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Random fields and orientational order in Rb(CN)„Br, mixed crystals:
A study of static-shear elasticity
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Ultrasonic measurements of static c44 shear elastic constants in Rb(CN)„Brl „single crystals are
presented. The data are analyzed using a mean-Geld model which includes quenched random strain

fields, accounting for systematic deviations from a simple Curie-Weiss equation. The agreement be-

tween theory and experimental data is excellent. The Edwards-Anderson order parameter q falls oft'

as 1/T at high temperatures, in agreement with the high-temperature-expansion result. At low

temperatures the behavior of q is analyzed using a low-temperature expansion. The present data
and analysis provide strong support for the idea that the glassy states in mixed cyanide systems are
of random-6eld rather than random-interaction nature.

I. INTRODUCTION

At room temperature pure rubidium cyanide and
mixed crystals of Rb(CN)„Br, „(0& x & 1) possess
time-averaged pseudocubic rocksalt structures (Fm 3m),
where the dumbbell-shaped CN ions jump rapidly
between orientational local-potential minima. A phys-
ically crucial factor in these crystals, and in other
mixed cyanide systems (KCN„Br, „, K„Rb, „CN,
K„Na1 „CN, etc. ) is the strong coupling between
cyanide rotational degrees of freedom and lattice strains,
both of quadrupolar symmetry. ' This so-called
translational-rotational (TR) coupling gives rise to a
strong lattice-mediated CN -CN coupling that triggers
a first-order elastic phase transition on cooling the pure
materials KCN, NaCN, and RbCN. At these transitions
the cyanide orientations of quadrupolar ( T2s ) symmetry
and the lattice strains freeze out simultaneously, giving a
monoclinic low-temperature phase in the case of pure
RbCN. ' The most dramatic effect of this TR coupling
is the soft-mode behavior of the c44 elastic constants on
cooling prior to the first-order elastic transitions. '

There is no electric-dipolar, i.e., head to tail, ordering
of the cyanide ions occurring at the elastic transitions. '
Electric-dipolar freezing does occur in most mixed
cyanide crystals at temperatures below the quadrupolar
freezing, but no long-range electric-dipolar ordering
occurs in RbCN. The bulk of recent research on mixed
cyanide systems has focussed on the quadrupolar (elastic)
ordered phases and quadrupolar glassy phases. ' In the
latter cases it has been proposed that long-range quadru-
polar order is destroyed due to random quenched strains
induced by the dift'erence in ionic radii between the sub-
stitutional ions. ' " Thus, it has been suggested that the
low-temperature state of mixed cyanide crystals can be
understood in terms of two competing effects —the
lattice-mediated CN-CN coupling and quenched random
strain fields.

A recent theory for mixed crystals by Michel, ' '" pro-
poses a modified static susceptibility in which the random

quenched strains are included in terms of a lowest-order
high-temperature series correction to the underlying
mean-field Curie-%eiss law. This explains the static sys-
tematic deviations from simple Curie-Weiss behavior ob-
served below the critical composition x, in diluted

cyanide mixtures. x, is the composition below which the
crystals stay cubic down to the lowest temperatures, " for
the present system, the value x, =0.58 has been esti-
mated on the basis of optical studies. ' These ideas have
only very recently been experimentally verified. ' In a
recent letter, where we reported data analysis of c44 elas-
tic constants in K(CN)„Br, „, K(CN)„C1, „, and

Rb(CN)„Br, , crystals, ' we showed that the quenched
random strain model accounts successfully at least for the
high-temperature static behavior of the elastic constants,
and that an extended formalism including low-

temperature expansion in the random fields possibly can
account for the static behavior at low temperatures.

The present work involves measurements of the TA
[100] acoustic velocities in the cubic high-temperature
phase of eight different mixed Rb(CN)„Br, „single crys-
tals. The static elastic-constant data are well represented
by a modified mean-field Curie-Weiss equation that in-
cludes a contribution from a random conjugate-field-
induced Edwards-Anderson order parameter. The fits to
the data yield extrapolated second-order transition tem-
peratures that follow mean-field percolation theory and
random-field distribution widths that are in complete
agreement with theoretical predictions.

In Sec. II, we will summarize some relevant assump-
tions and ingredients underlying the random strain field
model. The experimental procedures and results are de-
scribed in Sec. III, and a detailed discussion of data
analysis and interpretation is given in Sec. IV. In Sec. V
we make some concluding remarks.

II. REVIEW OF THEORY

We present here a Incan-field theory for calcolating the
behavior of the static elastic constants in cyanide sys-
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0
C44 =C44- a T —T0

(3a)

tems. Our basic assumptions about the physics involved
in the problem are completely analogous to assumptions
made by Michel' "in his mean-field treatment of a mi-
croscopic model for mixed A (CN) X& „crystals. Our
approach differs from Michel's in one aspect, however.
Instead of starting from a microscopic model and extract-
ing the thermodynamics with a mean-field approximation
at the end, we assume mean-field theory to be valid at the
very beginning.

