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The present work reports the results of a calculation of the phonon linewidths in solid CO2, in

which the anharmonic terms up to A, in the perturbative series have been included. The aim has

been that of interpreting the observed nonlinear temperature dependence of the linewidths of the
Raman-active phonons and to learn about the processes responsible for their relaxation. It turns

out that the adopted intermolecular potential, whose parameters were fitted to the low-temperature
linewidths only, correctly predicts the temperature dependence of the linewidths up to 150 K. The
role of the high-order terms of the perturbation series, in contrast with the general assumption, is
not negligible at all; for temperatures above 40 K their contribution to the total linewidths is com-
parable to, and even larger than, that of the lowest-order term.

I. INTRODUCTION

The occurrence of finite widths for phonon bands in
crystals is a direct consequence of the anharmonicity of
the crystal potential. Anharmonicity introduces interac-
tions between the otherwise dynamically independent
phonons, which thermalize the phonon energy through
phonon decay or induce pure dephasing processes, all
contributing to the overall phonon relaxation.

The theory of phonon linewidths is a well-established
many-body perturbation procedure. ' In practice, how-
ever, linewidth calculations from anharmonic terms of
the crystal Hamiltonian are extremely involved, mainly
because of the complexity of the theoretical treatment,
and of the time-consuming computational methods. This
is particularly true for molecular crystals made of poly-
atomic molecules with a large number of interatomic in-
teractions described by relatively complex analytical
forms of potential. ' For this reason such calculations
have been performed only for a very limited number of
molecular crystals and, in any case, always to the lowest
perturbative order. To this order (first order) the phonon
relaxation is due to elementary three-phonon processes
which either produce the decay of a phonon into two
phonons of lower energy (down-conversion), or its fusion
with another phonon of the thermal bath to produce a
higher-energy phonon (up-conversion). The contribution
of three-phonon processes to the phonon linewidth has a
linear temperature dependence in the classical limit (high
temperatures) —a result that follows directly from its
linear dependence on the phonon occupation numbers.
Calculation to this order is normally considered
sufficient, especially when the measured linewidths show
a linear temperature dependence in the high-temperature
limit. Even if the temperature dependence is not linear at
high temperatures, calculations to this order are always a
useful first step for modification and refinement of the
crystal potential, using the low-temperature data.

In an earlier paper, a calculation of anharmonic pho-
non frequencies and bandwidths was made for crystalline
CO2 to the lowest order of anharmonicity of the crystal

potential. Three different intermolecular potentials were
utilized. The first (MOSMD), taken from an already ex-
isting calculation of harmonic phonon frequencies, in-
cludes atom-atom and quadrupole-quadrupole interac-
tions. This potential turned out to be too anharmonic
and produced physically unrealistic anharmonic correc-
tions to the phonon frequencies as well as residual band-
widths at T=O which are 1 order of magnitude larger
than those observed. A second intermolecular potential
(PRC-1) was derived from the previous one by shifting
the oxygen interaction centers inside the C—0 bond and
by increasing the quadrupole moment. This second po-
tential was much less anharmonic, giving rise to residual
phonon bandwidths of the correct order of magnitude, al-
though about twice larger than the experimental ones.
An even less anharmonic potential (PRC-2) was then ob-
tained by introducing a noncollinear distribution of nega-
tive charges around the bonds and refining the atom-
atom interactions. The residual phonon bandwidths cal-
culated with the PRC-2 potential were in perfect agree-
ment with the experimental data. Owing to the fact that
only three-phonon processes were considered, the calcu-
lated variation with temperature of the bandwidths has
the expected linear dependence on T in the classical limit.

Recently very precise measurements of the bandwidth
of the three Raman-active lattice phonons of CO2
(F. , T,T+ ) were made in a sufficiently broad range of
temperature to evidentiate the type of law of evolution
with T. It was found that in all three cases the band-
widths have a marked T dependence which shows that
higher-order processes play a significant role in the pho-
non relaxation.

It was therefore considered worthwhile to extend the
bandwidth calculations, made with the previous poten-
tials, by including the higher-order anharmonic terms.
To our knowledge this is the first attempt ever made to
include fourth-order processes in the calculation of pho-
non bandwidths for molecular crystals.

The present work is aimed to the calculation of these
terms, which are several in number, each involving rnulti-
ple Brillouin-zone (BZ) summations. Although formal
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expressions are available ' in the literature for the
higher-order anharmonic terms, these are not always
suitable for handling the numerical calculations. In Sec.
II we give the formulas for evaluating the various contri-
butions and we outline the numerical procedure used to
estimate the bandwidths and the approximations made.
Numerical calculations and results are presented and dis-
cussed in Sec. III.

