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Impurity states in a polar-crystal slab
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The ground state and the first excited state of a bound polaron in a polar crystal slab are investi-

gated by means of the Lee-Low-Pines variation technique. Both the electron-LO-phonon interac-
tion and the electron-surface-optical-phonon interaction are taken into account. For an impurity
located at different positions in the slab, the self-energy and the effective mass as well as the transi-
tion energies are evaluated as functions of slab thickness. It is found that, in our approximate calcu-
lations, the position of the shallow-doped impurity in the slab will produce an impact only on that

part of the bound polaron's energy associated with motion parallel to the xy plane. Consequently, it
will exert a great inAuence on the transition energies.

I. INTRODUCTION

In recent years, much interest has been shown in the
study of semiconductor superlattice systems because of
their wide applications. As an elementary problem, un-

derstanding of the role of impurities in a polar-crystal
slab would be of particular importance from a technolog-
ical point of view.

Since the subject was first studied, impurity states in

thin films of semiconductor crystals have been described

by using a square-well model. ' A number of theoretical
papers have discussed the issue of the "hydrogenic"
binding of an electron to a donor impurity in a polar
crystal slab or in a semiconductor quantum well.

In order to investigate the properties of an electron
bound to a shallow dopant impurity in a polar slab, the
interactions between the electron and the phonon modes
of an ionic crystal slab must be dealt with correctly. Ac-
cording to the microscopic approach, in which the elec-
tronic polarization particularly due to the ionic motion
was introduced, the bulk transverse-optical (TO) modes
would not make any contribution to the energy exchange
between electrons and slab. Such a conclusion has also
been established experimentally. But then the bulk
longitudinal-optical (LO) and the surface-optical (SO)
modes should be included in the electron-phonon interac-
tions, since for both of them there exist polarization
charge densities in the volume and the surface of the slab.

The electron —LO-phonon interaction operator, in the
limit of infinite thickness, is equivalent to the interaction
operator af the bulk Frohlich Hamilltnnan. By consid-
ering the interaction energy of a classical electron exter-
nal to the slab and the SO polarization field, it is found
that the electron —SO-phonon interaction operator leads
to the result of classical image-charge theory. The
electron —SO-phonon interaction should be taken into ac-
count as the electron inside the slab approaches the sur-

face, even if the amplitudes of the SO modes decrease ex-
ponentially on moving away from the surface.

Most of the early studies have concentrated on the in-
teraction of LO modes and concluded that such an in-
teraction tended to increase the impurity binding energy
and the polaron's effective mass. ' Licari and Evrard
deduced the Hamiltonian operators of the electron-
phonon system in a polar crystal slab with both SO and
LO modes included. They illustrated that the effect of
the SO phonons on the electron surface-state formation
in semiconductors might give a binding energy deeper
than previously expected. Based on the same considera-
tion of the electron-phonon interactions as in Ref. 7, for a
weak-coupling case, Gu and Sun" made a numerical cal-
culation of the self-energy of a polaron bound to the shal-
low dopant impurity located at the slab center by using a
perturbation method.

In this paper, a further investigation of a bound pola-
ron confined in a polar crystal slab with arbitrary thick-
ness is made by means of the Lee-Low-Pines variation
technique. ' The interactions of both LO and SO modes
are taken into account, and the effective Hamiltonian of
the electron-phonon system is derived. The self-energy as
well as the effective mass, for GaAs as an example, are
calculated as functions of the slab thickness. It is shown
that the electron —SO-phonon interaction also increases
the self-energy and the effective mass just as LO modes
do.

We assume the impurity to be located in three different
positions inside the polar slab instead of at the center.
Our calculations show that the impurity position will ex-
ert obvious inhuence only on that part of the polaron's
energy associated with motion parallel to the xy plane.
Consequently, it will produce an impact on the transition
energy between different impurity states. If the donor is
located closer to the slab center, the transition energy for
the quantum number 1=1 will be larger and for l=2 will
be smaller.
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The formalism of this paper is suitable not only for
weak- but also for intermediate-coupling bound polarons.

