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Screening properties of the two-dimensional electron gas in the quantum Hall regime
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The screening properties of a two-dimensional electron gas (2D EG) in a quantizing magnetic

field at low temperatures are calculated within the Hartree approximation. The effect of a periodic
external potential on the equilibrium state is studied for two models of the 2D EG, a strictly two-

dimensional Hall strip geometry and a three-dimensional model of a heterostructure without lateral

confinement. The single-particle energy spectrum is found to depend drastically on the collective

state of the 2D EG, i.e., the position of the Fermi energy with respect to the Landau levels. Strong
nonlinear effects, such as perfect screening in only a part of the sample and pinning of the energy

spectrum to the Fermi level, are observed.

I. INTRODUCTION

In this paper we investigate the screening properties of
a two-dimensional electron gas (2D EG) in a strong per-
pendicular magnetic field B. This is an interesting prob-
lem on its own right, since due to the Landau quantiza-
tion the screening is highly nonlinear and strongly 8
dependent. From qualitative arguments surprising effects
such as perfect screening in certain subregions and partial
pinning of the single-particle energy spectrum to the Fer-
mi level have been predicted for the 2D EG in a fluctuat-
ing external potential which varies slowly on the scale of
the magnetic length 1=(eB/Pic) '~2. Such effects are
important for an understanding of the spatial distribution
of charge and current density in the quantum Hall effect
(QHE).

On the other hand, these intriguing screening proper-
ties play an important —though not obvious —role for
the understanding of recent measurements of the capaci-
tance, the activation energy, ' the gate voltage and
current, ' ' '" the specific heat, ' and the magnetiza-
tion, ' which yield information about the thermodynamic
density of states at the Fermi level, i.e., the derivative of
the electron density n, with respect to the chemical po-
tential p, DT= t)n, /Bp. For both, Si inetal-oxide-
semiconductor field-effect transistors (MOSFET's) and
GaAs/Al„Ga, „As heterostructures, unexpectedly large
values of DT everywhere between adjacent Landau levels
(LL's) have been obtained even in strong magnetic fields,
where the LL's are well separated. Early attempts to ex-
plain these experiments neglected many-body effects and
assumed a single-particle density of states (DOS) with a
constant background underlying Gaussian shaped
broadened LL's. Recently it became clear, however, that
the experimenta1 findings can be understood as a conse-
quence of an oscillatory dependence of the effective
linewidth on the filling factor v=2ml n, of the LL's, i.e.,
a many-body effect related to the screening of long-range
charge-density fluctuations by the 2D EG.

Clear experimental evidence for oscillations of the
linewidth of LL's as a function of v has recently been ob-

tained from cyclotron resonance measurements' and,
more directly, from the beautiful luminescence measure-
ments by Kukushkin and Timofeev, ' ' which yield an
immediate image of the density of states in the whole
conduction-band region below the Fermi level. As they
demonstrate, the width of the LL's oscillates as a func-
tion of the filling factor v showing pronounced maxima
for complete filling of the levels. Correspondingly, the
value of the DOS in the rniddle between two adjacent
LL's is an oscillatory function of the position of the Fer-
mi level p, being maximum if p is well between adjacent
Landau levels and being essentially zero if p is in the mid-
dle of a broadened level. '

The physical origin of these oscillations is screening of
long-range charge-density fluctuations by the 2D EG.
Several authors' have calculated an oscillating
linewidth owing to the scattering of electrons by random-
ly distributed charged impurities. Screening of the im-

purity potentials was treated in the conventional linear
approxiination in terms of a dielectric function which
reflects the oscillatory behavior of the DOS. The sim-
plest reasonable approximations were used to calculate
the linewidth from the screened impurity potentials.
Since the linewidth in turn determines the dielectric func-
tion, we refer to these calculations as self-consistent
screening theories (SCST's). They emphasize the origin
of the oscillations: the DOS at the Fermi level. If this is
large (p within a LL), the electrons effectively screen the
scattering potentials and the linewidth becomes small. If
the DOS is small (p between adjacent LL's), screening is
poor and strong scattering potentials lead to a large
linewidth and eventually to broad overlapping Landau
levels.

Apart from the general trends, the predictions of the
SCST's are, however, not reliable, especially in the poor
screening situation. The scattering effects of the indivi-
dual long-range impurity potentials are added in-
coherently in these theories which leads to very large
values for the linewidth. In reality, the electrons interact
with the coherent superposition of impurity potentials so
that the linewidth is affected by the long-range tails of the
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impurity potentials only via long r-ange fluctuations of the

impurity density, not by the impurity density itself.
In a recent series of papers ' a "statistical inhomo-

geneity model" has been investigated which distinguishes
between two different length scales on which a random
array of charged impurities (such as donors in the barrier
of a Al„Ga, „As heterostructure) affects the 2D EG
differently. Short-range potential fluctuations on the
scale of typical interelectronic distances ( = 100 A) are as-
sumed to lead to a level broadening, as usual. A Gauss-
ian line shape of the broadened LL's is assumed. Fluc-
tuations of the impurity density on a mesoscopic length
scale of 10 A, which lead to an inhomogeneous density
distribution of the screening 2D EG, are taken into ac-
count by an ensemble average over homogeneous systems
with a statistical distribution of electron densities n, .
The experimental results' " on the apparent back-
ground DOS are nicely reproduced by the statistical in-
homogeneity model with a density fluctuation of the or-
der of 1%." Fluctuations of this order of magnitude
and a corresponding effect on the apparent inter-LL DOS
must be expected, since for a typical value of
n, &10' cm an area of the order (10 A) contains an
average number of %&10 electrons with a statistical
fluctuation EN/N-N '~ ~ 10 . In the statistical in-

homogeneity model the magnetic field dependence of the
density fluctuation hn, was treated as a phenomenologi-
cal input. In the spirit of the model one should, however,
calculate this dependence from the magnetic-field-
dependent screening of an inhomogeneous external elec-
trostatic potential by the 2D EG. A major aim of our pa-
per is to present such calculations and thus to complete
our understanding of the "DOS measurements".