(a) (b) (c)

II. THEORETICAL PROCEDURE

In perturbation theory the crystal Hamiltonian is ex-
panded in powers

H =Ho+AH]+A, H2+A, H3+

where

a,
,Q +z.

(g)

a,
(f)

Ho ——T+ V~

is the anharmonic Hamiltonian and H, ,Hz, . . . are per-
turbation terms whose magnitude is defined by the pa-
rameter A, . The generic perturbation term Hn of order n

is defined as

H =
n

e& q& e„
V„(q, , q2, . . . , q„}

XA(q, }A(q, ) A(q„),

where V„(q„q2, . . . , q„) is the Fourier transform of the
nth expansion term of the crystal potential, '

A (q„)=a '( —q„)+a (q„) is a phonon operator expressed
in terms of phonon creation, a (q„), and annihilation,

a(q„), operators, and the index q is a collective symbol
for the branch index j and for the phonon wave vector k,
—q meaning (j, —k j. Phonon bandwidths are normally
obtained with the Green s-function technique by solving
Dyson's equation for the phonon propagator G (i co },

G (ice )=G (iso )+G (ice ) gS (ice )G. ~(ice ),
q'

(3)

I (iso )=Im[.S (ice~)], . (4)

where m is an integer defined by the relation
co =2am /pe with p= I/k&T, G (iro ) is the harmonic
phonon propagator, and S .(ice ) is the phonon self-

energy. For an optical phonon with wave vector k=0,
belonging to the j branch the half-bandwidth is given by
the imaginary part of the self-energy

FIG. 1. Diagrammatic representation of the different terms
of the perturbation series considered.

where for simplicity we have omitted the 0 wave-vector
index.

The phonon self-energy is the sum of several contribu-
tions arising from difFerent elementary mechanisms, con-
veniently represented by diagrams. The diagrammatic
technique is given in many books and review arti-
cles. ' ' ' The diagrams of interest for the calculation
of phonon self-energy up to fourth order in the expansion
parameter A, are shown in Fig. 1.

For convenience we list below the contributions to the
self-energy of the diagrams of Fig. 1. The contribution of
the second-order diagram (a) involves the product of two
cubic terms of the potential, each of order A, , and there-
fore is of order A, and is given by

S"(ice )= —18P g ~
V3(Oj, q&, q2) ~

X g G, (ia)~ )Gz()ri)~ )co„) . —

(sa)

A11 other contributions arise from fourth-order dia-
grams involving either two quartic or one quartic and
two cubic or four cubic terms of the potential. Since cu-
bic terms are of order A, and quartic terms of order A, , all
contributions are of order A. . They are given by

S' '(ice )'= —96p

S"'(ico ) = —360P

) V4(Oj, q&, q2, q3)
~ g G~(ice„)G&(ice„)G3(ice iso„iso„—), —

n, r

V3 ( 0j,q &, q 3 ) V5 (0j, —q &,
—q 2, q 3, —q 3 ) g G, ( i co„)Gz (i co i co„)G3 (i co—„)

n, r

(5b)

(5c)

S' '(iso ) = —216P X V3(oi q3 q4)V4(ql q2 q3 'q4)V3(oi qi q2}——
QI.V2 C3 Q4

X g G~(tee„)G2(&co ice„)G3(i—cu„)G4(ice~ &co„), —
n, r

(5d)
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S]'1(iN ) = —432P
0) Qg Q3 04

V3(oj q] q. )v.( —q] q3
—q3 q»

S' '(ico }=—432/

S]s](iso }=—648@

X V3(oj, —q„q—4) g G](ico„)G2(ico„)G3(ico„)G4(ico —ico„),
n, r

V4(OJ ,q„'q2, q3 }V3(—q], —q2, q4) V3(OJ, —q3, —q4)
q& q& &3 q4

X g G, (]co„)G2(leo„)G3(ico i—co„—ico„)G4(ico„+ico„),
n, r

V3(OJ', q], q2) V3( —q], 'q3 'q4) V3( q3 q4 'q5) V3(oj —q5 —q2}
q) 9g q3 V4 q5

X y G](iNg )62(iNm iso—g )G3(i cop)G4(iN„ico—„)G5(ico„) 5

n, r

(Se)

(5

(5g)