II. THE HAMILTQNIAN

Consider a polar crystal slab with thickness 2d. As
shown in Fig. 1, the space for

i
z

i
& d is occupied by the

crystal and for
i
z

i )d the space is a vacuum. The shal-
low doped impurity is located at the point z; in the z
direction. We assume that the effective-mass approxima-
tion is valid and that the potential barrier in the slab sur-
face is approximately, infinity, i.e., the tunneling of elec-
trons through the surface is neglected. Then the problem
may approximately be the motion of an electron of mass
m' in the infinite square-well potential of width 2d. So,
the Hamiltonian of the electron-phonon system can be
written as

RE
H, =— +

2m Bz 2m

2

/z/ &d
6~1'

(2a)

where r'=[p +(z —z, ) ]', K and p are the wave vec-
tor and the position vector of the electron in the xy plane,
respectively, m* is the band mass of the electron, e„ is
the optical dielectric constant and e /e„r', is —the
Coulomb potential. In order to solve the energy eigene-
quation of H(1), we introduce the plane Coulomb poten-
tial' with the parameter A. and rewrite H, as

g2 g2 g2K 2

H, =—
2m Bz 2m

T

eA, eA, e+
p 6' p E

e + ph + e-Lo+ He-sp '

The first term is the Hamiltonian of the shallow donor,
given by

X, y

FIG. 1. Geometry of the polar crystal slab.
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Hso= QA'ass b (q)b (q),

where a (k) [a r(k)] is the creation (annihilation)
operator for the LO phonon with frequency coLO and k is
the two-dimensional projection on the xy plane of the
wave vector. b (q) [b (q)] is the corresponding operator
for the SO phonon with frequency msp and wave vector q.
The phonon modes are specified by subscripts p and m.
The parity index p, taking the value + and —,refers to
the mirror symmetry with respect to the plane z=O. The
index m is the quantum number denoting the z com-
ponent of the LO-phonon wave vector. For even parity
(p takes + }, m is odd and for odd parity (p takes —), m
is even. The phonon frequencies can be expressed in
terms of the transverse optical (TO) phonon frequency
coro by

(2b)
(e0+ I)+(e0—1)e

(e„+1)+(e„—1)e-"' "' (4b)

As will be seen later, A, can be determined by perturba-
tion theory.

The second term in (1) represents the phonon-field
Hamiltonian and is given by

where eo is the static dielectric constant.
In (1), the last two terms are the electron —LO-phonon

and the electron-SO-phonon interaction Hamiltonian
operators and are directly taken from Ref. 7,
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me.
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2d
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T

sinh( 2qd )
8-so

q

1/2

e ~ [C*e ' 'e[G+(q, z)b+(q)+6 (q, z)b (q)]+H. c.j, (5b)
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1 e +
p t' & 2m '

k, m, p k, m, p
g a ~(k)f'~(k)k g a (k)f' (k)k +H. c.

g a ~(k)f ~(k)k g a (k)f' (k)k
k, m, p k, m, p

f2
+

2m

2

g b&(q)g&*(q)q g b&(q)g& (q)q +H. c. + g bt(q)g (q)q g b (q)g~(q)q
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g b~(q)b~(q)q g b~(q)g~'(q)q + g b~t(q)g~(q)q g bt(q)b (q)q
q, p . qs' . qp

(10b)

With the physical assumption that successive virtual pho-
nons around the electron are emitted individually in the
field, i.e., there is no interaction between different pho-
nons; we omit those terms including the factor
(a ~a ~b~b~ ) in the transformed &.

From the form of Hamiltonian (10), the wave function
of the system can be written as

I
q'(z p k q) & =

I
@(z p) &

I N, ~(k)»s~(q) &

where 4(z,p) is the wave function of the electron moving
inside the slab and

I
N (k),Ns (q) & is the wave func-

tion of the phonon field in the particle number represen-
tation. N (k) and Ns (q) are the numbers of the LO
phonon and SO phonon respectively. Within the limita-
tion of low temperature, few phonons will be excited and
then we assume that there is no real phonon present in

I
%0(z,p, k, q) &=

I
4(z,p) & I o, o& .

And the energy-expected value of & in such a state is

~=&'41lq'0&=&@(z p) IF IC'(z p)&

(13)

(14)

where we set

F = &0,0
I
%

I
0, 0& =F(zp,f,f',g,g') . (15)

From Eq. (10), we obtain

I

the phonon ground state. Hence, we take IO,O& as the
wave function for the phonon system, which satisfies

a (k)
I
0,0&=b (q)

I
0,0&=0.

So, the wave function of the state with no phonon present
is given by

8 fi el,F=- + K-
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+ y Ig (q) I' silos + q'—
qp 2m

K.q (16)

According to the consideration in Ref. 12, if it is noted that the only preferred direction in the xy plane is the direc-
tion of K, we may conveniently introduce two parameters g, and g2 as
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I f ~(k}I'k=i), K
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Inserting (17) into (16), and from
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ri
&

——a C i (z) /[1+ aC i (z)], (19)

f'z(k) and g~'(q) can be easily expressed as the conju-
gate formulas of Eqs. (18a)—(18d).