The lowest-order Landau expansion of the free energy
per unit volume for a given ACN sample in the cubic
high-temperature phase thus reads

F=Fo+ —,'a(T —To) Y +y Ye4+ ,'c44—e~,

where T is the temperature and Y is the relevant cyanide
orientational order parameter, a macroscopic rotational
parameter of quadrupolar symmetry. Note that there is a
bilinear coupling with coupling strength y present be-
tween Y and the shear strain e4. It is essential to the
physics of the present problem that the bilinear coupling
is strong, i.e., the third term in Eq. (1) is energetically the
most important one at low enough temperature. The
coefBcients a and y are assumed to be independent of T.
The bare elastic constant c44 is expected to exhibit a weak
x dependence due to small changes in the cubic 1attice
parameter and a very weak T dependence due to crystal
anharmonicity. '

The elastic constant c44 represents the elastic stiffness
one would observe in the absence of bilinear coupling
(i.e., y =0). To is the temperature at which cyanide ions
would undergo quadrupolar order in the absence of bilin-
ear coupling, and a ' is the Curie constant for such an
uncoupled system.

By minimizing F with respect to the order parameter Y
(or the strain e4), one obtains a relation between Y and e~,
which allows one to rewrite Eq. (1) in the form

F=F0+ -,'c44e42

where the elastic constant c44 is given by

Equations (3a) and (3b) appear to give a good descrip-
tion of the softening of the c44 shear elastic constant in

the pure cyanides KCN, RbCN, NaCN. ' ' It should be
noted, however, that since the full free-energy expansion
contains third-order invariants [only invariants up to
second order have been included in Eq. (1)], all the phase
transitions in question are first order, i.e., a first-order
transition occurs at a temperature T, g T, . '"

In the case of cyanide mixtures, deviations from simple
Curie-Weiss behavior are observed at low tempera-
tures. ' ' The deviations are always observed as
enhancements of the elastic constants with respect to
what simple Curie-Weiss behavior would give. In order
to explain these deviations, Michel' " has introduced
the idea of quenched random fields in the mixed cyanides.
The source of the random fields is assumed to be the
difference in ionic radii of the substitutional ions, which
introduces a static distortion of the lattice surrounding
each cyanide site. This frozen-in or quenched lattice dis-
tortion will vary in a random manner from site to site
when the substitutional ions are randomly distributed in
the sample. Because of the strong translational-
rotational (TR) coupling [large y in Eq. (1)], these ran-
dom static strains effectively play the role of conjugate
random fields acting on the pseudospins, which in this
case are cyanide orientations of quadrupolar symmetry.

We will now include quenched random fields in the
simple mean-field model by following standard statistical
mechanical procedures' for quenched random systems.
We start out with a mean-field Hamiltonian of the form

H = —g (zJ,tr Y+h„+h; ) Y; .

Here Y; is the cyanide orientational pseudospin of
quadrupolar symmetry at site i, Y is the corresponding
macroscopic order parameter that appears in Eq. (1), z is
the CN -CN coordination number, J,z is the effective
CN -CN coupling constant corresponding to the pa-
rameter T, in Eq. (5), [kT, =zJ,tr], h„ is a uniform exter-
nal field (in energy units) conjugate to Y, and h, is a site-
dependent random field. The term random field means
that [h; ],„=0while [h; ],„=b,&0, where [ ],„denotes the
sample average; i.e., for a quantity X that depends on h,

In terms of the elastic compliance s44, this becomes

0 Tc TO

c44
(3b)

[X(h;)],„=I p(h, )X(h, )dh, ,

where p(h, ) is the random-field probability distribution.
We can now calculate the free-energy per spin

Both Eqs. (3a) and (3b) represent elastic Curie-Weiss
laws. In Eq. (3b) s44=1/c44, and T, =To+@ /us44. A
more general form for the compliance is av

[, z]
N

s~ =s~(1+PX), (4) and the equation of state

where 7 is the dimensionless order parameter susceptibil-
ity. For the Landau model described above, 7 is given by

C
(T —T, )

'

where C is proportional to a ' and has units of kelvin;
thus, Eq. (4) agrees with Eq. (3b) in this case since the
constant p is just C '( T, —To).

where

(Y ) g Ye —H/kT

i

denotes the thermal average of Y,- for a given h,.
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configuration, and the effective field is given by

h«=zJ«Y+h„+h, . (10)

Y= (zJ«Y+h„)[g'(h;/kT)]s„,1
(12)

where g'(y) =dg(y)/dy. Taking the derivative of Y with
respect to the field yields X= d Y/BH„, where H„= Dh„ is

the (dimensionless} uniform field conjugate to Y and D is
a conversion constant with dimensions of inverse energy.
Thus, we find

[g'(h; /kT )],„x=
Dk T —T,[g'(h;/kT}],„

(13)

This expression replaces the order-parameter susceptibili-
ty given in Eq. (5) when random fields are included in the
analysis. Note that 1/Dk corresponds to the Curie con-
stant C in Eq. (5).

We now define the Edwards-Anderson order parameter
'l2

h;

av

(14)

and make the following observations.
(i) In the case of the Ising model, g(h;/kT)

=tanh(h, /kT); thus, g'(h, /kT) =1—(g(h;/kT) )

and [g'(h, /kT)], „=1 —qi. As a result,

C( 1 —qI )

Ising (15)

with qI
——[tanh (h;/kT)], „. Equation (15) was derived

earlier by Schneider and Pytte applying the replica
trick.