In the present paper we neglect short-range potential
fluctuations such as arising from individual, randomly
distributed charged impurities completely. We concen-
trate, instead, on the screening of a given external elec-
trostatic potential V(r), which varies slowly on the scale
of the magnetic length, thus satisfying l

~

VV
~

&&A'co,

with co, =eB /mc the cyclotron frequency. We will, how-
ever, allow the total variation of V(r) over long distances
to be large, max

~

V(r) —V
~

~ A'co„where V is the spatial
average of V(r). As a simple but typical example we will
consider external potentials which modulate the 2D EG
only in one direction. This keeps the mathematical treat-
ment simple and is also of relevance to recent experi-
ments on the modulated 2D EG in heterostructures with
a microstructured linear-grating gate.

We emphasize that, for the problems of our present in-
terest, we cannot use the methods which have been
developed in the SCST's. These theories are most ade-
quate for the case of randomly distributed, effectively
screened, and thus short-range, Coulomb scatterers.
Averaging over the impurity configurations is an impor-
tant ingredient of these theories and leads to a spatially
homogeneous situation with an averaged Green's func-
tion depending only on the Landau quantum number but
not on the center-coordinate quantum number xo (cf. Sec.
III below), and to imaginary parts of self-energy and
Green's function which determine the level broadening.
The scattering potentials are screened with a dielectric

function which self-consistently contains level broadening
effects due to the screened scattering potentials. This is a
type of self-consistent-field approximation for the scatter-
ing potentials, of the same kind as the calculation of self-
energy contributions with the dressed Green's function.
This mean-field approximation for the scattering poten-
tials is adequate for the averaged system and is made in
addition to the random-phase approximation for the mu-
tual Coulomb interaction between the electrons.

The situation of our present interest is, however, very
different. We consider a fixed spatially varying external
potential and ask for the corresponding equilibrium
values of the position-dependent electron density and the
screened potential. There is no averaging over impurity
configurations, and no imaginary parts are introduced.
The varying potential lifts, however, the degeneracy of
the Landau levels, and the energy eigenvalues become
dependent on the center coordinate xo, with the periodi-
city of the external potential, so that one may speak of a
"broadening" of the Landau levels into bands of finite
width. We solve the problem within the Hartree approxi-
mation, i.e., we treat the mutual Coulomb interaction be-
tween electrons in a self-consistent-field approximation
where the electrostatic potential for a given electron den-
sity distribution is derived from Poisson's equation. The
electron density for a given effective potential is, in turn,
evaluated from the exact Schrodinger equation, without
using any perturbation expansion or linear-response as-
sumptions as in the SCST's. A further difference con-
cerns the mixing of Landau levels. In the SCST's large
level widths are calculated' for completely filled Lan-
dau levels which lead to a considerable overlap of adja-
cent levels, and thus the mixing of Landau levels by the
scattering potentials should be taken into account. Here
we consider, on the other hand, only slowly varying po-
tentials V(x) with I

~

dV/dx
~

&%co,. Thus, the local
mixing of Landau levels at a given center coordinate xo
by V(x) is not very important. Nevertheless, we take it
into account in the numerical calculations by diagonaliz-
ing a sufficiently large matrix. We will show, however,
that long-range electrostatic forces prohibit an overlap of
the Landau bands, E„+&( xo)) E„( xo) for all xo and xo.
This type of level repulsion also cannot be treated by the
methods of the SCST's. For these reasons, we use the
mentioned Hartree approximation for our numerical cal-
culations.

Recently an analytical consideration of screening
effects based on the same Hartree approximation has
been given by Labbe. . He derives a set of nonlinear
equations for the Fourier coefficients of the screened po-
tential, but does not attempt to solve it explicitly. Labbe
does not mention any of the peculiar nonlinear screening
effects which are calculated and discussed in the present
paper.

In Sec. II we demonstrate that the conventional linear
theory of screening is applicable only if a Landau level is
nearly half-filled. Then the screening is perfect in the
low-temperature limit. If the LL is nearly full or nearly
empty, the linear approximation breaks down. We,
therefore, calculate without linearization the response of
the 2D EG to an external modulating potential self-
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consistently in the Hartree approximation. This yields
the energy spectrum of the electron states, the modulated
electron density, and the total (screened) potential. The
calculations are performed for two models which are de-
scribed in Sec. III. In one of the models the 2D EG is
confined to a strip geometry, so that boundary effects can
be studied. The results are presented and discussed in
Sec. IV. A brief summary is given in Sec. V.

n, (R)=n, —Dr V(R),

where

(2.7)

dn, d
D~ —— ——— ED E E —p

Bp dE
(2.8)

is the thermodynamic density of states, we obtain the
linear screening approximation

II. LINEAR SCREENING APPROXIMATION
V(K)=V,„,(K)— DrV(K) .

zE (2.9)

A. Thomas-Fermi theory
Thus we find V(K)= V,„,(K)/e(K) with the dielectric
function

For a better understanding of the screening properties
of the 2D EG it is instructive to consider the convention-
al Thomas-Fermi approach.

The three-dimensional solution
where the Thomas-Fermi wave vector

(2.10)

~( ) fd3, p(x', y')5(z')
ic

/

r-r'/ (2.1)

2

Q =2m Dz.
K

(2.11)

V(R)= ——fd R', p(R') .
fR —R'[

Taking 2D Fourier transforms, we have

(2.2)

V(K}=— p(X) .

The change density is written as

of Poisson s equation in a medium with a dielectric con-
stant a (a =12.4 in GaAs), determines the potential ener-
gy V(x,y) = —eg(x, y, 0) of the 2D electrons,

defines the screening length 2ir/Q.