S'"'(i co )= —648@'
q) qg q3 q4 95

V3(oj,q], q2)v3( q—] q3 q5 )v3( 'q2, 'q3—,q4)v3(oj, q4——q5 }

X g G](i co„)G2(icom i N„)G—3(i N„ico—„)G4(ico i co„—)G5(ico„) .
n, r

(5h)

We recall that each sum over a q label is a double sum,
one over the branch j and one over the phonon wave vec-
tor k. The evaluation of the various contributions to I ~

is actually an impossible computational task. It involves
multiple Brillouin-zone summations, going up to fivefold.
This is further complicated by the double sum over n and
r for several phonon propagators and by simultaneous
summations over large number of j branches. In the case
of CO& these are 20 in number. In the present work, we
reduced this task appreciably by restricting k sums to a
single special point only, taken as representative of the
complete Brillouin zone. This k point was chosen so that
the linewidths obtained in the lowest order when calcu-
lated using only a single point did not differ significantly
from those obtained previously by using the whole scan
of the BZ. This k point [which was found to be
k=(0.1667,0.3333,—0.3333)] was then used in the subse-
quent calculation for estimating all the higher-order
terms of Eqs. (5). The j summations were instead carried
out over all the j branches.

The next step is that of obtaining expressions for the
phonon propagators, which were given only in a formal
way in Eqs. (5). In these, a double sumlnation over n and

2' J.

&P (N,'+N„')
(6a)

g G (i co„)=2n + 1, (6b)

g G, (lN„)G2(icom ]co„)—=F3(lN Nm]&N2) & (6c)

g G, ( 1 co„}62 (i co, }G3 (i corn ico„—i co, }—
n, r

=F4(ico,N„co2, co3), (6d)

where

r has yet to be made. For some of these contributions
[S"(ico ), S' '(iN ), S"'(ico ), S' '(ico )] this has
been already done in Ref. 10, whereas, for others, com-
plete expressions are not available. To obtain the contri-
butions to the self-energy we made use of the following
exact sums:

1 1F3(lco,co],N2)=(1+ll]+ 2)
Nm N] N2 ( Nm+Nl+N2)

1 1+(n2 n]}—
(iNm N]+N2) (lNm +N] N2)

and

1
F4(ico co] co2 co3)=[(1+n]}( + )l(]12+ 3)nIl]ll2ll3]

(i COm —CO] —CO2 CO3)

1

(lN +co]+co2+co3)

1+3( l] ll 3 + ll 2 ll 3 + ll 3
—ll ] ll 2 )

( l co —co] —co2+ co3 )

1

(1 + 1+ 2
— 3)

(7b)

where for simplicity 1, 2, and 3 xnean q&, qz, and q3, respectively, and where n - is the statistical average of the oceupa-
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tion number of the corresponding phonon.
Equations (7) cannot be used directly for summations over n and r in Eqs. (6a)—(6d) since these involves coupled free-

phonon propagators and it is therefore necessary to make some approximation. We have found it convenient to ap-
proximate these sums by taking out an average value of the coupled free-phonon propagators, and sum over the remain-
ing part exactly. In this approximate manner, it is possible to obtain closed forms for all the contributions from the dia-
grams of Fig. 1. We explain our procedure by summing over n and r for one of such complicated contributions, e.g.,
that of Eq. (Sg). The free-phonon propagator sum in this contribution can be written, using Eqs. (6), as

QGt(tco„)62(tco~ —tco„)G3(tco„)G4(tco„t—co, )G5(tco„)= QGt(tco„)G2(tco —tco„)G5(tco„)F3 ~y 3y 4)
n, r

—G 5 ( 1 Q g )F3 ( l Q
yg p co 3 & co4 }F3( L co~, co 1,co2 }

where Q denotes the average value of co. 6 (iQ„), F(iQ„,co3, co4), and F(ico„,co„co2) are straightforwardly obtained
from Eqs. (6a) and (7a), respectively. In this way, it is easy to write expressions for all contributions to the widths in a
closed form. %'e obtain

I"=18' g ~
V3(Oj, q, , q2} ( Im[F3(ico, cot, co2)], (9a)

I' '=96ttl g ~
V4(Oj, qt, q2, q3) ~

Im[F4(t co,co't, co2, co3)], (9b)

I'"=36(Hi g V3(Oj, q„q2}V5(Oj,—q, , q2, q—3, —q3)(2n3+1)Im[F3(ico, co„co2)], (9c)

r' '=216' V3 ( Oj, q 3,q4 ) V4 ( q 1 q 2
—q 3 q4 )V3—( Oj, —q 1 q2 )I—m [F3 ( 1co cot co2 )F, ( 1co, co3 co4 ) ]

qI q2 q3 q4

(9d)

