‘r‘nlgerature is obtained from the Bethe-ansatz formu-
la™
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FIG. 1. Local moment (o?}) vs (Ar)* for U=8, A=1, and
B =38, showing extrapolation.

Ti=Zonoe @7)
X(T=0)=X, 1+%}fol/2u%exp x—é ’
(28)
and
1 ™ 2 T*u 1

=oa |l 2Pl 5 | 29)
with u =U /7A. In the noninteracting limit

lim T}, =(0.647)A . (30)
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FIG. 2. TX vs (A7)* for U =8, A=1, and B=8, showing ex-
trapolation.
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FIG. 3. TX vs (A1)  for U=3, A=
trapolation.

1, and B=6, showing ex-

In the opposite limit, U >>A, T) can be written in the
Kondo-like form!?

T, =D g(pJ)!/2e=1/P) 31)
where
8A
= — (32)
P wU
[ T LR | T T 1 1 I T T 1 7T | LI B B | T 1T 1 1 ]
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FIG. 4. Monte Carlo and renormalization-group results for
TX with U/wA=1.013. Renormalization-group data points are
taken from Fig. 9 of Ref. 3 and normalized to A=% for direct
comparison with the Monte Carlo results. D = for the
Monte Carlo points; D =10U=1.591x10* for the
renormalization-group points. Estimated Monte Carlo errors
are less than or equal to symbol size.
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FIG. 5. TX vslog,(T) for Az% and U=0,1,15,2,3,4,6,8,
12, and 16. Solid lines are universal Kondo curves with T,

computed from the Bethe-ansatz formula (i.e., no free parame-
ters).

and!’
Dg=(0.182)U . (33)

In Fig. 6, we plot the same Monte Carlo results as in
Fig. 5, but compare them rather with the high-T pertur-
bations series of Haldane,”

[T } T 1 1 7T T T T T { T T T T T T T T ] T 1 7T
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- L L1 1
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FIG. 6. Same data points as Fig. 5. Solid lines are from a
high-temperature perturbative expansion of TX through order

B.

1 1 |u | a
X=o+7 |3 1|%
2
—_Lilav A2 A, (34)
T? T 2 |7

where 4 =0.853 (Ref. 17) and B =2.45%0.10 was deter-
mined using our algorithm for U =0.

Thus, we see that, for all U studied, TX is well de-
scribed by Eq. (34) down to T ~20A, where it begins to
move towards the corresponding Kondo curve. It joins
the Kondo curve at T} ~—}lA for U =0; for U > wA, our
results suggest T ~1V'AU, though other functional
dependences are not ruled out. This latter formula is in
general agreement with Bethe-ansatz conditions,” which
predict Kondo-like behavior for U >>A and T <<V AU.
For U >2wA, TX reaches its maximum when it joins the
universal curve at T; for U <27A, the maximum is
reached at a temperature above 7.

Our graphs for TX (as well as those of other publica-
tions>%) either monotonically decrease or monotonically
increase and then monotonically decrease as the tempera-
ture is lowered. Thus, using Eq. (34), we see that there is
a crossover behavior in the “effective moment™ TX at

U.=2.174, (35)

such that (TX), >0.5 for U> U, and (TX),=0.5 for
U < U, where (TX),, is the maximum value of TX. This
is reminiscent of the Hartree-Fock critical value for mo-
ment formation’

U.=mA . (36)
However, it is much closer to the Bethe-ansatz value’
U.=24A, (37)
U [ T T T T T T T T T T T T T T T T | T T |—
1.0
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FIG. 7. (o?) vslogy(T) for A=% and U=1,15,2,3,4,6, 8,
12, and 16.
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which characterizes a “‘crossover” in the ground state
from nonmagnetic-like to magnetic-like properties.

B. (o)

We show in Fig. 7 the local moment {o?) versus
log,(T) for A=1 and U=1, 15,2, 3, 4, 6, 8, 12, and 16.
For comparison, we also show in Fig. 8 corresponding re-
sults for A=0 (i.e., no hybridization). We thus see that,
for all U studied, (03) is given by the A=0 value down
to T ~10A, where it begins to drop below the A=0
curve. It reaches a maximum approximately at the point
at which TX joins the universal Kondo curve, and then
decreases slightly at lower temperatures.