B. "Perfect" screening

With the bare Landau density of states
00

D(E)=
2 g 5(E fico, (n+ —,

'—)),
2irl „0

we obtain for ks T «%co, (well separated LL's),

2+i n, =—v =2n +v„,

(2.12)

(2.13)

p(R) =e [n +5n,„,(R)]—en, (R), (2.4)

where n compensates the average electron charge density,
and the perturbation e5n, „, is the source of an external
potential

V,„,(K)= — 5n,„,(K) .
aEC

For an AI„Ga, „As heterostructure with 2n. /E —10
cm and 5n,„,(K)-10' cm one obtains

~
V,„,(K)

~—10 meV. For a system with a microstructured gate
near the one-dimensional transition, 2ir/E-500 nm
and 5n,„,—10"cm,

~
V,„,(K}

~

-60meV.
Of course, we can also consider an external potential in

Eq. (2.3} which is generated by external charges outside
the plane of the 2D EG. As usual within the Thomas-
Ferrni approximation, we assume that the total potential
varies slowly on the microscopic scale, so that it can be
treated similar to a thermodynamic variable in an inho-
mogeneous system. In the case of our present interest
that means slow variation on the scale of the magnetic
length, 1

~

VV
~

&&fico, . Then the electron density is
given by

n, (R)=fdE D (E)f[E+V(R}—p], (2.6)

with D (E) the density of states of the 2D EG and
f(E)= [exp(E/k& T)+ 1] ' the Fermi function at tem-
perature T. Linearizing with respect to V,

where n &0 is the number of the partially filled LL and
v„(with 0 & V„&2) its filling factor in the homogeneous
2D EG. Inserting Eq. (2.12) into (2.8), we find

1 vn vn 2

kiiT 2 2
(2.14)

and

~c vn vn

Q=kr 2 '-2 Q' (2.15)

where
'T

2n.e m

ag
(2.16)

is the Thomas-Fermi wave vector for zero magnetic field,
which is simply given by the effective Bohr radius a~.
For strong magnetic field and low temperature, the
values of Q and e(K) may become very large meaning the
screening becomes much more effective than for zero
magnetic field. This result agrees to leading order in the
small quantity I

~
K

~
with Labbe's dielectric constant,

if we replace v„/2 with v„, i.e., neglect the spin degenera-
cy.

In the numerical calculations we consider a sinusoidal
modulation of the positively charged background with a
period of the order of a = 18a~. For 8 =0, the electrons
will partly screen the external potential caused by this
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modulation so that the effective potential oscillates with
an amplitude which is about a factor of 7 smaller than
the amplitude of the external potential. In a magnetic
field of about 6T (fi~, =10 meV for GaAs) and at a tem-

perature of 1 K (ke T=0. 1 meV), on the other hand, the
screening can be much better, with the amplitude of the
total potential about two orders of magnitude smaller
than that of the external potential, provided the average
filling factor v is close to an odd integer.

C. Breakdown of linear screening

For zero magnetic field the density of states is con-
stant, Do rn /m——A . Then for kz T «p the mean electron
density n, increases linearly with increasing p, and the
linear approximation of Eq. (2.7) is essentially exact.

In a strong magnetic field, however, n, (p) is a
broadened step function and the linear approximation is
only valid if max(

I
V(R) —V

I
) &Pke T, with 1 &P& 2.

For a sinusoidal modulation of the background density,
5n,„,(R)=yn cos(2~x/a), the total screened potential in
the linear screening regime is

V(R) = —Vocos(2nx la), Vo=, (2.17)

scribe this situation adequately, we have to go beyond the
linear screening approximation.

III. THE HARTREE APPROACH

A. Self-consistent equations

We consider the ground state of a 2D EG in the x-y
plane with a perpendicular magnetic field. The electro-
static potential is assumed to be homogeneous only in the

y direction thus allowing for a modulation of the electron
density in the x direction. The single-particle Hamiltoni-
an in the mean-field approximation is

H=g
p,. +—A;

2m)

'2

+V, (3 1)

where Vis the effective electrostatic potential, A the vec-
tor potential due to the magnetic field, and m; are the
effective masses (setting m„=m =m). V is determined
by the external charges and by the mutual interaction of
the electrons. The latter is described in the Hartree ap-
proximation, so that it satisfies Poisson s equation,

and the condition for linear screening becomes
4ne

b V= ( en. —+pb)
K

(3.2)

yne a/a &P keT+Rco, 1—~n Q

2 7TQB
(2.18)

In the low-temperature limit, kz T &&A~„ the amplitude
of the screened potential becomes proportional to k~T,
and condition (2.18) reduces to

y(2n+V„)
2 2 2 2

This is satisfied if the density modulation is not too large
(y &0.5), the magnetic field is not too small (n small),
and if the average filling factor v„ is not too close to 0 or
2. Note that (2.19) is independent of the period a of the
density modulation. Nevertheless, perfect screening can
no longer be expected if Q becomes too small, i.e., of the
order of the magnetic length or less, since then Eq. (2.6)
breaks down.

Let us assume a situation with perfect screening and
with p in the lowest LL (n =0). If now the magnetic
field is lowered, the filling factor ~o increases towards 2,
the amplitude Vo of the total potential, Eq. (2.17), in-

creases, and the condition (2.18) for perfect screening
breaks down. Since k&T &&%co, still holds, the electron
density n, (R) near the minima of V(R), i.e., near the
maxima of 5n,„,(R), is cut off at a value 2/(2~1 ),
whereas near the minima of 5n,„, the electron density
n, (R) can still follow the external modulation. As a
consequence, the 2D EG responds with an anharmonic
density distribution on a harmonic external perturbation.
In this regime the screening becomes strongly nonlinear
and perfect screening can pertain in certain space regions
whereas screening breaks down in others. In order to de-

where n, and pb are the volume densities of the electrons
and the background charges. In the Landau gauge
A=(O, Bx,O) and with periodic boundary conditions in
the y direction the normalized eigenfunctions can be writ-
ten as

4&(x,y, z) =4&(x,z)exp(ikey),

leading to the reduced Hamiltonian

(3.3)

fi 8 A' 8 +—,'men, (x —xo) + V,
2m Bxz 2m, Bz2

n, (x,z) =g g f (Ex p) I
qix(x, y, z)

I

' (3.5)

where p is the chemical potential, g a degeneracy factor,
and Ez the energy eigenvalue. Equations (3.2)—(3.5) will
be solved self-consistently for two models of the 2D EG
and the external charges.