(ii) In the general case, one can expand X and q in
terms of the small quantity h,. /kT provided that the ener-

gy scale is set by kT, or in other words the random-field
distribution width cr is much smaller than kT. If this is
the case, one can easily show that

and

C [1+—,'g"'(0)q] C(1 q)
T —T,[1+—,'g'"(0)q] T —T, (1—q)

[h ],„

(16)

(17)

where we have used g'(0}= 1, which follows from Eqs. (5}

As an example, one may follow this procedure and
easily find the equation of state for the Ising model
( Y, =+1):

zJ,~Y+h„+h,Y= tanh
av

In the present case we are only interested in the high-
temperature cubic phase of the cyanides, i.e., Y =0. We
work further under conditions where the external uni-
form field is equal to zero, i.e., h„=0. Thus„ to calculate
the order-parameter susceptibility we may expand the
equation of state Eq. (9} in small values of Y and h„, and

keep only linear terms;

and (13), and have made use of [h;],„—=0. We have also
taken g'"(0)= —2 as for the Ising model. Thus, the sim-

ple expression on the right-hand side in Eq. (16) is valid

except possibly for a multiplicative factor [—g"'(0)/2]
of order of magnitude 1 in front of q. In the Ising case,
this factor is exactly 1. Substituting this result for P into
Eq. (4) we find

0

C~ ~44
0

where

T —T, (1—q)

T —To(1 —q)

T —T, (1 X/—T )
(18)

T —To(1 X/T—)

X=qT = (19)

Equation (18) represents the main result of our mean-
field analysis, and will be applied in the data analysis
below. This equation appears to describe the tempera-
ture dependence of the elastic constants in mixed
cyanides well. In the pure systems (KCN, RbCN,
NaCN, etc.), the quenched random fields h;, and thus, the
Edwards-Anderson order-parameter q are zero, and Eq.
(18) is identical to the pure Curie-Weiss behavior given in
Eq. (3b). In cyanide mixtures where nonzero random
fields are believed to be present due to the difference in
ionic radii of the substitutional ions, q&0, and Eq. (18)
will give higher values of the elastic constants compared
to the pure q =0 Curie-Weiss law.

We have defined the Edwards-Anderson order-
parameter q here in analogy with spin-glass terminology.
Our q and the spin-glass order parameter are by
definition the same thermodynamic quantities. In the
present case, however, there is a nonzero random-field-
induced q present at all temperatures [q falls off as 1/T
at high temperatures according to Eq. (17)]. In the spin-
glass case there is a random-exchange-induced q (i.e.,
[J, ],„=0 but [J,"],„&0), which is nonzero only below
the thermodynamic spin-glass transition. One might ex-
tend the present model and include nonzero random ex-
change in addition to the quenched random fields. The
effect of random exchange could presumably also be
treated within mean-field theory. This would correspond
to a Sherrington-Kirkpatrick model ' with the addition
of a random field. By expanding the free energy, Eq. (8},
in small random fields, one may easily show that
6= [h, ],„ is the field conjugate to the Edwards-Anderson
order-parameter q=[( Y, ) ],„.' Thus, a model with
both nonzero random exchange and nonzero quenched
random field would correspond to a spin-glass transition
in a nonzero external conjugate field. Since the effective
CN -CN pseudospin exchange interaction is strongly
angle dependent, there is a real possibility of a random
component in the effective coupling constant J,z. This
would induce spin-glass-like ordering or spin-glass-like
dynamics in the cyanide mixtures. Important precursor
effects however, will result from the nonzero quenched
random fields even in the absence of random exchange.
At high temperatures, it can be shown that the presence
of random exchange interactions would transform Eq.
(17) into
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CT J
2

q- 1+
(kT) (kT)

(20)
Tf(x, ) = [3x,(1—x, )Xo]'

T, (x, ) =x, T„and qf ——
—,', we find

where o.J is the width of the quenched random-exchange
interaction distribution. We will return to these possibili-
ties during subsequent data analysis.

According to our mean-field model the quantities TQ

and T, are proportional to the coordination number z. In
mixtures like K„Rb1,CN and K„Na1 „CN, z =12 is
constant. In the diluted systems like K(CN)„Br, „and
RbCN„Br, „,z =12x provided the mixing is random.

It is clear that the random fields b, = [h,2],„as discussed
here will be zero for pure samples (x =0 and 1). In the
diluted cyanides the nonspherical cyanide ions are being
replaced by spherical ions (bromide or chloride).
Michel' ' " has argued that the asphericity can be
neglected and that b is proportional to x (1—x) in dilut-
ed cyanide mixtures.