It is necessary to point out that we are interested only
in the slow electron always observed in experiments,
namely, we can set K =0. By putting (18a)—(18d) and
their conjugate formulas into (17) and expanding them to
the first power of K, g1 and g2 are given by

cosh(xz /2d )

cosh(x /2)

X [(e„+1)+(e„—1)e "]

(e„+1)—(e„—1)e
X

(ep+ 1 ) (ep 1 )e
dx, (20b)

( sinhx)e "x
p [(Naus+) +x ]

where

and

8 N/2

C, (z) =
I m=1, 3, . . .

mK
cos 2' I

N/2 sin™~
z I, (19a)

m=24, . . .

x~rz (sinhx)e "x
IN

[(Naus ) +x ]

'2
sinh(xz /2d )

sinh(x /2)

X
1

[(e„+1)+(e„—1)e "]'

(e„+1)+(e„—1)e
dX

(ep+ 1 )+(ep 1 )e
(20c)

X dX
2 (19b)

In the above equations, we define the variable x =2qd
and the dimensionless coupling constant of the
electqon —LO-phonon interaction as

(1+x ) x+
N

h=aC~(z)/[1+aCi(z)], (20)

m*ea= 1 1

Ep
(21)

where
In addition, the polaron wave vectors ul and us& are
defined as

and

Ci(z)=4e„ep (Nau, ) (IN++I~ ), (20a) 2m *%cur o 2m *Acus
El( = "s = (22)
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We take the variation minimum of F as the effective
Hamiltonian of the electron-phonon system in a polar
crystal slab, namely,

H,z ——minF .

Also for a slow electron, considering Eqs. (17)—(20), we
have

a'
H,~

——— + K 1—
2m' Bz 2m' [1+aC,(z)]

2
aC~(z) aC((z) aCz(z)

, + ' +
[1+aC2(z)] 1+aC((z) 1+aC2(z}

2

e 2

+ V,'"(z)+ V,'"(z)+ (23)
6~p p

where VI' '(z) and Vi' '(z) are the effective potentials due respectively to the electron —LO-phonon interaction and the
electron-SO-phonon interaction. After some direct calculations, they are derived as

4 N/2

VI '(z)= atilt—o
Nau&

m 'IT
cos z

2d

u I
'2

Pl 7T

2—uI

N/2

m=2, 4, . . .

m7T
sin z

mm.

2—ui

(23a)

Vi (z) = (z)rupLoe eo 2(Naui )(I)v(+I~2), (23b)

where

(sinhx)e
N1

(Naus+) +x
cosh(xz /2d )

cosh(x /2)

2

I

Because aC, (z) « 1 and aCz(z) « 1 as shown in our cal-
culations, the bound polaron's effective mass M* can be
approximately evaluated by

M'(z) =m '[1+aC) (z)+aCz(z)],

sinhx e

(Naus ) +x

'2
sinh(xz /2d )

sinh(x /2 )

[(e„+1)—(e„—1)e "]

fe„+1)—(e„—1)e
X dx,

(ep+ 1 )—(ep —1 )e
(23c)

where C, (z) and Cz(z) are given by (19a) and (20a), re-
spectively.

Since it is exceedingly complicated to get the exact
solution of the eigenfunction of H,s (23), an approximate
wave function should be found. To solve the eigenenergy
in the state without any real phonon present, first, H, z. is
rewritten and separated into three parts:

1

[(e„+1)+(e„—1)e "]

(e„+1)+(e„—1)e
X dx

(ep+ 1 ) + (ep —1 )e
(23d)
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fi I(.
+

2m» Bzz 2M»
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&~p

IU. THE EFFECTIUE MASS AND ENERGIES

In light of the expression of H, tr (23), we have set where

+V, (Z)+(s)
E'~ p

(26)

aC, (z)
(M') '(z)=(m') ' 1—

[1+aC,(z)]

aC2(z)

[1+aC2(z}]

(}
H, =— + V' '(z)+ V(s)(z),

2m ' Bz2

AE
H P

2M*

(26a)

(26b)

aC, (z)
+ 1+aC, (z)

2

H, = 1

p P
(26c)

uC2(z)
+

1+aC2(z)

2

(24)