B. Three-dimensional model

In this model one proceeds from a metal-insulator
semiconductor (MIS) structure with a microstructured
gate as in Ref. 28 (see Fig. 1) with a magnetic field im-
posed. The actual microstructure of the gate is represent-
ed by the boundary condition

V(x,z = D;„,) = VG+ Vbrcos—(kox ) . (3.6)

The parameters VG and V~ determine the average elec-

(3.4)

with xo = —l k . The density is obtained from the eigen-
functions and their occupation f(E& —p) by
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tron density and the degree of its modulation respective-

ly, ko =2m /a is the wave vector of the gate structure with

the period a. The system is strictly periodical in the x
direction and therefore a Fourier expansion

V(x,z)= g V„(z)exp( —iq, x),

q, =rkp r =0 +l +P, . . . (3.8)

e—n, (x,z)+pb(x, z)

= —e g [n, „(z)+nd, (z)]exp( i—q„x), (3.7)

is performed. Here the background charge pb has been
identified with the charge —end of the depletion layer.
The solution of Eq. (3.2) is then found to be

with

V~0(z &0)=
eVM 1 2%8

ecosh(
I q„ I D;„,)+sinh(

I q„ I D;„,) 2 '~ ~'"0 "
0

2'~ sinh(
I qr ID;ns) e—cosh(

I q. I
D ~ )

+
K sinh(

I qr I
D )+@cosh(

I qr I D(~ )
I„exp( —

I q„ I
z), (3.9)

exp( —
I q, I

Iz' —z
I

)
G„~o(z',z) = (3.10a)

] Oo

I,~o= exp( —
I q„ I

z')n, ,(z')dz',q„o (3.10b)

and

V„o(z )0)= 4ne
Nd, )+ z —

—,
' n, „(oz)( I

z —z'
I

—z')dz'
0

(3.11)

We do not allow the electrons to penetrate into the insu-
lator, n, (z)=0 for z &0. a;„, and v are the dielectric
constants of the insulator and the semiconductor with
@=a;„,/x„. Nd, ~

and N, represent the depletion and
electron density per unit area averaged over one period of
the microstructure potential. The first term of Eq. (3.9) is
due to the external potential, the second to the Coulomb
interaction, and the third to the image charges.

It is seen from the Hamiltonian in Eq. (3.4), that the
behavior of the electrons in the x direction is dominated
by —,'mco, (x —xo) for large values of

I
x I. Therefore

the wave functions vanish in this limit according to their
asymptotic form given by the Hermite functions. They
also vanish for z (0 and z ~~. The wave functions can
therefore be expressed as

4~(x,z) =@br'N(x, z), (3.12)

where M and N denote the number of nodes in the x and
z directions, respectively. The density is determined by

L„/2

n, ,(z) = lim n, (x,z)exp(iq„x)dxsr
L ~ L, L /2 s

where xo is given by k =n(2n/I. „), n =0,+1,+2, . . .
and g is a degeneracy factor. The Fourier component of
the density can be expressed as

X «E.,,M, N p)4. '—'(z»'
xo,M, N

(3.14)

with

Dins
x

metal
insu(ator P„' ' '(z)= —f I @~N I

exp(iq„x)dx, (3.15)

semiconductor

FIG. 1. Schematic geometry of the microstructured MIS sys-
tem with an imposed normal magnetic field.

M, N, xo
where we have exploited that E„MN and P„are in-

variant under translations xo ~xo+ a. The tilde over the
summation sign means that the xo summation has to be
limited to a single period.

The Eqs. (3.4)—(3.15) establish the complete self-
consistency problem, that is solved iteratively.
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C. Two-dimensional model with edges

In this section we consider a strictly two-dimensional
model, in which the electrons are confined to a Hall strip
geometry. Within this model we are able to study the in-
terplay between edge and "bulk" effects in the 2D system.
The Schrodinger equation (3.4} reduces now to

+—'mao, (x —xo) + V(x) 4(x)=E4(x),
2nl

(3.16}

and the confinement in the x direction is obtained from
the boundary conditions

4( L„/—2) =4(L„/2) =0, (3.17)

which describe the effect of infinitely high potential bar-
riers at x =+ ,'L„. Th—e Hartree potential V(x) is given

by Eq. (2.2), i.e., the electrostatic potential energy in the
plane z =0 of the 2D EG. The 2D charge density is as-
sumed to be homogeneous in the y direction and written
as

p(R) = en, (x—)+enb(x), (3.18)

where nb(x) is the density of a neutralizing background
of positive charge. Then the y' integral in Eq. (2.2}can be
performed analytically, leading to

28 2 I.„/2
V(x)= — f,dx [n, (x') —nb(x )]ln

x x

perturbed system, defined by Eqs. (3.16) and (3.17) with
V(x)=0, which are linear combinations of parabolic-
cylinder functions. Within a suitable subspace of basis
functions the Hamiltonian matrix is diagonalized in each
iteration loop. The most convenient method to study
screening properties within this model is to calculate the
response of the system to modulations of the neutralizing
rigid positive background.

IV. RESULTS AND DISCUSSION

In this section we present the results of the numerical
calculations. We start with the three-dimensional model
of Sec. III A which considers no boundaries in the plane
of the 2D EG. Within this model we can study the
response of the 2D EG to a strictly harmonic external po-
tential, so that a close comparison of the numerical re-
sults with the predictions of the linear screening approxi-
mation of Sec. II is possible.

In Sec. IV B we consider the 2D EG with boundaries.
For real Hall samples, the presence of boundaries is very
important since it allows for the building up of the Hall
field as a response to the current imposed on the sample.
Near the boundaries the effective potential will vary rap-
idly so that the linear screening approximation cannot be
expected to hold. So it is interesting to investigate the
screening properties of the 2D EG near the edges and the
effect of the edges on the screening properties of the bulk.

