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Dynamical group SO(3,2;r) of the polariton waves
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The dynamical group of the Hopfield Hamiltonian for the polariton field is shown to be SO(3,2;r).
Diagonalization of the Hamiltonian and the thermal Green function are discussed.
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In 1958, Hopfield' developed the quantum theory of
dielectric constant of insulating crystals taking into can-
sideration the interaction between the radiation field and
the transverse polarization field, which is the boson field
of excitons. The Hamiltonian 8 which he introduced is
given by a bilinear form with respect to a mixed set of an-
nihilation and creation operators of photons and exci-
tons. It is valid for an optically isotropic crystal in the
frequency region that the wavelength of light is much
greater than lattice spacings. Even though the model is
well established its symmetry property in the Lie algebra-
ic sense is not well understood. For example, the
Hopfield Hamiltonian 8 is Hermitian but its matrix gen-
erator H is not Hermitian so that its diagonalization re-
quires a nonunitary transformation which is very much
involved.

The purpose of the present communication is to deter-
mine the dynamical group of the Hopfield Hamiltonian 8
based on a general theory of Jordan-Schwinger represen-
tations of Lie algebras recently introduced. According to
this theory, if a Hamiltonian 8 is given by a bilinear form
with respect to a mixed set of boson creation and annihi-
lation operators and is Hermitian as it should, then the
corresponding matrix generator H is pseudo-Hermitian
and the dynamical group is pseudounitary (thus the gen-
erator H can be diagonalized by a pseudounitary trans-
formation). It will be shown that the Hopfield Hamil-
tonian 8 provides a nontrivial example of this kind: In
fact, the dynamical group of the Hopfield Hamiltonian is
a direct product group of the groups SO(3,2;r)=Sp(4;r)
each of which is a subgroup of SU(2, 2;r), which is a pseu-
dounitary group. Once the dynamical group is known, it
becomes a routine matter to diagonalize H; it is only
necessary to "rotate" H into the vector space of the
rank-2 Cartan subalgebra of so(3,2;r) algebra.

The Hopfield Hamiltonian may be written in the form

8=—,
' g8(k),

k

Here a& (a& ) is the photon annihilation (creation) opera-
tor while bk (bk) is the exciton annihilation (creation}
operator. The scalar coeScients f(k ) and g(k ) are
single-particle energies of a photon and exciton, respec-
tively, and h(k ) describes their coupling. We have
suppressed the dependence on the directions of the field
polarizations which are perpendicular to the wave vector
k. To determine the spectrum generating algebra (SGA)
of 8 in terms of those of P(k) one may not simplify 8
using the symmetry Q(k) =8(—k), since az is coupled
to b z as well as bz. The SGA of 8 is given by the direct
sum

[8;+,8 ]=5;, [8;,BJ+]=[8;,8 ]=0, (4)

then determine the algebra through the generators of the
matrix H(k). The operator B(k) is called the Jordan-
Schwinger representation of H(k) since both belong to
the same algebra. The operator set [8, ] and the matrix
H(k) are determined from the fact that the set
[8;,B(k) j constitutes an algebra with the commutation
relations

[8;,H(k)]=+ H(k), -8.
J

and [8,+,8,.]=5, . For the counterpart of (5a) we have

[B, ,B(k)]= —g 8&+ H (k)i; .
J

From (5a) and Q(k) of (1) we obtain
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where g (k) is the SGA of 8(k) and the summation over
the wave vector k is limited to k„()0)where k„is a
component of k in the x direction chosen arbitrarily.

A general method of determining the SGA of H(k) is
to first write 8(k) in a bilinear form of a matrix
H(k)=iiH(k); ii,

8(k)=+ 8;+H(k);,8, , (3)

where 8 =
I 8; I and 8 = [8; I are sets of boson opera-

tors satisfying the commutation relations,
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Since the Hamiltonian P(k) is Hermitian, the corre-
sponding matrix H(k) is pseudo-Hermitian, 3 satisfying

H (k)=8H(k)8 . (9)

In view of the commutation relations (4}, the conjugate
set B+= I B;+ I is linearly related to the Hermitian conju-
gate set Bt= tB; I through a diagonal matrix 8= ~[8;5;J ~)

with 8; =1 (or —1), if B; is an annihilation (or creation)
operator;

Here it is defined such that e+~f and e ~g as h ~0 in

view of the original matrix H(k) given by (7). Since the
characteristic roots are all real, the Hamiltonian 8(k) is
compact and may be diagonalized by a unitary operator
U. Correspondingly, the matrix H(k) can be diagonal-
ized by a pseudounitary matrix U satisfying

U-'=eU'e . {16)

Since the Cartan subalgebra of so(3,2;r) is rank 2 and
spanned by diagonal matrices S3 and 8'3 according to
(11),we may write the diagonalized form as follows,

UH(k)U '=e+rt Xr3+e rt Xr3, (17)

where ~&Xr3 ——S3+W3 and r~X~3=S3 —W3. If one
uses the su(1, 1) and su(2) subalgebra contained in
so{3,2;r), one can write down the transformation matrix
U as follows:

U =exp(y+L++p L }exp( q&T2)ex—p( i pT3 }—, (18)
Accordingly, the spectrum generating algebra (SGA} of
8(k } is su(2, 2) or its subalgebra; in fact, it is
so(3,2;r) =sp(4; r) as it will be shown below.