Using the perturbative expansion procedure of Ref. 17,
it is simple to show that at high temperatures

2y 1, U
(0,)—2+4T+0

1

T2 (38)

for any hybridization or conduction-electron band struc-
ture. Thus, a partial local moment develops for any
nonzero U, in accordance with our results.

IV. MAXIMUM VALUES OF TX AND (o2)

In Fig. 9 we show the maximum “effective local mo-
ment” (TX),, versus u =1 where u =U/mA, as well as
the Hartree-Fock ground-state results for

}imo(TX)=(TX)GS=[<nT)Gs—(nﬂgs]z . (39)

In Fig. 10 we show the maximum local moment (o2),,
1

versus u ~°, as well as the ground-state Hartree-Fock re-
sults for
(0dgs=((ny—nP)gs . (40)
l | T 17T I T T 17T [ T 1 1 71 T T T 7 [ T 1_
1.0
— ¥ ! -
o 08— " " . \ _
> Lo AVANRCARY ' -
O . ]
v - o ' i
06— 1 AN -~
0‘4_ 1 Ll L1 1 l { I S l N | J ) T W | I 11 1
-4 -2 0 2 4
log,(T)

FIG. 8. Data points are the same as in Fig. 7. Solid lines are
A =0 (i.e., no hybridization) results.

1.0

/'\2
= _
Z os —
<€— Hartree—Fock i
0.0 1 i1 1 l 1 1 1 1 1 1 d_1 1 1 1 1 1
0.0 0.5 1.5 2.0

FIG. 9. Maximum value of TX vs [U/(7wA)]~!. Monte Carlo
data points are for A=} and U=1, 1}, 14,14, 13,2,21, 3,4,
6, 8, 12, 16, 24, and 32. Solid line is the ground-state Hartree-
Fock result.

Thus, we see that, for u >2, (TX),, and {02),, are well
described by the Hartree-Fock ground-state predictions.
Since these predictions are very close to linear in u ~! for
u > 2, we thus have, to within a few percent,

(o) y=~1-(0.42)u ! (41)
and

(TX)p~1—(0.84)u ~! (42)

< (01)2>M

FIG. 10. Same as Fig. 9, except for (o2 ) instead of TX.



foru=U/mA>2.
In the Hartree-Fock approximation,

2(1—{02)gs)=(1—(TX) gs)
+[1—=({n dgs+{n gl . (43)
Thus, in that approximation,
201—(02)gs)=1—(TX ) s (44)

is always obeyed in the symmetric case, in analogy to
Egs. (41) and (42).

V. EFFECT OF CONDUCTION-BAND
STRUCTURE ON (¢2)

Assuming V¥, independent of k as before, we now con-
sider the effect of finite conduction-electron bandwidth.
The local definition of TX that we have used, Egs. (25)
and (26), does not agree with the usual, more physical
definition (total susceptibility minus susceptibility
without impurity) for finite bandwidth.!® Although the
total uniform magnetic susceptibility of the system can be
calculated with our algorithm and the difference taken
between systems of one and no impurities, this is more
time consuming. Thus we concentrate on the local mo-
ment (o).

In Fig. 11 we show (o2) versus log,(T) for mpV*=1;
U=1.5912; and D=o, D=2U, and D=U. (For
D =, mpV*=A.) The graphs merge at high tempera-
tures, in accordance with Eq. (38). However, as the tem-
perature is lowered, we see that the moment is enhanced
by a finite conduction band.

We explain this as follows. Although both systems ex-
perience the same impurity Coulomb repulsion U, the

T T l T T T l T T ] T T T T T
0.8 — —
- 1. _
11 1

B p 1! 1o t T
0.7 — 1 1! : —
A L T t 4

[3Y] 1 1 I1
,?q - 1 1 f . —~
O H ‘ 1
v - 1 : —
0.6 - _
0.5 — —
Co a1 ] L1 I L I L l P11 ]
-6 -4 -2 0 2 4

logz(T)

FIG. 11. (o) vslog,(T) for mp¥V*=1 and U =1.591. From
top to bottom, D=U, D=2U, and D=w. (For D=,

mpV?=A and U/mA=1.013.)
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system with finite conduction band has a smaller range of
states for the impurity orbital to hybridize with. Thus,
hybridization effects are reduced relative to Coulomb
repulsion effects, and the moment increases.