A. The three-dimensional model

For numerical calculations a GaAs-A1GaAs hetero-
structure is assumed (l~„=12.4, ~;„,= 11.6, m, =m
=0.067mo, and g =2). The insulator thickness and the
period of the harmonic lateral modulation are chosen as
D;„,=26.nm and 2n. /ko ——180 nm, respectively. The
average electron density is n, =2.25 g 10"cm, the den-
sity of the depletion charges Nd p) 3&(10"cm . It fol-
lows from Eq. (3.11) that the external potential has a
strong r =0 component. Therefore, the behavior of the
system in the z direction is approximately independent of
the amplitude VM of the modulating potential in all situa-
tions considered here. In the numerical calculations only
the lowest electrical subband (a single Airy function)
is taken into account. Furthermore, we consider
suSciently high values of the magnetic field, so that only
the lowest two Landau levels (n =0, 1) are partly occu-
pied (we choose v&2. 5). The numerical calculations
showed that it is suScient to consider only three LL's for
a correct description of screening effects in the first two
LL's within this restriction. This was checked by taking
into account up to eight LL's and is a consequence of the
fact that, for a given xo value, the mixing of LL's is not
very important, since the modulation potentials vary
suSciently slowly on the scale I. First, a weak density
modulation ( V~ =25 meV, see Fig. 2) of the electron gas
is studied at a temperature T =1 K for several values of
the magnetic field. Figure 3 shows the dependence of the
energy eigenvalues on the center coordinate xo (cf. Sec.
III). The external modulating potential causes the degen-
eracy of the Landau levels to be lifted, and Landau bands

(3.19}

where charge neutrality has been assumed:
I.„/2

f dx'[n, (x') —ns(x')]=0 .
Z

(3.20)

The electron density is given by

n, (x)= g f(E„„—p)
~
4„„(x)~, (3.21)

L,LE

where 4„„(x)is the normalized eigenfunction of Eq.
(3.16) with n nodes (n =0, 1, . . . ) and E„„ the energy ei-

genvalue. We write

E„„=A'co,[v„(xo)+—,'], (3.22)

(3.23)

For a given background density nb(x), Eqs. (3.16)—(3.22)
must be solved self-consistently. We do this by a suitable
iteration procedure. For practical reasons we expand the
eigenfunctions in terms of the eigenfunctions of the un-

so that the real function v„(xo) reduces to the Landau
quantum number n, if the "center coordinate" xo is far
away from the edges,

~

L„/2 —xo
~

&&I and
~
L„/—

2 —xo
~

&&1. The chemical potential p is determined by
the mean electron density

n, = f dx n, (x)= g f(E„„—p, ) .
X n, xo
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FIG. 2. Normalized electron density at T=1 K for three
values of the filling factor: v=2.4 {dashed line), 2.0 (solid line),
and 1.6 (dash-dotted line). The modulation in the x direction is

due to a harmonic external potential of the amplitude V~ ——25
meV at z = —D;„,. The electron density is shown at the z value

where it is maximum.
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of finite width develop. The energy zero is chosen such
that the LL's of the homogeneous system appear at
Ea =(n + —,

' )Ace, . As seen from Fig. 3, for filling factors
v=1.6 and v=2. 4 the width of the Landau bands is very
small, not much larger than kz T=0. 1 meV. This means
that the external harmonic potential (see Fig. 4) is
screened very effectively, as one expects from the linear
screening theory of Sec. II. In agreement with the esti-
mate Eq. (2.17), the screening for v=1.6 is better than
for v=2. 4, where the bandwidth is larger and the oc-
curence of higher harmonics in the screened potential
(cf., Fig. 4) indicates the breakdown of linear screening.

As the filling factor approaches the value @=2, the
screening properties change drastically. The linear
screening approximation predicts at this filling factor no
screening at all. The numerical results show, however,
even for v= 2 a considerable screening, so that the ampli-
tude of the screened potential is substantially smaller
than that of the external potential. The effect of the
remaining screened potential on the energy spectrum is
clearly seen in Fig. 3. The Landau bands show the same
type of oscillation as the potential and the top of the "ful-
ly occupied" n =0 Landau band as well as the bottom of
the "empty" n =1 Landau band appear at the Fermi en-
ergy. This result is, of course, not accidental. It is just
the situation in which the thermal redistribution of elec-
trons between the n =0 and the n =1 bands produces a
screened potential with a total variation fuu, (within an
accuracy of about kjiT). The screening cannot be weak-
er, since then the total (screened) potential would vary by
more than Ace, . This, however, would imply an overlap
of the n =0 and the n = 1 bands at the Fermi energy and,
consequently, partially filled bands and high screening
ability. Therefore, the self-consistent situation at v=2 is
one in which both bands just touch the Fermi level.
Since this is an important result, we explain it again in a
slightly different way. If the total variation of the exter-
nal potential is less than fr~„we expect for filling factor

0.5

0.0

-0.5 I i I i I i I i I t I I i I i I i I i I i ( I I I I i I » I I I

50 100 150

x, (nrn)

10

0

-10 I & l i I i I i I i I & I s I i ( i I i ( i I i I i I I I I ( i I
I I
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FIG. 4. External potential (solid line) for VM ——25 meV and
the corresponding self-consistently screened potential at v=2. 0,
T =1 K (dash-dotted line), v=2.0, T =10 K {dashed line), and
v=2.4, T = 1 K (dotted line), respectively. The z value is taken
at the maximum of the electron density distribution as in Fig. 2.