Assuming that one can neglect the effects of random
exchange and aspherical cyanide ions and assuming ran-
dom mixing, we may thus write

XQ
x

4 2XQ+ —,', Tc1
(25)

as a crude approximate result.
In the analysis above we have followed Michel' "and

others and used a high-temperature expansion for the
Edwards-Anderson order-parameter q =X/T . This ap-
proximation is obviously going to break down for temper-
atures below which X/T becomes larger than 1 since

q & 1 by definition. In Sec. IV, some of the data to be an-
alyzed lie in a temperature region where X/T & l. In
this case, a low-temperature expansion rather than a
high-temperature expansion should be used. Assuming a
symmetric random-field distribution, the following ex-
pansion in small values of kT/o. is a straightforward ex-
ercise

3

[g'(h;/kT)], „=AD +80kT kT
a

0

C 44 44
0

T —T, (x)[1—x(1—x)XO/T ]
T —To(x)[1—x(1—x)X /0T ]

(21)
+higher-order terms, (26)

where T,(x)=xT„and To(x)=xTO~ in the case of dilut-
ed cyanides [T„—:T, (x =1)and To, = To(x =1)].

Equation (21) is identical to the result of Michel, with
the following parameter mapping:

where 0. is the quenched random-field distribution width
as before and AQ and 80 are constants. Thus, at low
temperatures the quantity (1—q) in Eqs. (16) and (18)
should be replaced by

y Q 2g Q
Tc1 = T01+ $44 T01 + s~a a

(22a) T T3
(1—q)=A, 2+8 +higher-order terms, (27)

Toi —
( —J—C')y

Xo ——g h

(22b)

(22c)

Tf (3X)'~ or qf ———,
'—— (23)

Inserting this result back into Eq. (18) we identify the
critical composition x, from the criterion that c44=0 at
Tf(x, ):

Tf(x, ) —T,(x, )(1—qf )=0 .

Using

(24)

where 8, a, y, J, C', g„, and h are as defined by
Michel. "

As a function of temperature, Eq. (21) is always going
to give a minimum in c44. Above the critical composi-
tion, x„ in diluted cyanide mixtures, however, this
minimum occurs for a negative c44 value. Thus, in this
case the lattice-mediated CN -CN coupling is strong
enough, compared to the width of the random quenched
field distribution, to induce the simultaneous ordering of
the quadrupolar lattice and cyanide orientational degrees
of freedom. For compositions x ~x, on the other hand,
c44 will never reach zero because the randomly distribut-
ed variations in the cyanide-ion local potentials are too
large to enable the effective CN -CN interaction to in-
duce quadrupolar order. Differentiating Eq. (18) with
respect to T, we find that a minimum in c44 will occur at
a temperature Tf given by

where A and 8 are constants of order of magnitude 1.
These results could also have been obtained by expanding
Eq. (14) in the same parameter. Here we have neglected
possible random interactions, which could trigger a spin-
glass transition, accompanied by an additional spontane-
ous component in q. Recently, Michel has argued that
a nonergodic instabihty should lead to an additional con-
tribution to q at low temperatures. Thus, low-
temperature forms other than Eqs. (26) and (27) may have
to be considered in a complete treatment of data at
T(Tf. As discussed by Michel, ' " quantum effects
might also have to be considered at low temperatures.

III. EXPERIMENTAL PROCEDURE AND RESULTS

Single crystals of Rb(CN)„Br, „obtained from Liity
were grown from the melt at the Crystal Growth Labora-
tory of the University of Utah. The oriented samples
studied were thin slabs (1)C1&0.2S cm ) cleaved from
large single crystals. Terraces on the (100) surfaces were
polished away to give surface roughness and nonparalleli-
ty less than 1 pm, which is much smaller than the small-
est wavelength A, =30 pm (A, =v/f, where U =300 m/s is
the smallest measured velocity and f=10 MHz for all
the runs analyzed here).

Point defects surrounded by strains could be observed
in some of the samples when they were placed between
crossed polarizers and viewed with a microscope. For-
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TABLE I. Gases used as acoustic bonding materials. bp and

fp are boiling and freezing points, respectively.

Gas

Ne
Nq

Ar
Xe
CC1&F, (Freon 12)

C&C1,F4 (Freon 114)

fp (K)

24.48
63.29
83.95

161.2
115.0
179.0

bp (K)

27.10
77.35
87.45

166.1
246.9
276.8

tunately, the homogeneous regions between these point-
like strain sources were large enough to allow application
of an ultrasonic transducer with an active diameter of
-3.5 mm.

In these experiments we used overtone polished lithium
niobate ultrasonic transducers with a fundamental fre-
quency f0 = 10 MHz to generate and detect transverse
acoustic waves propagating in the [100] direction. Due
to the difference in thermal expansion between the trans-
ducer and the sample, sample cracking occurred fre-
quently on slow cooling at temperatures 50—60 K below
the freezing point of the acoustic bond used between the
transducer and the sample. In order to avoid cracking
the sample, we applied the bonding technique previously
used in experiments on K(CN)„Bri „mixtures by Feile
et al., ' who used gases with low boiling and freezing
points as bonding materials. Our sample holder was
designed so that gases could be condensed onto or eva-
porated from the sample surface at low temperatures dur-
ing the course of the experiment. The materials used as
bonds for the present experiments are listed in Table I.
At temperatures between room temperature and 180 K,
Dow-Corning 200 silicone fluid or phenyl salicylate were
used. Due to the limited temperature range over which
any single bonding material could be used, the low-
temperature experiments were carried out as a series of
several temperature cycles in order to enable changes of
acoustic bonds.