However, as shown in Fig. 12, renormalization-group
results® indicate that this enhancement has a very small
effect on TX for D =2U. (The parameters used satisfy
VAU ~D /4, which may be compared with the Bethe-
ansatz condition* for neglecting the effects of finite D,
VAU <<D.) This is not true for the local definition of
TX [Egs. (25) and (26)], as shown in Fig. 13. It is interest-
ing that the more physical definition appears to exhibit
better universal characteristics than less physical one.

In Fig. 14 we show (o?) versus log,(T) for D =1,
7pV?/U=m/16, and varying U. This illustrates even
more graphically the enhancement of {o2) with finite D.
Presumably, if we computed TX graphs (total susceptibil-
ity minus susceptibility without impurity) for these pa-
rameters, we would find that they first joined universal
Kondo curves with increasing 7 ’s at increasingly higher
temperatures for larger U, since mp¥?2/U is held con-
stant, where the effective bandwidth cutoff D4 would be
given by D4=(0.182)U for U<D. However, for
U >>D, D would cross over to D .s=D,!” and the TX
graphs would join a universal curve with the same T at
increasingly higher temperatures.

VI. SUMMARY

Using a quantum Monte Carlo algorithm, we have per-
formed simulations on the symmetric Anderson-
magnetic-impurity model for a wide range of parameters
and temperatures. We have obtained the following pic-
ture of magnetic susceptibility behavior and local-
moment formation as a function of temperature, hybridi-

_I T T T I T T T T I T T T T l T T T T I T T T l_
06— o - D = 10% —
- + -D=2U -
L +°+o °© _
[o
| - + —
o —
0.4 }— +
L N 4
i o ]
L . 4
0.2 — o ]
L + _
o

L N ]
- <>_*_<> 4
- <>+ B

OO ) S T | J 11 1 1 I 1 1 1 1 l J I l 1l 1 1
-8 -8 -4 -2 0 2

lng(T)

FIG. 12. TX vs log,(T) from Figs. 9 and 10 of Ref. 3. Data
points are normalized to 7p sz% and U =1.591. (For D =,

mpV?=A and U/mA=1.013.)
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FIG. 13. Monte Carlo results for local definition of TX vs

logy(T). mpV?=1, U=1.591; and, from top to bottom, D =U,

D=2U,and D = .

zation width A, and on-site Coulomb repulsion U.

First, for the case of the flat, infinite conduction-band
density of states, we find that the “effective moment” TX
is well described by the high-temperature perturbation
formula!’

1 11U A
~—+—|——A4|—
@ 2+T 8 T
1 A B | A 2
—— AU |— — | = , 45
T2 - +2 - (45)

where A =0.853 (Ref. 17) and B =2.45%+0.10, until
T ~204A, at which point it begins to move toward the
universal Kondo curve, with T, given by the Bethe-
ansatz equations (3.1)-(3.3). For U > 274, it reaches a
maximum given by

(TX)p~1—(0.84)u ", (46)

where u = U /7A, and simultaneously joins the universal
curve at Tj~}\/AU. For U <2wA, TX reaches a max-
imum before it joins the Kondo curve and, for U <<27A,
it joins the curve at T; ~ $A.

There is a crossover behavior when U =(2.17)A, since
(TX)p=0.5 for U<(2.17)A and (TX), >0.5 for
U>(2.17)A. This corresponds closely to the Bethe-

_I T T T T T T T T 1_
1.0 — —
:Ixn.x - . :
o 0Bl —
/\N L .
b i ' ]
Vv L i
0.6 — .
0.4 I 1 1 1 1 1 1 1 1 1 l
-5 0 5
10%2(T)

FIG. 14. (02) vs log,(T). D=1, U/[n(mpV?)]=16/7,
and, from top to bottom, U =16, §, 4, 2, and 1.

ansatz ground-state value U,=2A marking a transition
from nonmagnetic-like to magnetic-like behavior.’

We next find that the local moment {(o?) is well de-
scribed by the A=0 value down to T ~ 10A independent
of U, at which time it falls below the A=0 curve. It then
reaches a maximum given for U /7A > 2 by

(o) y=1-(0.42)u"", @7

approximately where TX joins the universal curve, and
decreases slightly at lower temperature.

Lastly, we considered a finite conduction-electron
bandwidth and found that the moment {(o?) was
enhanced. We explained this as due to decreased hybridi-
zation effects, but noted that renormalization-group re-
sults indicated that TX was much less affected than

(o).
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