I"=432511

q& q2 q3 q4

I' '=432k'
q) q2 q3 q4

rts'=648X-'

2C04
V4(Oj, q „q2,q3) V3( —q 1, —q2, q4) V3(()j,—q„q4) — Im[F4(i co,cot.co2 co3)1

co4+ Q~

(9e)

V3(OJ 'ql q2 }V3( 'q1 q3 'q4 }V3( 'q3 'q4 q5) V3(oj —q5 —q2 )

2602
V3(Oj, qt q4)V4( qt, q3, q—3,q2)V3—(Oj, q2, q4}(—2n3+—1) 2 2 ™[F3(icoa)t co4)]

(co2+ Q„)

r'"'=648S-'

q l, q2, q3, q4, q5

q( ~qg~q3~q4~q5

2cog
F3(iQ, co3, co4)Im[F3(i co,cot, co2)],

(co5+Q„)

V3(OJ qt, q2}V3( —qt q3 'q5}V3( q2 q3 q4}V3(oj q4 q5 }——

2cip3
Im[F3(ico, cot, co2)F3(ico, co4, co5)] .

(co3+Q„)

(9g)

(9h)

In a11 expressions given above momentum conservation
holds. At each vertex in the diagrams of Fig. 1 this con-
dition requires g;k;=0. The further condition that a
single k vector is representative of the sum in the whole
Brillouin zone restricts the matrix elements involving the
optical phonon (Oj) to only terms of the type
V3(Oj, kjt, —kj2) and V4(Oj, kj „—kj2, 0j). For other
matrix elements which do not involve the (Oj) phonon as
those of the type V4( —ktj„k3J3, —k3J3, k2J2) occurring
in Eq. (9e), we used the average value

( V4( ktJ1 k3J3 k3J3&k2J2 ~

= ( I /X) g V4(OJ 1,kJ3, kJ3, 0J2 ), —(10)

where N is the appropriate normalization factor.
Before closing this section we notice that, in addition

to the diagrams of Fig. 1, there are two other fourth-
order diagrams that were not considered in the previous
discussion. These two diagrams,

both give zero contribution to the phonon bandwidth if
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the standard technique of phonon lines renormalization is
used. If, however, the fluctuations of the thermal bath
are taken into account diagram i gives a contribution to
the bandwidth whereas diagram I is still not effective. In
the next section we give an estimate of the contribution
of diagram i and we show that this contribution is 1 order
of magnitude smaller than those of the others.

III. NUMERICAL CALCULATIONS

CO2 crystallizes in the cubic system, space group Pa3
(Th) with four molecules per unit cell. The crystal
possesses, in addition to the three acoustic branches,
seven optical lattice branches. At the zone center these
modes classify as three librational phonons (Eg, Tg, Tg+ )

active in Raman, two translational phonons ( T„,T„+) ac-
tive in infrared, and two translational phonons ( A„,E„)
inactive in both spectra.

The bandwidth of the three Raman-active lattice pho-
nons have been first measured by Schmidt and Daniels"
at constant volume and more recently by Ranson et al.
at constant pressure under high resolution using a tan-
dem interferometer-spectrometer instrument in the range
6—130 K. No bandwidth data exist instead for the other
phonons.

As discussed before, Procacci et al. have calculated
the contribution of three-phonon processes to the band-
widths of the lattice phonons of CO2 with three different
intermolecular potentials. In particular they produced an
intermolecular potential (PRC-2), including atom-atom
and charge-charge interactions, which reproduces very
well the residual bandwidths at T=O for the three
Raman-active phonons and which predicts reasonable
widths for the other four phonons as well as small anhar-
monic shifts. The charge distribution in the molecules
was mimicked by three positive charges on the molecular
axis and by exagons of negative charges around the C—0

bonds. The parameters of the PRC-2 potential of Ref. 7
are listed in Table I.

Using this potential and following the procedure de-
scribed in the previous section, we have calculated the
contributions to the bandwidths of all diagrams of Fig. 1

involving up to quartic terms of the intermolecular po-
tential. The only diagram that has been neglected is thus
diagram c which includes a V5 term, since on one hand
the calculation of the Fourier transform of fifth deriva-
tives of the potential is extremely complex and on the
other hand its contribution to the bandwidths is expected
to be very small for a rapidly converging potential. %'e
shall justify later the validity of neglecting this diagram,
when we discuss the convergence of the PRC-2 potential.