As a preparation, we introduce the basis of su(4) alge-
bra by S;, T;, U;, W;, and E; (i = 1,2, 3), where

where 2L+ ——S]+8'] and the "angles" are given by

tang =2h /(g f), —

tanhy=2h (cosP)/(f +g), sinhy+ ——h (sing)/e+ .
(19)

2S/=tpXt/, 2T& =riXT/, 2U/=72Xt&

28'; =W3XV'I, 2E; =&I XSP

with
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Since these generators are pseudo-Herrnitian satisfying
Xt=8X8 with 8 ( =~pXr3) defined by (8), we may con-
clude that the SGA of 8(k) is so(3,2;r) =sp(4;r).

From (11), we obtain the characteristic equation of the
matrix K(k),

Then we rewrite H (k) in the form

H(k)=(f +g)S3+(f —g)W3 —2hE2+2ihT, ,

and note that the minimum algebra which contains the
four generators S3, W3, E2, and iT, in H(k) is given by
the basis set

Note that /~km/2 as f~g +0. Since P, q, and q+ are
all real, the transformation matrix U is definitely pseu-
dounitary satisfying (16}.

If one expresses the Schwinger representation of a
matrix M by &=B+ M B following (3), the transforma-
tion operator U corresponding to U is given by

U =exp(/I/+L+ +p E )exp( pre'2 }exp( —i Pf'3 )—, (20)

which is unitary since if+, if'z, and J/'3 are all Hermi-
tian. It transforms the Hamiltonian 8(k) into the diago-
nal form, according to (17),

Uu(k)U = e+(a/, a/, +a /, // /, +1)
+e (bkbk+b kb k+1) .

It is often more convenient to introduce the canonical or
quasiparticle (polariton} operators defined by

B; =U B;U=g U/JB/,

(22)
B; =U B;+ U=gB*( U');,

which still satisfy B; =B;-0. Then the Hamiltonian
8(k) can be written in the canonical form

8(k)=g eB; B;
p(x)=x -(f +gz)x +(f g 4fgh )=0 . —(13)

If we assume fg &4h (which is satisfied by the actual
Hopfield model), the characteristic equation has four real
roots,

+ g e~(a kak+a kg k+ 1)
k

+e (b kb„+b kb k+1), (23)

E'] =E+, E2= —E+, E'3=6, 64= —E

where e+ is given by

2e+ (f +g )+[(f ——g) +16fgh ]' —)0.

(14}

(15)

which may be obtained directly from (21) as well, and the
ground state of P(k) is given by a coherent state of
SO(3,2;r),

(24)
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G(k, to) =[ito—H(k)]

=[ito+H(k) J[ro +f H(—k) ]/p(ito),

(26)

where f=f —p, and g =g —p, with the chemical poten-

tial JLt and H(k) is obtained from H (k}of (7) by replacing

f and g with f and g. The denominator p(ito) is defined

by the characteristic polynomial p(x) of H(k) given by

p(»)=»' (f '+g '—)x'+(f 'g ' 4f g h') —. (27}

%e shall summarize what we have done above. From
a given Hamiltonian P(k) in (1) we have determined a
mixed set B of annihilation and creation operators given

where
~

0) is the vacuum state of the photons and exci-

tons while
~

0)' is the vacuum state of the canonical par-

ticles or the polaritons. Thus, the total Hamiltonian 8 is

written in terms of the number operators of two types of
polariton operators as follows:

H=ge+(k )(a i,ak+ —,')+e (k )(b i,b&+ —,'}, (25)

where we have installed the k dependence of the ei en-

value e+ and simplified 8 using the symmetry (k)

Finally, to facilitate the calculation of the thermal
averages of the relevant physical quantities we shall write
down the Fourier transformation of the thermal Green
function

in (6}by the condition that it forms a generalized Heisen-
berg algebra defined by (5a} together with the Hamiltoni-
an itself 8(k). Then the structure constants of the alge-
bra determine the matrix generator H(k) of 8'(k). A
modified set B* of the creationlike operators is defined
to satisfy the boson commutation relations (4) with the
annihilationlike operator set B. Then the sets B and B*
reduce the Hamiltonian into the standard bilinear form
given by (3). These modified particle operator sets, how-
ever, relate the Hermitian operator P(k) to the pseudo-
Hermitian matrix H(k) which satisfies (9). As a result,
the spectrum generating algebra of P(k) is a subalgebra
of su(2, 2;r); in fact, it is so(3,2;r)=Sp(4;r) with ten ele-
ments explicitly given by (12). The diagonalization of
H(k) is carried out by the pseudounitary matrix U given
by (18) which is an element of SO(3,2;r). The ground
state ~0)' of the Hamiltonian 8(k) is given by the
coherent state of SO(3,2;r) defined by (24) which is the
vacuum state of the polaritons. In spite of the modified
sets of particle operators, the thermal Green function of
the Hamiltonian 8(k) can be written down according to
the standard formalism as given by (26}.

The present work merely lays down the groundwork of
the polariton problem in the Lie algebraic approach. All
the transport problems which involve the polaritons, in
particular the problem of the light scattering by polari-
tons, can now be studied in the light of the symmetry
properties of the polariton field which is now known to be
SO(3,2;r)=Sp(4;r). These will be, however, discussed in
forthcoming papers.
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