The standard flotation method was used to determine

the room temperature density p of the samples. A linear
interpolation between the densities of pure RbCN and
pure RbBr was then used to determine sample cornposi-
tions, giving x values different from the nominal (melt)
compositions in all cases, as shown in Table II.

During each run, the absolute sound velocity v was
measured every 50—100 K with an estimated accuracy of
better than +1% using the Papadakis pulse overlap tech-
nique. The resulting room-temperature elastic con-
stants c~(300 K)=p(300 K) v (300 K) are shown in
Table II. Relative changes in sound velocities as a func-
tion of temperature were detected with an estimated pre-
cision of +10 % using a computerized phase-sensitive
MATEC MBS 8000 system. However, several runs
were made for each composition. Different runs some-
tirnes involved different regions of a given crystal or
different crystals cut from a single large sample, and
there may be small concentration gradients in these
melt-grown samples. As a result, the overall scatter in
the velocity data for a given composition is about
+0.1%. Cooling and warming runs were reproducible in
all cases.

A liquid-nitrogen cryostat was used in the experiments
for temperatures above 80 K. In this case the ternpera-
ture of the sample was controlled by means of a manually
set Bailey temperature controller. The temperature was
stabilized at each data point for 20-30 min and measured
with a calibrated platinum resistance thermometer to an
accuracy of +2 mK. At temperatures below 80 K (or
higher for some of the runs), a continuous-flow liquid-
helium Janis Supertran Cryostat was used. In this case
the temperature was seldom held constant but was al-
lowed to drift slowly with a scanning rate set according to
the temperature region being investigated. In all cases
both cooling and heating runs were made in order to en-
sure that the scanning rate was sufficiently slow. The
scanning rate could be as high as 15 K/h at high temper-
atures and in most cases was less than 2 K/h in tempera-
ture regions with high anomalous sound attenuation.
The scanning rate was set by adjusting the liquid-helium
flow combined with a Lakeshore model DRC 81C tem-

TABLE II. Rb(CN)„Br] „sample properties. x and x„, are the measured and nominal sample
compositions, respectively. p is the density determined by the flotation method. c44(300 K) in units of
10 N/m or 10' dyn/cm is the static-shear elastic constant at T=300 K determined with an absolute
accuracy of +1.5%. The estimated random error in the c44 data for a given composition is given by the
standard deviation 0. (in units of 10 N/m'). T( is the temperature at which the acoustic signal was lost
on cooling and c44( T() (in units of 10 N/m ) is the value of the elastic constant at T= T(.

Analyzed
x

0.06
0.19
0.25
0.44
0.53
0.67
0.79
0.87

Nominal

xnom

0(RbBr)
0.1

0.2
0.3
0.5
0.6
0.7
0.8
0.9

1(RbCN)

p (g/cm )

3.355
3.290
3.156
3.101
2.904
2.813
2.666
2.549
2.464
2.328

c44(300 K)

3.761
3.562
3.098
2.886
2.585
2.325
2.067
1.908
1.795
1.652

0.006
0.006
0.006
0.005
0.0045
0.004
0.004
0.0018
0.004

T( (K)

13.11
32.24
39.32
57.48
63.49
78.45
89.02

105.3
133.0

c44( T()

1.73
1.14
0.923
0.452
0.270
0.129
0.0836
0.167
0.213
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perature controller. Below 80 K a calibrated silicone-
diode thermometer enabled temperature readings to be
made with an accuracy of +10 mK, whereas at ternpera-
tures above 80 K the platinum resistance thermometer
was used.

Elastic constants c44=pv are shown as a function of
tetnperature in Fig. 1. RbBr (x =0) and RbCN (x =1)
elastic constant data have been taken from the litera-
ture. ' Since both sample thicknesses and densities were
measured at room temperature, all the data were correct-
ed for thermal expansion effects. A linear interpolation
between the thermal expansion coefficients, a, for pure
RbCN (a=6&&10 K ') (Ref. 4,6) and pure RbBr
(a=1.4X10 ' K ') (Ref. 28) was used. The smooth
curves in Fig. 1 represent theoretical Ats to the data as
described below.

For all the samples, the sound attenuation stayed
moderate and constant ( = 10 dB/cm) from room temper-
ature down to 10—20 K (depending on the measuring fre-
quency) above the temperature where the acoustic signal
was lost due to high sound absorption. A detailed discus-
sion of the attenuation data will be presented elsewhere.
Here we will only mention that the attenuation scales as
the frequency squared over the range from 8 to 77 MHz,
indicating relaxational attenuation rather than elastic
scattering as the cause of signal loss. Indeed, the analysis
of the attenuation data shows that co~&&1, where v.

represents an effective average relaxation time. This is in
complete agreement with the fact that no dispersion was
observed in the sound velocity. This absence of velocity
dispersion is illustrated in Fig. 2, which shows in more

4
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detail c44 data for the samples with x =0.19 and 0.25.
Thus, we believe that all the data presented in Figs. 1 and
2 represent static elastic constants c44 ——pu (to =0).