FIG. 3. Landau bands (thick lines) and corresponding Fermi
levels (thin horizontal lines) for V ——25 meV, T=1 K, and
different values of the filling factor: (a) v=2.0 (solid lines), 2.3
(dash-dotted lines), 2.4 (broken lines); {b) v=2. 0 {solid lines), 1.7
(dash-dotted lines), and 1.6 (dotted lines).
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v=2 essentially no screening. The lowest LL is com-
pletely occupied, the electron density is constant. If the
total variation of the external potential is, however,
somewhat larger then Ace„ the situation is different. If
we assume no screening for v=2, as the linear theory pre-
dicts, we get a pattern of alternating stripes of high elec-
tron density, where the n =0 and the n = 1 states are oc-
cupied, and stripes of low density, where E„p )Ep
and no states are occupied. This density modulation in-
duces an electrostatic potential which screens the exter-
nal potential, contrary to our assumption. Thus we see
that there must be some screening, which requires a
redistribution of electrons between the n =0 and the
n =1 Landau bands and is possible if both are close to
the Fermi level but do not overlap too much. As a result,
the total variation of the screened potential will be close
to Ace, . We want to emphasize that the relatively large
screening for v=2 (i.e., fico, =8.4 meV and t =12 nm) is a
consequence of the large total variation of the external
potential, b V,„,=16 meV ~IIico, (cf. Fig. 4), and not a
consequence of a large local electric field. The maximum
electric field is here of the order of 0.02 mV/A, and

~
dV,„,/dx

~

l/A'co, =0.25. The same type of nonlinear
screening is expected if the same 4V,„, results from a
modulation with a larger period and, therefore, a smaller
electric field. We do not present such results, since in our
approach the computation time increases rapidly with
the modulation period a. On the other hand, much
larger electric fields can be produced in rnicrostructured
heterostructures. Using Eq. (2.5) one estimates from the
data given by Hansen et al. that the 2D EG in their
sample splits into one-dimensional channels if the total
variation of the external potential exceeds EV,„,-200
meV. For a period a =500 nrn, this implies an electric
field of the order of 0.1 rnV/A. Whether or not an exter-
nal potential can be screened by the 2D EG depends,
however, mainly on the total variation 5V,„„and not on
the local electric field. A further demonstration of this
fact will be given below.

$f the filling factor is increased above the value 2 by
lowering the magnetic field, the states in the n =1 Lan-
dau band with center coordinates xp near the potential
minimum are occupied first. Thus, the electron density
increases near the potential minimum, but decreases near
its maxima, since the degeneracy factor of the n =0 LL
becomes smaller. As a result, the screening of the poten-
tial becomes better and the Landau bands become srnall-
er, while the bottom of the n =1 band is pinned to the
Ferini level [see Fig. 3(a), v=2. 3). Finally the screening
becomes nearly perfect [Fig. 3(a), v=2. 4]. If the filling
factor is lowered below the value 2, the states with xp
near the potential maxima are depopulated first. Again
the screening becomes better and the bands become
smaller, but now the Fermi level is pinned to the top of
the n =0 band [Fig. 3(b), v= 1.7].

Starting from the nearly perfect screening situation
[Fig. 3(b), v= 1.7] we understand the same results as fol-
lows. If the filling factor approaches 2 from below, the
states with center coordinates xp close to the minimum of
the screened potential (the state with minimum energy)

are completely occupied first. If the magnetic field de-
creases (v increases) further, the electron density near the
potential minimum decreases and the screening in this re-
gion breaks down. As a consequence, a pronounced
minimum of the total potential, and thus of the energy
spectrum, develops, whereas perfect screening persists at
the top of the n =0 Landau level, which remains pinned
to the Fermi energy [Fig. 3(b), v=1.7].

Figure 5 shows the variance

An, n, x —n,
—L /2 ~2X S

1/2

(4.1)

0.20

0.15
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I i I i I i I i I i I i I i I i I i I i I i I i I0.0 I I I

14 16 18 20 22 24 26

FIG. 5. Variance An, /n, vs the filling factor for V~ ——25
meV at T= 1 K (solid line) and T = 10 K (dashed line).

of the electron density n, (x). In situations with good
screening, the amplitude of the density variation is about
20% of the average density n, (Fig. 2), so that
An, /n, =0.14. At filling factor v=2, the electron gas
behaves more rigidly and does not follow the external
modulation as well. As a consequence, the variance
shows a dip, indicating the reduced screening ability of
the 2D EG.

Figure 5 shows also a result for the higher temperature
T =10 K. In the "perfect screening" regime the screen-
ing becomes poorer, as is already expected from the
linear approximation, since the thermodynamic DOS be-
comes smaller. At filling factor 2 screening becomes
better (see also Fig. 4) since inore states are available for
the thermal redistribution of the electrons. An improve-
ment of the screening properties of the 2D EG with in-
creasing temperature for fully occupied Landau bands
and very low temperature has recently also been observed

experimentally.
'

Figures 6 and 7 show results for a much stronger
modulation of the external potential (V ——60 meV),
leading to a stronger modulation of the electron density
(Fig. 6). The screening properties depend now less drasti-
cally on the filling factor, but qualitatively the results for
the Landau bands can be understood from the discussion
given for the case VM ——25 meV. To obtain a screened
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FIG. 6. Same as Fig. 2, but with V ——60 meV.

potential varying only by about Ace, for v=2, a substan-
tial amount of electrons must be redistributed. This
causes a slight overlap of the n =0 and n = 1 bands (Fig.
7, v=2}, and the density variation is not so strongly re-
duced.

The pinning of the energy spectrum to the Fermi level
is for this large modulation clearly observed only in the
lowest Landau level [Fig. 7(b}].

B. The two-dimensional model with boundaries

CO
I

(a)

The diagonalization of the Hamiltonian was carried
out within the subspace of wave functions of the three
lowest Landau levels. The average electron density
n, =nb was kept constant at n, =2.25)& 10" cm like in

Sec. IV A and the magnetic field B was varied so that the
filling factor for the spin-degenerate system never took a
higher value than 2.6, i.e., the lowest LL filled but the
second one is only partly occupied. In this case the in-
clusion of higher LL's in the diagonalization procedure
did not change the results. This is, of course, only possi-
ble because we use the exact eigenfunctions of the nonin-
teracting system in the bounded Teller geometry as basis
functions.