Calculations were made at constant volume for five
different temperatures in the range 5—150 K, using the
extrapolated unit-cell parameters at T=O given in Ref. 7.
In principle constant pressure data should be compared
to constant pressure calculations including in these the
effect of the thermal expansion of the crystal. Such cal-
culations are very involved and not feasible for the mo-

2
(cm]

5

4. ~

3

TABLE I. PRC-2 intermolecular potential for crystalline
CO2.

Atom-atom potential
V= A exp( —Br)—Cr

A B

0—0
C—0
Rc~

9 607
14004

0.85

2.924
3.404

720.7
271.3

d

q2
rl
r2

Electrostatic potential
V =q)qq/r'

—0.8232
0.1519
1.0743
1.5232 50

W

150 Tt~)

'Units of kcal/mole and A.
0

In units of A.
0

'q in units of electron charge (e); r in A.
dThe q, charge is divided into six equal charges distributed on a
regular hexagon at distance d=0.3 A from the axis.

FIG. 2. Temperature dependence of the linewidth of the T~+

phonon. Open circles: experimental data (Ref. 8); a, calculat-
ed including only the lowest-order term [diagram (a)]. b, Cal-
culated including the terms corresponding to diagrams (a)—(h)
of Fig. 1.
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ment even with large computational facilities. In order
to ascertain whether or not our comparison is still mean-
ingful, we have done a calculation of the phonon band-
widths at the temperature of 85 K, where the unit-cell
volume is known, assuming only three-phonon process-
es. This calculation produced bandwidths with negligible
differences from those calculated at constant volume. A
previous paper discusses in detail the discrepancies exist-
ing between the constant pressure data and the constant
volume data of Schmidt and Daniels, " showing that
these are essentially due to the deconvolution technique
utilized by the last authors. For these reasons we have
utilized the data of Ref. 8 for comparison with our calcu-
lations.

The calculated contributions to the bandwidths are re-

ported in Table II. For the three Raman-active phonons
we compare in Figs. 2-4 the experimental bandwidths
with the curves calculated using only three-phonon pro-
cesses (curves a) and with those obtained by adding to
these the contributions of higher-order processes (curves
b). The figures show very clearly the importance of the
higher-order terms. The first type of curves fit the experi-
mental data only at low temperatures and diverge consid-
erably from them at higher temperatures. The second set
of curves correctly reproduce instead the nonlinear tem-
perature evolution of the bandwidths in the full tempera-
ture range considered. Even without stressing too much
the agreement obtained, it is certainly very satisfactory to
notice that the fit is better than the most optimistic pre-
diction. Actually the experimental data are perfectly

TABLE II. Contributions to the half-width I (cm ) of the optical phonons at various tempera-

tures, resulting from diagrams (a)-(h) of Fig. 1, calculated with the PRC-2 potential.

Mode T (K)

5.0
30.0
60.0

100.0
150.0

(a)

0.85
0.98
1.34
2.01
2.87

(b)

0.00
0.00
0.01
0.02
0.04

(d)

—0.07
—0.08
—0.14
—0.29
—0.58

(e)

0.17
0.19
0.32
0.65
1.30

0.00
0.00
0.02
0.05
0.14

(g)

0.16
0.20
0.39
0.87
1.80

(h)