For one sample (x =0.19), it is possible to recover the
acoustic signal at low temperatures (T & 15 K), as shown
in Fig. 3. Due to the small signal amplitude it was only
possible to obtain data below 15 K at the lowest frequen-

FIG. 2. Detailed view of the temperature dependence of cd
in two Rb{CN)„Br, „crystals at several ultrasonic frequencies.
The solid curves are random-field fits identical to those shown
in Fig. 1; the dashed curves are truncated Curie-gneiss fits dis-
cussed in Sec. IV.
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FIG. 1. Temperature dependence of the static c44 elastic con-
stant in Rb{CN)„Br, „single crystals. Data on RbBr and
RbCN are taken from Refs. 24 and 6, respectively. The smooth
curves represent random-field fits with Eqs. (18), (28), and (29) as
described in the text.

s I ~ I ~ I ~ I ~ I . I a 1. 0
10 20 30 40 50 60 70

T ()()
FIG. 3. Temperature dependence of the static elastic con-

stant, c44 =pU, and sound attenuation a for the TA [100] mode
in a Rb{CN)0»Bro 8, single crystal. These measurements were
made at 8—9 MHz. The dashed line is a guide for the eye.
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IV. DATA ANALYSIS AND DISCUSSION

We have fitted the static elastic constant data shown in
Fig. 1 with Eq. (18). The effect of lattice anharmonicity
has been included by replacing the constant parameter
c44 in Eq. (18) with a temperature-dependent bare elastic
constant given by

c44(T)=c 4 1+p 0 D
(28)

where a44 is a negative constant of the order of magni-
tude of 10 K ' and 8D is the Debye temperature. In
all the fits we have used 8D ——136.5 K, the Debye tem-
perature for pure RbBr. Taking Eq. (22a) into account,
the parameter T, in Eq. (18) has been replaced by

c44(T, )
T,(T}=Tc+(T, —To}

c44( T)

c44( T, ) —c~( T)= T, +(T, —T())
c44(T)

(29)

Equation (29) has been included in the present analysis al-
though it only represents a very small correction to the
value of T, . For the present data, Eq. (29) gives at most a
3% variation over the entire temperature range. Parame-
ters from our fits to all the experimental data are summa-
rized in Table III, and the composition dependence of the
parameters c44 T Tp and X is shown in Figs. 4-7.

cy (9 MHz). The low-temperature data shown in Fig. 3
represent two warming and one cooling run, each run
carried out at different but slow ( &5 K/h) scanning
rates. No hysteresis was seen. In one case, the system
was stabilized at 10.00+0.01 K for 2 h. No long-time
drift in Ultrasonic attenuation or velocity was observed
during these 2 h.

We will now discuss these fits. For x values less than
0.6, the fits converge with positive X values when all five
parameters c~, a44, T„Tp, and X are allowed to be free-

ly adjustable quantities. These random-field parameters
are presented by filled circles in Figs. 4—7. For these
compositions (x &0.6), c44 exhibits a point of infiection
at a temperature T; ) TI where TI values are given in
Table II. Thus, for these samples satisfactory Curie-
Weiss fits, i.e., X=0 in Eq. (28), can only be achieved by
ignoring data points at low temperatures. As an exam-
ple, such truncated Curie-Weiss fits were carried out for
the x =0.19 and 0.25 crystals with fitting ranges 67 —300
K and 77-300 K, respectively. The resulting fitting pa-
rameters are c~=3.929X 10 N/m, a44= —1.5X10
K ', T, =20.0 K, and Tp ———38.0 K for the x =0.19
sample and c44 ——3.896X10 N/m, a~ ———1.4X10
K ', T, =24.7 K, and Tp ———56. 1 K for the x =0.25
sample. The truncated Curie-Weiss fits are indistinguish-
able from the random-field fits listed in Table III over the
temperature range 80K—300 K. However, as shown in
Fig. 2, the discrepancies between the data points and the
truncated Curie-Weiss fits at temperatures below 80 K
are fully accounted for by the random-field fits. Thus for
all samples with x &0.6, random field fits with X)0 are
superior to Curie-Weiss fits for describing the entire tem-
perature range between TI and 300 K.

For mixed crystal samples with x larger than 0.6, the
free fits converge to give X values that are rather small
and uncertain positive values (+140+160 for x =0.79)
or negative values ( —1325+800 for both x =0.67 and
0.87). We then carried out fits with X fixed at zero,
which gave the fit parameters represented by open circles
in Figs. 4—6. The latter fits, which correspond to tradi-
tional Curie-Weiss behavior, give T, and X values that
are inconsistent with the expected trend based on the
x &0.6 parameters. We have therefore, adopted the
x(1—x) behavior for X suggested by Michel and made

TABLE III. Values of adjustable parameters c~ (the bare elastic constant at 0 K in units of 10'
N/m or 10' dyn/cm ), a44 (in units of 10 K '), T„TO, and X appearing in Eqs. (18) and (28). X,,
represent reduced chi-squared values resulting from Curie-Weiss (CW; i.e., X=0) fits and random-field
(RF) fits as described in the text. Quantities in parentheses were held fixed at the values indicated. In
RbBr where there are no random fields and no cyanide pseudospins present, the parameters result from
a Debye anharmonic (DA) fit of data from Ref. 24 using Eq. (28).