Figure 8 demonstrates the effect of the boundary con-
dition at +—,'L, =+120 nm. The broken lines refer to the
noninteracting electron system with the electrostatic po-
tential V(x}—=0. The filling factor is v= 1.6, so that the
Fermi energy (not shown) is at ,'fico„and —edge states are
not occupied. The solid lines refer to the corresponding
Hartree result. As seen from Fig. 8(a}, the electrons
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FIG. 7. Same as Fig. 3, but with V ——60 meV.

FIG. 8. (a) Electron density and (b) energy spectrum for
v=1.6 and T=1 K from the strictly two-dimensional model
with boundaries at x =+120 nm and translational invariance in

the y direction. The solid lines refer to the interacting system,
the dashed lines to the corresponding noninteracting system.
The dotted line in (a) indicates the density distribution of posi-
tive background charges, and the thin solid line in (b) gives the
position of the Fermi level for the interacting system.
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FIG. 9. Same as in Fig. 8, but for the interacting system at
the filling factor v=1. 1 (solid lines) and v=1.3 (dashed lines),

respectively. Note that the same background charge is now

compressed to the strip
~

x
~

& 74.4 nm.

screen the positive background charge in the interior, the
bulk, where the Landau bands are fiat [Fig. 8(b)]. At the
edges the electron density vanishes so that the net charge
density there is positive. Since charge neutrality must
hold, the system responds with peaks of n, (x) near
x =+110 nm, so that a dipole near each edge is formed.
The superposition of the corresponding dipole potential
with the free energy spectrum is seen in the calculated en-

ergy spectrum, which shows minima near the edge states
with xo ——+110nm. The occupation of these edge states
leads to the peaks of n, (x) Th. e width of the positively
charged edge region is only of the order of the magnetic
length I, i.e., of the extent of edge states ( -20 nm). One
obtains a similar result for the electron density if one con-
siders the free, noninteracting electron system at a slight-

ly higher filling factor, so that the edge states are occu-
pied at an appreciable amount.

Figure 9 shows a situation, where the positive back-
ground is compressed to the layer

~

x & 74.4 nm. Now
the electron density leaks out from the background and
at each of its edges a dipole is formed with negative
charges at the outside. The corresponding potential
keeps the electrons in the background region, so that they
are practically not affected by the boundary conditions 4
(+120 nm)=0. The solid lines refer to the relatively
good screening situation with a total filling factor v=1. 1,

which corresponds to an effective filling factor v,z——1.8
in the layer of the positive charges. We see a pronounced
pinning of the n =0 Landau band to the Fermi energy for
xo values in the bulk region. The broken lines refer to
the filling factor v=1.3, i.e., v,z

——2. 1 in the background
region. The screening is poorer, both in the bulk and the
surface regions [Fig 9(a)]. The energy spectrum exhibits
no Aat regions and no pinning. We observed in all the
considered situations that the energy spectrum develops a
structure near the edges and adjusts in such a manner
that the width of the edge region always is of the order of
two or three times the magnetic length and depends only
weakly on the filling factor.

In order to study the screening of a periodic perturba-
tion, we modulated the positive background according to

nb(x) = A (p, a)n, 1+a cos (2p +1)
L

(4.2)

where

A (p, a)= 1+ 2a ( —1)~

2p+1
(4.3)

is a normalization factor ensuring nb
——n, . L was chosen

as L„=240 nm so that the width of the interior bulk re-
gion is comparable with the period chosen in Sec. IV A.
The energy spectrum is shown in Fig. 10 for a 20%%uo

modulation of the background density, a=0.2, three
different periods, p =1, 2, and 8, and, in all cases, for the
filling factors v=1.6, 2.0, and 2.4. The screening behav-
ior seen in Fig. 10(a) is similar to that found in Fig. 3.
For v=1.6 (solid curves) screening in the bulk region is
very good, the Landau bands in the bulk region are very
small, and the (relative) maxima of the n =0 band are
pinned to the Fermi level. For v=2. 4 (dash-dotted
curves), the screening is again very good, the width of the
Landau bands in the bulk region is small, and the
minimum of the n = 1 band is in a wide region pinned to
the Fermi level. For v=2 (dotted lines), the screening
properties are much poorer. Broad levels with consider-
able oscillations are observed. The Fermi level touches
the minimum of the n = 1 band but not the maximum of
the n =0 band, as might be expected from the corre-
sponding calculation without edges (cf., Fig. 3).

The explanation is, however, simple. The modulation
is chosen such that the density of positive background
charges is lowered in the edge regions. Thus, the poten-
tial created by the background enhances the effect of the
boundary conditions to push the electrons away from the
edges into the bulk region. As a consequence, the
effective filling factor in the bulk region is somewhat
larger than the overall filling factor v. Therefore, the
poorest screening in the bulk is expected at a somewhat
smaller value of v. This is indeed what we see in Fig.
11(a), where we have plotted the variance b, n, /n, defined
in Eq. (4.1). The electron gas behaves most rigidly, i.e.,
the screening is poorest;, for a v value close to 1.9.

Figure 10(b) shows the energy spectrum for a smaller
period of the modulated background density, which
means also a smaller amplitude of the modulation poten-
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tial [cf. Eq. (2.5)]. %'hereas there is still relatively good
screening in the bulk region for v=1.6, the screening is
poorer for v=2. 4. For v=2, we observe poor screening
and the Fermi level is kept in the gap between the mini-
ma of the n = 1 band and the maxima of the n =0 band
by the edge states only. The electron densities for v=1.6
and v=2. 0 are compared with the modulated back-
ground density in Fig. 12.