As illustrated in Ref. 13, for a thin slab, the difference
between )(,/p and 1/r' (r'=[p +(z —z,. } ]' ) can be
made very small by choosing an applicable value of A, .
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Therefore we treat H, (26c) as a perturbation and take

Ho ——H, +H~D

Then we will regard the electron as a particle moving in
an infinite square-well potential along the z direction.
The solutions are well known and given by

as the unperturbed Hamiltonian.
The variation of the effective mass M' with coordinate

z is so small that it can be approximately taken as a con-
stant independent of z. Hence, according to Eqs. (26a)
and (26b), the motion parallel to the xy plane can be
separated from the motion along the z direction. Conse-
quently, the wave function of the electron motion refer-
ring to the unperturbed Ho can be written as

H, P, (z) =E,P,(z),

—sin (z+d),
~

z
~

&d
1 . Im.

I z= d 2d

0, [z /)d
~2/21 2E=

7

8m 'd2

(28a)

(28b)

(28c)

I 4t, , (z p ) & =
I 4't (z) &

I (()., (p) & (27)

where I and n, t are respectively the quantum number in
the z direction and in the xy plane.

Compared with the kinetic energy of the electron
motion along z direction, even for the intermediate cou-
pling bound polaron, the effective potentials VI

' and

VI
' can all be neglected due to their very small value.

where the quantum number I is a positive integer and, for
the conduction electron, is limited by the bandwidth, i.e.,
EI ((m A' )l(2m'a ). Thus we have l &2d/a =N.

H2D, (26b), is just the Hamiltonian of a two-
dimensional hydrogenlike atom and then the solutions of
the electron motion parallel to the xy plane are expressed
as'4

H2DO, (P)=E, 4, (P)
2 ]/2

y„,(p) = e "~1

&2n.

pA.

(n + —,
' )ao

2pk,

(n +—,
' )ao

I zlrl
n+ lt I („+) )a

2

exp

(n —~t ~)!

[(n +
~

t
~
)!] (2n + 1) (n +—,

' )ao
' Ifl

(29a)

(29b)

A, M e

2e„A (n+ —,') (29c)

where the quantum number n =0, 1,2, . . . , t =0,
+1,+2, . . . and

~

t
~

& n; the parameter ao
=(~ fi )~(llf*e );I „+~'I~

~

ls the Laguerre polynonual.
Since aC„aC2 «1, we take M'(z) as its expected value
referring to Pt(z) to simplify our calculation.

According to the perturbation method, ' the expected

value of the perturbation term H& referring to 4I „,
should be set zero in a thin slab, i.e.,

H& (A, ) = (@I, , I Hi I @t, , & =0

So, the parameter A, can be determined by

A(l, n, t)=

—f sin (z+d) dz f"
2 2, &2 ~ $„,(p)

~
dp

o [p2+ (z z )2]1/2

f, 14., , (p)
I

'dp
(30)

By solving the eigenequation of the unperturbed term Ho

Ho I @t, , ~(z p)&=En I @I, , t(z p)& (31)

the total energy of the bound polaron in the zero-phonon state is obtained

where E, and E, are the self-energies and come respectively from the expected values of VI ' and VI '. They are given
by
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In these equations, a, ui, and us~ are defined by Eqs. (21)
and (22), and the variable x =2qd.

To investigate the absorption and emission of energy,
we also give the calculations of the transition energies be-
tween different impurity states such as

E 100 =E110— 100~ E200 =E210 E200
110 210 (35)

where E,„,=E&+E(l,n, t) in which E(l, n, t) represents
E„,with well quantum number l.

V. RESULTS AND DISCUSSION

According to the formulas obtained in Sec. IV and tak-
ing GaAs as an example, we have computed the energies
and the effective mass of the bound polaron in a polar
crystal slab. In our calculations, we assume that the shal-
low doped impurity is located at the positions of z; =0,
d/4, and d/2. Because experimental observations are al-

ways made on slow electrons, we also set K =0. The
characteristic parameters of crystal GaAs are listed in
Table I.

In the low-temperature limit, for a thin slab, the energy
of the bound polaron in the state without any real pho-
non present can be expressed as

TABLE I. Characteristic parameters of crystal GaAs. All
the parameters are taken from Refs. 16 and 17. Energy is mea-

0
sured in mev, length in A, and m * in units of the free-electron
rest mass.

Eo

iSCOLo

(meV)
f2COTo

(mev) (A)

12.83 10.90 36.70 33.83 0.0657 5.654 0.0681

E =E(+E„,+E, +E, .