0.0
0.06
0.19
0.25
0.44
0.53
0.67

0.79

0.87

1.0

Fit

DA
RF
RF
RF
RF
RF
CW
RF
CW
RF
CW
RF
CW

0
c44

4.086
3.835
3.965
3.910
4.090
3.957
4.126
3.998
3.983
3.906
3.958
3.894
4.251

+44

—3.4
—1.5
—1.5
—1.4
—1.0
—1.0
—1.6
—1.6
—2.0
—2.0
—1.5
—1.5
—1.5

T, (K)

0.0
7.3

24.5
32.1

54. 1

63.8
71.4
78.6
84.4
89.2
95.3
98.1

121.19

To (K)

0.0
—3.6

—35.5
—47.8
—77.0
—86.5

—123.5
—100.3
—111.7
—96.3

—121.4
—110.7
—143.2

X(K)
0

33
355
482
573
579

(0)
(512)

(0)
(384)

(0)
(262)

(0)

Goodness of fit
2X$f

1.0
1.9
1.4
1.4
2.3
1.1
1.9
1.6
1.7
0.78
0.91

12.6
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FIG. 4. Composition (x) dependence of the bare elastic con-
stant c44(300 K) determined from fitting the data shown in Fig.
1 to Eqs. (18), (28), and (29). Parameters resulting from both
Curie-Weiss (CW) and random-field (RF) fits as described in the
text are shown.

FIG. 6. Composition (x) dependence of the fitting parameter
To. The mean-field percolation prediction is represented by the
straight line. CW and RF denote Curie-Weiss and random-field
fits, respectively.

such a fit to the X values for the x &0.6 samples. This fit
yields the parabolic line shown in Fig. 7. We have then
used this line to determine the X parameter for the three
mixed crystals with x &0.6. The c44 fits achieved for
these three samples with fixed nonzero X values are
equivalent to all the other fits when residual plots or re-
duced X„values are compared (see Table III). ' The pa-
rameters from such random field fits are represented by
solid circles in Figs. 4-6. Since the simple Curie-Weiss
fits give parameters that are physically less plausible, we
believe that the apparent statistical acceptability of
Curie-Weiss behavior for samples with 1&x &0.6 is an

artifact of high Tl values and consequently small X/T~
values in the accessible temperature range (see Table IV).
Therefore, the parameters shown as solid circles in Figs.
4-6, and the corresponding random-field fit curves drawn
in Fig. 1, provide the best representation of the present
data on the static c44 elastic constants of Rb(CN)„Br,
mixed crystals.

A11 the parameters show x dependences in very good
agreement with the predictions summarized in Sec. II.
Thus, the present data confirm the validity of Michel's
quenched random-field picture for this mixed cyanide sys-

600

125

400

200

0. 2 0. 4 0. 6 0. 8 l. 0

0. 2 0. 4 0. 6 0. 8 1. 0

FIG. 5. Composition (x) dependence of the quadrupolar or-
dering temperature T, . The straight line represents the mean-
field percolation prediction. Both Curie-%eiss (CW) and
random-field (RF) fits, as discussed in the text, are shown.

FIG. 7. Composition (x) dependence of the fitting parameter
X, which is proportional to the square of the quenched
random-field distribution width. The parabolic line represents a
fit of the form X=Xox(1—x) to data for x &0.6; the resulting
Xo——2317 K . The points+for samples with x & 0.6 are smooth
curve values that were adopted for the RF fits (see Table III).
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TABLE IV. Values of the cubic lattice parameter a and the quantities e44(300 K), given in units of
10' N/m', a c~(300 K) (in units of 10 "Nm', X/TI', and Tf. c~(300 K) has been calculated from Eq.
(28). X/TI (TI is given in Table II) represent the largest values of the high-temperature expansion pa-
rameter X/T'. Tf are the temperatures at which c44, as given by Eq. (18) with the fit parameters in

Table III, has a minimum for positive c44 or goes to zero.

0.0
0.06
0.19
0.25
0.44
0.53
0.67
0.79
0.87
1.0

a (nm)

0.6892
0.6889
0.6882
0.6879
0.6869
0.6864
0.6857
0.6851
0.6847
0.6840

c~(300 K)

3.761
3.699
3.824
3.777
3.993
3.863
3.844
3.721
3.756
4.100

a c~(300 K)

8.49
8.33
8.58
8.46
8.89
8.58
8.50
8.20
8.26
8.97

0.19
0.35
0.32
0.18
0.15
0.083
0.049
0.024

Tf (K)

9.98'
32.6'
38.0'
41.5'
47.0b

705
84. 1b

95.2

'A minimum for positive c44.
Goes to zero.

tern, ' ' " at least for temperatures where the high-
ternperature expansion is valid.

In Table IV we have calculated the quantities
a c~(300 K), where a is the cubic lattice constant deter-
mined from a linear interpolation between the RbBr and
RbCN values. This quantity has a universal value for all
univalent crystals of the rocksalt structure according to
rigid-ion models, and this is still a good approximation
empirically and according to simple shell models. ' We
have calculated this quantity for several alkali-metal
halide crystals (KBr, KC1, KF, KI, RbC1, RbF, RbI,
KClo 75Bro 25, KC10 4Bro 6, and KCIQ 25Bfo 75), obtaining
a c44(300 K) values ranging from 8. 5&&10 Nm to
10.0X10 Nm . Our Rb(CN)„Br& „values are in ex-
cellent agreement with this empirical range.