—0.13
—0.15
—0.25
—0.51
—1.02

Total

0.97
1.14
1.68
2.80
4.55

5.0
30.0
60.0

100.0
150.0

1.30
1.54
2.32
3.56
5.14

0.00
0.00
0.01
0.02
0.06

—0.10
—0.12
—0.23
—0.50
—1.03

0.28
0.33
0.57
1.18
2.38

0.00
0.00
0.03
0.10
0.23

0.27
0.35
0.71
1.62
3.39

—0.21
—0.25
—0.48
—1.04
—2.13

1.54
1.84
2.93
4.94
8.04

5.0
30.0
60.0

100.0
150.0

0.41
0.56
0.92
1.46
2.14

0.00
0.00
0.03
0.09
0.22

—0.02
—0.02
—0.05
—0.11
—0.22

0.05
0.06
0.10
0.21
0.43

0.00
0.01
0.05
0.17
0.40

0.05
0.06
0.12
0.29
0.60

—0.04
—0.05
—0.10
—0.23
—0.48

0.44
0.61
1.07
1.88
3.09

E„ 5.0
30.0
60.0

100.0
150.0

0.24
0.41
0.79
1.31
1.97

0.00
0.00
0.02
0.05
0.12

—0.03
—0.03
—0.06
—0.14
—0.30

0.07
0.09
0.17
0.37
0.75

0.00
0.01
0.04
0.14
0.33

0.07
0.10
0.22
0.51
1.07

—0.06
—0.07
—0.14
—0.32
—0.68

0.31
0.50
1.02
1.90
3.27

5.0
30.0
60.0

100.0
150.0

0.11
0.20
0.40
0.66
0.98

0.00
0.00
0.01
0.05
0.11

—0.02
—0.02
—0.05
—0.11
—0.24

0.06
0.08
0.16
0.34
0.69

0.00
0.01
0.04
0.15
0.37

0.06
0.09
0.20
0.47
1.00

—0.04
—0.06
—0.12
—0.27
—0.56

0.18
0.29
0.64
1.28
2.35

5.0
30.0
60.0

100.0
150.0

0.09
0.18
0.37
0.64
0.98

0.00
0.00
0.02
0.07
0.16

0.00
0.00
0.00

—0.01
—0.01

0.01
0.02
0.04
0.09
0.20

0.00
0.00
0.03
0.10
0.25

0.01
0.02
0.05
0.13
0.29

0.00
—0.01
—0.01
—0.02
—0.03

0.10
0.21
0.50
1.01
1.82

5.0
30.0
60.0

100.0
150.0

0.08
0.17
0.36
0.63
0.97

0.00
0.01
0.04
0.12
0.30

0.00
0.00
0.00
0.00
0.00

0.01
0.02
0.07
0.18
0.39

0.00
0.01
0.05
0.16
0.39

0.01
0.02
0.09
0.24
0.55

—0.01
—0.01
—0.01
—0.01
—0.01

0.09
0.22
0.59
1.33
2.58
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FIG. 4. Temperature dependence of the linewidth of the Eg
phonon. See caption to Fig. 2.

FIG. 3. Temperature dependence of the linewidth of the Tg
phonon. See caption to Fig. 2.

reproduced for the T+ phonon and with small differences
for the E phonon. Only in the case of the T phonon
the calculated curve seems to have a less steeper slope
than the experimental data. Processes higher than the
lowest-order three-phonon decays of diagram a are thus
not negligible, as often assumed, except that at very low
temperatures where the thermal bath is almost complete-
ly depopulated. At higher temperatures their contribu-
tion is instead of the same order of magnitude or even
larger than that due to three-phonon decay processes. In
Table III we report the average values of the cubic and
quartic coupling coefficients used in the present work.
This table shows that the cubic coupling terms are in
average constant with the phonon frequency whereas the
quartic terms decrease when the phonon frequency in-
creases.

&e now discuss in some detail the different diagrams
of Fig. 1. The analysis of their contributions to the band-
widths, given by Eqs. (9a)—(9h), shows that they can be
classified in three groups.

(i) Diagrams (a), (e), and (g) whose contribution de-
pends on the function F3(iso, co;, co~ ) and increases with
increasing frequency. These processes represent three-
phonon decay mechanisms and differ only because of the

TABLE III. Average anharmonic coupling coefficients for
the optical phonons of solid CO2 (PRC-2 potential).

Mode

T+
g

T„+

A„
E„
T
T.
Eg

135.9
118.4
103.3
92.4
87.0
75.2
74.9

0.274 x 10-'
0.369x10 '
0.268 x 10-'
0.445 x 10
0.428x10 ~

0.214x 10-'
0.320x 10

V4

0.931x10-'
0.884x 10
0.156x10 '
0.115x 10
0.118x 10-'
0.135x10-'
0.154x 10-'

different coupling of the intermediate phonons with the
thermal bath. The increase of the contribution with in-
creasing phonon frequency can be easily understood on
the basis of the average anharmonic coefficients given in
Table III. The V3 terms of the potential are in fact prac-
tically independent on the phonon frequency: as a result,
the anharmonic terms of diagrams (a), (e), and (g), which
are dominated by the cubic anharmonicity, depend essen-
tially on the number of possible decay channels, thus in-
creasing with increasing phonon frequency.

(ii) Diagrams (b) and (f) whose contribution involves
the function F4(i co,co;,cof, cok ) and behave thus as four-
phonon processes. Their contribution to the overall
bandwidth is very small for all phonons and decreases as
the phonon frequency increases. Table III shows that the
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V4 potential terms are larger for the low-frequency pho-

nons; thus the same is true for the contributions of dia-

grams (b) and (f) which are essentially controlled by the
quartic anharmonicity. Even if the contribution is sma11

in the temperature range considered, it is worth discuss-
ing the relaxation mechanisms described by the fourth-
order diagram (b). Its contribution to the half-bandwidth
is given by

I =96fi
i V4(OJ, &&,&2, &3) i I[(n 1+1)( n2+1)(n 3+1) n—&n2n3]5(co c—o, c—o2 c—o3)

+3[n &(nz+ I )(n3+ I)—(n, + I )nzn3]5(co +co'[ co2 co3)

+3[nin2(n3+ I ) —(n, +1)(n2+1)n3]5(co +co&+co2 co—3) j .

