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Self-consistent Sommerfeld droplet as a simple model for an accurate prediction
of the electronic properties of small metal particles
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The combination of the self-consistent jellium model of solid-state physics and the distorted drop-
let model of nuclear physics is shown to provide an excellent working scheme for an accurate pre-
diction of the electronic properties of small particles of the sp-bonded metals. The model is

parameter-free and relies on the experimentally confirmed fact that the mean ionic volume of these
clusters is nearly size independent.

Beginning with the early work by Martins, Car and
Buttet' there is a great variety of literature concerning
the application of the spherical jellium model to under-
stand the electronic properties of small metal parti-
cles. Whereas in some of the older work the resulting
discontinuities in the electronic properties were con-
sidered to be artifacts it was —to the best of our
knowledge —one of us (W.E.) who came for the first time
to the conclusion that "the shell structure of the electron-
ic properties might be a real effect." Afterwards, in his
pioneering work, Knight experimentally confirmed this
idea and proposed independently the shell structure as
the order principle in the physical properties of small
clusters of the sp-bonded metals. In a number of stud-
ies " he was able to show that —whenever a spherical
shell shell closing occurs —the experimental values and
the theoretically predicted ones agree with each other
within 10—20% which is comparable to agreement for
the work function predicted by the self-consistent jellium
model applied to a metallic half-space' and experiment.
However, for particle numbers far away from spherical
shell closings, the model might be "arbitrarily" wrong
and result in rather misleading predictions. It seems to
be mainly for this reason that the model was completely
misunderstood by some workers in the field. ' ' In this
Brief Report we want to make it clear that the model can
be made an excellent one with a high predictive potential
if it is only slightly modified to account for shape defor-
mations whenever a shell is open. In this respect the
model is the self-consistent analog to Clemenger's appli-
cation of Nilsson's model of nuclear physics' and is in no
way arbitrary. It does not contain any parameters to be
fitted to experimental data, but relies on the experimental
fact' that beyond the dimers the bond length is approxi-
mately independent of size.

To begin with, let us view some basic features of the
self-consistent spherical jellium model. Within the model
a metallic cluster to be described is defined by the number
of atoms N and the electronic density parameter r, . As-

suming spherical symmetry the cluster radius R is then
given by the relation (valid for monovalent metals)
R = r+N' . The ionic charge is homogeneously smeared
out within the sphere of radius R to give a rigid positive
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Obviously, 5)0 means prolate and 5(0 means oblate
distortion, respectively. Because there is no other princi-
ple than the energy-minimization principle, the parame-
ter 5 is determined by minimizing the total-energy func-
tional of the system for a given number of particles N and
for a given ionic background density rz. As in our previ-
ous work, the Kohn-Sham minimization method of the
local-density approximation (LDA) to the density-
functional theory (DFT) is used to solve the model. In
practice, the Kohn-Sham equations are solved self-
consistently for a given distortion parameter 5 and the
global energy minimum is found as a function of 5.

Due to the cylindric symmetry of the problem, the az-
imuthal quantum number m is still a good quantum num-
ber for the electronic states, as is the parity with respect
to reflection at the midplane. However, the angular
momentum I is no longer a good quantum number and,

background. The electrons move self-consistently in the
field of this background and under the influence of their
mutual Coulomb interactions.

Very much similar to the restricted self-consistent-field
(SCF) calculations for atoms, the spherical symmetry for
the effective field is only guaranteed for completely filled
shells of a certain type. For incompletely filled shells the
spherical symmetry is enforced by spherically averaging
the nonspherical electronic charge density of the open-
shell structure. If this restriction is lifted, an electrostatic
force acting on the jellium background will lead to an as-
pherical distortion of the latter and, as a consequence, the
spherical degeneracy will be lifted, that is to say, the
spherical shells will be split into subshells. If we maintain
the mean bond distance in going from a sphere to a dis-
torted sphere all the distortions will lead to the same
volume. The simplest distortion possible is then that of a
spheroid. Within the self-consistent spheroidal jellium
model the only additional parameter which comes into
play is then the parameter describing the spheroid of
equal volume whose semiaxes, in terms of the sphere ra-
dius R, are given by
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as a consequence, the problem is intrinsically two-
dimensional. This makes the differential equations a bit
harder to solve. This can be done either directly by the
relaxation method' or—equivalently —by expanding the
wave functions into a basis set. We prefer in this work
the latter method. Following general ideas of quantum
chemistry and taking advantage of the expected behavior
of bound-state electronic wave functions in spheroidal
coordinates (, rl, p around the origin' ' the following
set was adopted:

—a gym pm(g)pm(&)e n& eimP (2)

Here, the spheroidal coordinates g, rl, p are defined as
usual, ' the I'I are Legendre functions, ' and the Gauss
exponents cx„are determined in a similar way as in a
quantum-chemical calculation. For instance, the bot-
tom s level couples to the above-lying d, g, . . . levels be-
cause of the spheroidal distortions. Because we are al-
ready using spheroidal harmonics PI (rl)e' ~ instead of
the spherical harmonics PI (6)e' &, where 8, P are
spherical coordinates, only a very few Legendre functions
are needed to stabilize the total energy.

Typically, we need three Legendre functions per sub-
shell level and six Gaussian exponents per Legendre func-
tion to stabilize the total energy to better than 0.2% with
respect to the estimated exact numerical value. However,
this instability is not oscillatory, but varies mainly mono-
tonously with increasing particle size, resulting in an es-
timated instability of 1% in the second difference of the
total energy, 62, and 2% in ionization potentials (see
below).

Having discussed the method of solution we are ready
to present our results. The example we have investigated
is a distorted jellium spheroid with an electronic density
parameter r, =4 and numbers of electrons, N, up to 40.
Hence, our results are pertaining to small Na clusters.

Traditionally, the first quantity to calculate is the ener-

gy per particle. This curve is given in Fig. 1 as a solid
line. For comparison, the self-consistent spherical result
is reproduced as a dashed line. As can clearly be seen,
the spheroidal result has a richer structure because of the
various spheroidal subshell closings (this is detailed
below). As has been stated in Ref. 8, the energy per par-
ticle is not directly related to the abundance spectra of

the cluster beam. Instead, the second difference of the to-
tal energy, defined as

,=[ N, —( +, )j—[& —(,—,)], ( )

can —under certain conditions —be directly related to
sharp edges in the abundance spectra. This quantity is
shown in Fig. 2 as a solid line along with the correspond-
ing spherical result. The various subshell closings, which
are experimentally visible, ' ' are all clearly resolved. In
particular, the strong odd-even effect at small particle
numbers can clearly be seen. The microscopic origin of
this effect will be discussed below.

The next quantity to be investigated is the ionization
potential as a function of size. This quantity, which has
been most controversial in the past, is shown in Fig. 3.
Surprisingly enough, and of utmost importance the
sawtooth behavior of the ionization potential obtained
from the self-consistent spherical jellium model is com-
pletely destroyed at small N and replaced by a curve
which resembles —at least for small particle numbers-
the results of the quantum-chemical calculations. Espe-
cially interesting is the still large drop of the ionization
potential between N =8 and 9, obtained in both ap-
proaches. The reason, of course, is that both theories
have a shell closing at N =8 and an effective single-
electron potential of a high symmetry (because of the
weakness of the pseudopotentials).

For Na, relatively old experimental data available in
the literature ' are not detailed enough to compare
with. However, the recent results by Kappes et al.
seem to fit our findings.

In particular, the strong odd-even alternation of the
ionization potential at small N, as well as its large drop at
the main 1p-shell closing, between N =8 and 9, are nicely
reproduced. Interestingly, at larger particle numbers the
ionization potential looks like a step curve rather than a
sawtooth one. This general trend has been experimental-
ly observed for potassium by Knight et al. ts On the
whole, we expect, from the jellium deformation intro-
duced, to improve the agreement between theory and ex-
periment to within the range previously achieved for
closed-shell particles.