The c44 data for pure RbCN, which were taken from
Ref. 6, exhibited significant and systematic (roughly
sinusoidal) deviations from any theoretical fit curve over
the entire temperature range. Also the bare stiffness c«
obtained from the least-squares Curie-Weiss fit was unex-
pectedly large (4.7&&10 N/m compared with the range
3.8&&10 to 4. 1X10 for the other nine samples). It is
quite likely that there is some systematic error in these
RbCN data, which would not be surprising in view of the
lower purity and lesser crystal perfection of the best sam-
ples of RbCN grown eight years ago. ' Furthermore, the
uncertainty cited by Haussuhl is fairly large (+3%). We
have systematically adjusted the RbCN c~ values by
multiplying each reported c44(T) by the constant factor
0.97. The Curie-Weiss fit reported in Table III corre-
sponds to this adjusted data set. The resulting bare
stiffness c44 is then 4.25& 10 N/m, in better agreement
with our mixed crystal results, and the values of T„To,
and c~ (300 K) also fit in well with the overall trends for
these parameters.

The fit to X(x) shown in Fig. 7 yields Xo=2317 for the
random-field distribution width strength for the present
system. Inserting this result into Eq. (25) we find

x, =0.52, which is consistent with the present experimen-
tal observations and with optical transmission studies. '

Thus, the present data analysis is self-consistent.
We have analyzed previously' the low-temperature

data for the Rb(CN)o»Bro» sample (shown in Fig. 3), in
terms of the low-temperature expansion given in Eq. (27).
The fits to the Rb(CN)0, 9Bro s& data are shown in Fig. 8

where we have plotted the Edwards-Anderson order pa-
rameter q calculated from

(c~~ /c 44
—1)

q=1 —T
( roc44/c 44

(30)

which follows from Eq. (18). The value of q falls off as

. 81

4

0. 2—

I

20
I I

40 60
T (K)

80 100

FIG. 8. The Edwards-Anderson order-parameter q as calcu-
lated from Eq. (30) with parameters given in Table III, for the
Rb(CN)0»Bra 8, data. The high-temperature curve (solid line)
represents X/T with X=355 K; while the low-temperature q
data were fitted to Eq. (27) (dashed line). The dotted line, which
is merely a guide for the eye, represents a smooth interpolation
between the high- and low-temperature data sets. See also Ref.
14.
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1/T at high temperatures and approaches 1 at low tem-
peratures. The low-temperature expansion fit to q with
Eq. (27) yields parameters A =0.19 and 8 =0.13, which
are in reasonable agreement with what general theoretical
estimates would suggest ( A =B=1). Thus, within this
simple picture there seems to be no need for introducing
a spontaneous component in q emerging at low tempera-
tures, suggesting that the quenched random-field picture
can be extended beyond the temperature region where
the high-temperature expansion fails.

Recently, it has been argued that broken ergodicity
might give an additional contribution to q at low temper-
atures, and that the low-temperature expansions given in
Eqs. (26) and (27) are possibly inappropriate. The latter
suggestion is especially supported by low-frequency tor-
sion pendulum experiments on K(CN)„Br, „crystals.
In the case of the present low-temperature data for
x =0.19 it is not clear which low-temperature form for q
is approximate. Furthermore, it remains to be estab-
lished whether the low-temperature c~ elastic constant
data for the x=0. 19 sample represent zero frequency
(car && 1) behavior as far as the quadrupolar relaxation is
concerned.

quenched random-field-induced Edwards-Anderson
order-parameter q. The resulting fitting parameters are
in excellent agreement with the model predictions
presented in Sec. II.

We have thus provided evidence supporting the idea
that the orientational freezing process in this system, at
least as far as the statics is concerned, can be understood
in terms of a competition between quenched random
strain fields and the lattice-mediated CN -CN cou-
pling. The present experimental results and analysis sup-
port suggestions' "' that cyanide mixtures should be
considered random-field-induced glasses rather than
random-interaction-induced frustrated glasses.

A detailed analysis of experimental results on the dy-
namics of the orientational freezing process will be
presented elsewhere. Pretransitional static behavior
similar to the one presented here has also been reported
for at least one other structural glass system. It would
thus be of considerable interest and importance to test
the present ideas in other glassy systems and also in crys-
tal systems where imperfection-induced precursor static
effects occur close to second-order or weakly first-order
structural phase transitions.

V. CONCLUDING REMARKS AND SUMMARY ACKNOWLEDGMENTS

In conclusion, we have carried out a detailed study of
the shear elasticity of Rb(CN)„Br, „.The static c44 elas-
tic constant data show behavior in qualitative agreement
with the behavior previously reported for K(CN)„Br,
and K(CN)„Clt, mixtures. ' ' We have analyzed our
static data with a mean-field model which includes
quenched random strain fields. For the high-temperature
data we have used a high-temperature expansion for the
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