TABLE IV. Contributions to damping of different decay processes corresponding to diagram b (see text).

Up-down

Mode T (K)
Down Up Total Pure dephas.

Total

5
30
60

100
150

0.0002
0.0003
0.0004
0.0008
0.0016

100.0
27.1

7.7
4.9
4.1

0.0000
0.0000
0.0000

—0.0001
—0.0002

0.0
0.0
0.6
0.5
0.5

0.0000
0.0007
0.0051
0.0162
0.0381

0.0
74.0
92.8
95.7
96.5

0.0000
0.0005
0.0033
0.0105
0.0247

0.0
52.1

61.5
62.2
62.5

0.0002
0.0010
0.0054
0.0169
0.0395

5
30
60

100
150

0.0002
0.0002
0.0003
0.0005
0.0010

100.0
15.2
3.6
2.2
1.8

0.0000
0.0000
0.0000

—0.0001
—0.0003

0.0
0.0
0.4
0.4
0.4

0.0000
0.0010
0.0072
0.0234
0.0554

0.0
84.8
96.8
98.2
98.6

0.0000
0.0005
0.0037
0.0115
0.0270

0.0
49.1
49.1

48.4
48.1

0.0002
0.0011
0.0074
0.0238
0.0562

5

30
60

100
150

0.0004
0.0004
0.0007
0.0013
0.0025

100.0
11.3
2.4
1.4
1.1

0.0000
0.0000

—0.0001
—0.0004
—0.0010

0.0
0.3
0.4
0.4
0.4

0.0000
0.0034
0.0276
0.0916
0.2185

0.0
89.0
98.0
99.0
99.3

0.0000
0.0016
0.0115
0.0370
0.0874

0.0
42.3
40.7
40.0
39.7

0.0004
0.0038
0.0282
0.0925
0.2200

E„ 5
30
60

100
150

0.0002
0.0002
0.0004
0.0007
0.0013

100.0
10.0
2.2
1.3
1.1

0.0000
0.0000

—0.0001
—0.0003
—0.0006

0.0
0.5
0.4
0.5
0.5

0.0000
0.0020
0.0157
0.0520
0.1240

0.0
90.5
98.2
99.2
99.4

0.0000
0.0014
0.0095
0.0302
0.0709

0.0
63.3
59.4
57.5
56.9

0.0002
0.0022
0.0160
0.0524
0.1247

5
30
60

100
150

0.0002
0.0002
0.0003
0.0005
0.0010

100.0
9.9
1.9
1.1
0.8

0.0000
0.0000

—0.0001
—0.0002
—0.0006

0.0
0.6
0.5
0.5
0.5

0.0000
0.0015
0.0138
0.0472
0.1138

0.0
90.1

98.6
99.4
99.6

0.0000
0.0007
0.0056
0.0187
0.0448

0.0
41.9
40.2
39.4
39.2

0.0002
0.0017
0.0140
0.0475
0.1143

5
30
60

100
150

0.0002
0.0002
0.0003
0.0006
0.0012

100.0
8.4
1.7
1.0
0.8

0.0000
0.0000

—0.0001
—0.0004
—0.0010

0.0
0.4
0.5
0.6
0.6

0.0000
0.0023
0.0198
0.0668
0.1604

0.0
92.0
98.9
99.7
99.8

0.0000
0.0010
0.0084
0.0280
0.0671

0.0
41.8
41.9
41.8
41.7

0.0002
0.0025
0.0200
0.0671
0.1607

5
30
60

100
150

0.0003
0.0004
0.0006
0.0013
0.0025

100.0
7.2
1.6
1.0
0.8

0.0000
O.QOOO

—0.0002
—0.0007
—0.0017

0.0
0.6
0.6
0.6
0.6

0.0000
0.0049
0.0379
0.1242
0.2950

0.0
93.3
99.0
99.6
99.7

0.0000
0.0024
0.0163
0.0515
0.1210

0.0
46.3
42.4
41.3
40.9

0.0003
O.OQ52

0.0383
0.1248
0.2958
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The first term describes a down-conversion process in
which the optical phonon decays into three phonons of
lower energy, the second an up-down process in which a
phonon of the thermal bath is fused with the optical pho-
non to produce two phonons, and the third an up-
conversion process in which two phonons of the bath
combine with the optical phonon to give rise to a higher-
energy phonon. These different processes are schemati-
cally represented below by the diagrams bd, w„, b„p
and b„, respectively.