We now want to discuss the microscopic origin of the
various effects we have obtained so far. This can

-0.7—

-0.8—
Ng

008-

0.04-

10-
I

09—

t t I t ~ J I t ~ $ 1 t f $ I $ f / 1 J ~ $ I $ ~ t I $ I t I t I

0 4 8 12 16 20 24 28 32 36 40

-0'04-

t I g I t I t I t ~ $ ~ $ ~ t ~ t l '$ I t I $
'I t I '$1 $ I $ I t I t I $ I / I

0 4 8 12 16 20 24 28 32 36 40

FIG. l. The energy per particle, in units of the value
~
e„~

for the corresponding infinite jellium, for the distorted jellium
cluster (solid line) and for the spherical jellium cluster. The re-
sults are for Na with 1 & N &41.

FIG. 2 Second difference b,2 of the total energy as a function
of N. Solid lines, distorted jellium; dashed line, spherical jelli-
um.
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FIG. 3. Ionization potential for a Na particle in various ap-
proximations. Note that the spherical sawtooth behavior is

completely destroyed after allowing for spheroidal distortions.
Originally, it was believed that the strong odd-even alternation
at small- particle numbers was a genuine "quantum-chemical"
effect. That this is not the case is demonstrated by this figure
and is further discussed in the main text.

efficiently be done on the basis of the single-particle level
scheme obtained from solving the Kohn-Sham equations.
In Fig. 4 we show the evolution of the level scheme for
particle numbers between 3 and 18, that means in the re-
gion of the spherical 1p and 11 shell, respectively. For
comparison, the spherical levels are given on the left-
hand panel of each particle number. To begin with let us
look at N =3: If, in addition to the two electrons resid-
ing in the 1s shell, a third electron is accommodated in
the (spherical) 1p, level, an electrostatic force acts on the
positive background which leads to a cigar-shaped defor-
mation of the latter. Generally speaking, the electrostatic
force initializes the distortion, but after that all parts of
the total Hamiltonian contribute, leading to the reduc-
tion of electrostatic as well as kinetic and exchange-
correlation energy. As a consequence, the effective po-
tential widens in the z direction and shrinks in the x,y
directions. We end up with a distorted effective potential
which has a nearly constant inner value, but is deformed
into a dropletlike shape, as in nuclear physics. Hence,
our model potential looks like a synthesis of two main
ideas of solid-state physics and nuclear physics, without
using any new additional parameters. The only assump-
tion which had to be made at the beginning refers to the
weakness of the electron-pseudopotential interaction.
The validity of this assumption was discussed in detail in
our earlier work. Additional support for the dominance
of subshell-distortion effects over the pseudopotential
contributions was given in the study by Manninen,
where the main features of his small (N & 8) pseudopoten-
tial sodium-cluster results agree well with our distorted-
jellium picture.

After the "1p, subshell" is completely filled with two
electrons (N =4), the symmetry of the system changes
from prolate to oblate at N =5. As a result we have both
a reordering and a reoccupation of the single-particle lev-
el scheme. The "1p„„level" is getting completely filledxiy
with four electrons at N =6 and, therefore, for N =7 the
now-shifted Ip, level starts filling again. From all the dis-
cussion we see that the strong odd-even alternations of
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FIG. 4 Evolution of the single-electron level scheme as a
function of size, for 3 g N & 18. For each N, the distortion pa-
rameter 5 is given. For comparison, the spherical levels are also
shown. As can clearly be seen, the spherical shell structure is

heavily perturbed for N values in the midshell region. Note that
even for N =18 we end up with a spheroidal distortion. For
N =13 both oblate and prolate levels are given because the two
sets lead to nearly the same total energy of the cluster.

the physical properties at small- particle numbers is a
direct consequence of the permanent reordering and reoc-
cupation of the level scheme, where the latter effect is, of
course, dictated by the Pauli principle. All the discus-
sions could be repeated for the filling of the 1d shell.
However, to be brief, we will not do so, but instead con-
clude by saying that we have found a simple but efficient
model for the description of the electronic properties of
clusters of the sp-bonded metals. Moreover, it can be
successfully extended to investigate their dynamical elec-
tronic response properties. Because the model exhibits
both the constant potential feature of Somrnerfeld's free-
electron model of solids and the deformable droplet
feature of nuclear physics —without any new
parameter —we would like to propose the name "Som-
merfeld droplet" to the distorted jellium model applied to
small metal particles.
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