EI is the energy of the polaron within an approximately
infinite square-well potential along the z direction. Since
it is well known to all, we are not going into its details
here.

The electron self-energy contains two parts, E, and
E, , which are brought out, respectively, by LO- and SO-
phonon contributions. The total self-energy is plotted in
Fig. 2 as the function of the slab thickness N. For a very

.thin slab the self-energy is mainly attributed to the SO-
phonon contribution, and due to the attractive action of
SO modes its absolute value is larger than other theoreti-
cal results excluding the electron-SO-phonon interac-
tion. When the slab thickness approaches zero, the self-
energy tends to the surface limit of E, . By the increasing
of N, the SO-phonon contribution rapidly decreases and
the LO-phonon contribution becomes the dominant one.
In the limit of infinite thickness, the self energy slowly
approaches the bulk limit value E, . Figure 2 also shows
that there is no obvious difference of the self-energy be-
tween the ground state (1=1) and the first excited state
(1=2). In this paper, the self-energy is derived as the un-
perturbed terms and its second-order perturbation
correction is proportional to the square of the coupling
constant a. So, the formalism of our paper would also be
suitable for the intermediate coupling polaron besides the
weak one.

From Eq. (30), we can see that different positions of the
donor will exert influence only on the determination of A, .
As the only term relating to the value of A, , E„„the ener-

gy of the bound polaron associated with motion parallel
to the xy plane, will certainly depend on the donor posi-
tion z; besides the quantum numbers I, n, and t. For z;
being taken as 0, d/4, and d/2, respectively, Figs.
3(a)—3(b) give the description of the variation of A. with
the slab thickness N and Figs. 4(a) —4(b) give that of E„,.
In these figures, we choose I =1,2, n=0, 1 and t=0.
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FIG. 4. (a) Energy in the xy plane (E„,) vs slab thickness N
(for l= 1). (b) Energy in the xy plane (E„,) vs slab thickness N
(for 1=2).

In Figs. 4(a) —4(b), we notice first that according to the
varying features of A, , for a fixed value of z;, E„, increases
monotonically at a reduced rate as the slab gets thicker.
Secondly, the great difference among the curves is mainly
owing to the different quantum number n. The absolute
values of E„, for n=1 are much smaller than that for
n =0 in a very thin slab. With the thickness N increasing,
such a difference will become smaller and disappear in
the limit of infinite thickness.

Comparing the curves of E„,with different z;, we find
that the various z,- brings obvious difference among the
curves for n=0, while for n=1 the inhuence of z; will
not exist. Whether n is small or big, for the very thin
slab, the donor position z,- wi11 not produce impact on the
value of E„,.

Figures 5(a) —5(b) depict a situation in which the transi-
tion energies (AE&~ and b,E2OO) change with the slab
thickness N. It is obvious that for various values of z; the
transition energies decrease monotonicaHy with the in-
crease of N, namely, the thinner the slab is, the larger the
transition energy will be. Corresponding to the varying
features of E„„only when N is relatively bigger does the

FIG. 5. (a) The transition energy EE&oo vs slab thickness N.
(b) The transition energy EEzoo vs slab thickness N.
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FIG. 6. The effective mass of the bound polaron vs slab
thickness N.

difference among the transition energies brought out by
different z,- become obvious. And as N tends to zero,
such a difference will disappear. By comparing Fig. 5(a)
with Fig. 5(b), it should merit attention that with the lo-
cated donor being closer to the center of the slab the
transition energy for I= I (bE,'oo) will be getting larger,
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while for that for 1=2 (DE&00 ) will be getting smaller.
With consideration of aC, (z) « 1 and aC2(z) « 1, the

effective mass of the bound polaron as the function of z is
approximately given by (25). For a slab with thickness N,
we calculate the expected value of M'(z) referring to the
wave function in z direction. That is

Figure 6 shows us the variation of M'/m ' with the slab
thickness N, where m' is the band mass of the electron.
If the slab is thinner the effective mass will be bigger, and
as thickness N increases, it will decrease monotonically.
Comparing the theoretical results without SO modes in-
cluded' with ours, we find that the electron-SO-phonon

interaction increases the efFective mass. In the two-
dimensional limit, SO phonons will produce a bigger
correction to the effective mass than in the bulk limit.

In addition, from Fig. 6, it is also noted that only at the
middle range of N is there a little difference between the
two curves with quantum number 1=1 and 1=2. This
implies that the inhuence of various states on the effective
mass can be neglected.
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