bdown bup-down b„p

Im[F3(ico, co, , coj )F3(ico,cok, co&)]

=1m[(b;i+i I;i )(b ki+i I k& ) ]

(12)

A special case of the up-down process is that in which
the annihilated and created phonons co, and co2 are the
same and the other created phonon co2 is the optical pho-
non co itself. This corresponds to a pure dephasing pro-
cess which contributes to the width without changing the
phonon occupation numbers. The separate contributions
of the three decay and of the pure dephasing processes
are shown in Table IV. The up-down conversion process
is by far the most important one and about one-half of its
contribution is due to the pure dephasing process.

(iii) Diagrams (d) and (h) whose contribution involves
produces of the type F3(ico, co;, co )F3(ico,cok, coI) and
increases with increasing phonon frequency. In contrast
to all other diagrams these give rise to negative contribu-
tions to the bandwidth. Such a result can be, however,
easily understood by considering expressions (9d) and (9h)
for the half-bandwidths. As pointed out before, both
equations include the imaginary part of products of two
complex quantities of the type b; +iI,". The real part of
F3(ico,co;, co ) is the anharmonic frequency shift and the
imaginary part the damping. The bandwidth will be then
proportional to

I '=Pb, (T)(n, ) ( I, ) + ,'I3[b, ,(T)—b, ,(0)]—(I, ) (13)

obtained by simply introducing the complex anharrnonic
frequency of the scattering phonon co& in the expression
for occupation number occurring in the self-energy of di-
agram i. We found that, at the temperature of 80 K, this
contribution is of the order of 0.005-0.015 crn ', de-
pending on the phonon considered, and goes to zero as T
goes to 0. For this reason we have neglected it in our cal-
culations. A more complete evaluation of this contribu-
tion will be presented in a forthcoming paper. '

occurrence of negative contributions for these diagrams
is simply a consequence of the perturbation technique.
At each level of perturbation, it is only the total contribu-
tion to the bandwidths of all elementary diagrams which
is physically meaningful and must therefore be always
positive and not necessarily that of the individual ones.

We discuss now briefly the validity of the PRC-2 po-
tential used in our calculations. In Table V we report the
average values of the coupling coefficients ( V3 ) ( V4),
( V3 ) ( V4 ), and ( V3 ) for the PRC-2 as well as for the
more anharmonic PRC-1 potential of Ref. 7. The cou-
pling coefficients ( V3 ) and ( V4 ) are about the same for
the PRC-1 potential while the quartic anharmonic
coefficient is smaller than ( V3 ) for the PRC-2 potential.
We consider this as an indication that the anharmonic ex-
pansion is a fast converging series for the PRC-2 poten-
tial; as a consequence terms of the type V3 V~, occurring
in the contribution of diagram c, are expected to be
smaller than those of the type V3V4 or V3. Diagram (c),
not included in the present calculation is thus expected to
bring a minor contribution to the total bandwidths.

We conclude therefore that the PRC-2 potential has
the right degree of anharrnonicity and the correct conver-
gence to reproduce correctly the complete dynamical be-
havior of the CO2 crystal up to the fourth-order pertur-
bation level. Unfortunately no data exist for the band-
widths of the infrared active phonons and it would cer-
tainly be interesting to dispose of these to see if our pre-
dictions are correct.

In the previous section we have discussed the fact that
diagram i gives rise to a contribution to the width if the
fluctuations of the thermal bath are taken into account. '

We have estimated this contribution using the approxi-
mate expression

which shows that in both cases the contribution to the
width, due to the phonons co; and ~ is modulated by the
frequency shift due to the phonons cok and col and vice
versa. Previous calculations have shown that cubic shifts
are normally negative: therefore, the terms 5; I &I and

b«II;z will contribute negatively to the bandwidth. The
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TABLE V. Average anharmonic coe5cients for PRC-1 and PRC-2 potentials.

PRC-1
PRC-2

0.429 )( 10
0.333~10 2

V4

0.333X 10
0.117X 10-'

I V3 I' V4

0.135X 10
0.386 &( 10

0.197X 10-'
0.118X 10

p'2

0.128 X 10
0.144x 10-'
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