The modulation period chosen in Fig. 10(c) is not
much larger than 21, i.e., the extent of the wave function
4o „(x). The screening is poor for all filling factors, al-

though the amplitude of the modulating potential is
small. The oscillations in the n =0 Landau band and in
the n =1 Landau band show opposite phases. This indi-
cates that the corresponding wave functions average over
potential regions with different behavior, e.g. , minima in-
stead of maxima. These results are easily understood
within a simple approximation which is valid in the inte-
rior bulk region, where the eigenfunctions of the unmo-
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FIG. 11. Variance of the electron density vs filling factor for
the strip model with different modulations of the background
density: (a) p = 1, a =0.2 as in Fig. 10(a); (b) p =2 and p = 8 for
20% and for 40% modulation. The pairs of numbers labeling
the curves indicate p and 100a.
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dulated system are usual Landau wave functions. Owing
to the small amplitude of the effective modulation poten-
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small. Assuming a harmonic variation of the screened
potential with period o =2~/k, V(x)= Vocos(kx), first-
order perturbation theory yields
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(4.2). The modulation parameters are a=0.2 and (a) p =1, (b)

p =2, and (c) p =8 for the periods. Results are shown for the
filling factors v=1.6 (solid lines), 2.0 (dotted lines), and 2.4
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FIG. 12. Electron density for the strip model with a modulat-
ed background density (p =2, a =0.2), indicated by the dotted
line, for filling factors v=2.0 (solid curve) and v=1.6 (dashed
curve) at T=1 K.
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E„, =fico, (n+ —,')+ V(xo)exp( —,'k—I)L„(,'—k I ),
(4.4)

where L„ is a Laguerre polynominal. For the dotted
curves of Fig. 10(c) (v=2.0}, —,'k I =3.5 and Lo=1,
L, = —2. 5, and L2=0. 1. For the solid lines (v=1.6) the
L„assume the values 1, —1.8, and —0.6, and for the
dash-dotted lines (v=2. 4) the values 1, —3.2, and 1.2.
This nicely explains the relative phases of the oscillations.
For larger periods, —,'k l « 1, the factor of V(xo ) in Eq.
(4.4) approaches unity, and the low-lying Landau bands
become nearly parallel, as seen in Figs. 3 and 7.

Figure 11(b) shows the variance An, /n, corresponding
to the modulations considered in Figs. 10(b) and 10(c),
(a=0.2, p =2 and 8), together with similar results ob-
tained for modulations with larger amplitude (a=0.40,
p =2 and 8}. As in Fig. 5, we observe the poorest screen-
ing, i.e., the most rigid electron density, for v=2. For
the large period modulations (p =2, a =0.2 and 0.4), the
variance of the electron density at v=1.6 is only about
5 —10% smaller than the variance of the background
charge density. For the small period modulation (p =8,
a=0.2 and 0.4), on the other hand, the variance of the
electron density for v= 1.6 is about a factor of 2 smaller
than the variance of the background charge density. This
again indicates that the screening of the small-period
fluctuations is considerably poorer.

V. SUMMARY

Within the Hartree approximation, we have calculated
ground-state properties of a two-dimensional electron gas
in a quantizing magnetic field and a modulating external
potential which lifts the degeneracy of the Landau levels.
Translation invariance in the y direction was assumed, so
that the center coordinate xo ———I k is a good quantum
number for the discussion of the energy dispersion
E„(xo)where n labels the Landau bands.

For partly occupied Landau levels, with the Fermi en-

ergy well within a broadened level, we find nearly perfect
screening of the external potential, in agreement with the
linear screening approximation sketched in Sec. II. In
this situation the width of the Landau bands is very
small.

If a Landau level is nearly full or nearly empty, screen-
ing breaks down in some parts of the sample whereas in
others perfect screening pertains leading to a pinning of
the energy spectrum to the Fermi energy. Such highly
nonlinear screening properties have been predicted by
Luryi on the basis of qualitative arguments. He antici-
pated that the density of states should have a sharp peak
at the Fermi level, which repeats in the other LL's. Our
results confirm this only to a certain extent, since the cal-
culated Landau bands as a function of the center coordi-
nate are not completely parallel, and since the pinning
effect is less pronounced in higher Landau levels. More-

over, all minima and maxima of the E„-versus-xo curves
lead to sharp peaks of the DOS in our calculation, since
we have not included an intrinsic collision broadening.
Nevertheless, we find that the Landau bands become con-
siderably broader if the levels are nearly full or nearly
empty and that, owing to the pinning effect, the DOS at
the Fermi energy is always relatively high.

The maximum width of the Landau bands is obtained
for just completely filled LL's. For the large amplitude
modulation potentials considered in the strictly periodic
model, we found that the maximum width of the Landau
bands, and also the total variation of the screened poten-
tial is just the cyclotron energy %co„ independent of the
strength of the external potential modulation. This re-
sult, caused by the highly nonlinear screening properties
of the system, will, of course, hold only if the total varia-
tion of the external potential is neither too small, e.g. , less
than A~„nor too large, so that screening breaks down
totally.

Interpreting our results in terms of a single-particle
density of states, we obtain a nice justification of the in-
homogeneity model, ' which dealt with screening on
the basis of phenomenological model assumptions. We
see that the linewidth of the Landau levels depends on
the collective state of the 2D EG and oscillates with the
filling factor of the LL's. Since we have neglected col-
lision broadening effects, we got a very small width for
close to half-filled LL's, but a large width of the order of
fico, for complete filling. Also the results for the variance
of the electron density as a function of the filling factor
(Figs. 5 and 11} confirm the behavior anticipated by a
phenomenological calculation within the "n „-Gaussian"
statistical model.

Finally we want to comment on the relevance of our
results for the understanding of the integer quantum Hall
effect, which is usually discussed within a single-particle
picture. As mentioned in the Introduction, large fluctua-
tions of the external donor potential on a mezzoscopic
scale must be expected, at least for Al, Ga& As het-
erostructures. Therefore, the screening effects discussed
in the present work must be important in the quantum
Hall regime. In Si MOSFET s the situation is similar, as
we know from the luminescence measurements of the
density of states. ' ' As a consequence, in the plateau
regime of the integer quantum Hall effect, i.e., for nearly
full or nearly empty LL's, we have to expect quasiclassi-
cal localization of the electrons in the large, long-range
potential fluctuations, which will be screened out com-
pletely for half-filled LL's. Thus, the breakdown of me-
tallic screening may be the relevant localization mecha-
nism responsible for the integer quantum Hall effect.
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