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Second-order nonlinear effects in asymmetric quantum-well structures
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The expression for second-order optical susceptibility based on band-to-band and intraband tran-
sitions in various asymmetric multiple-quantum-well structures is derived. The analogy with organ-
ic nonlinear materials is shown. The dependence of the second-harmonic coefficient and Pockels
coefficient on well geometry, band offsets, and other material parameters is studied. The nonlinear
and electrooptic coefficients of GaAs-Al„Ga& „As asymmetric quantum-well systems are estimated
to be in the range of most conventional nonlinear materials, while for proposed ZnSe-GaAs hetero-
structures these coefficients are found to be substantially larger than in conventional materials.
Some practical applications of asymmetric quantum-well systems are discussed, including novel
methods of phase matching. The case for engineering of novel nonlinear materials is made.

I. INTRODUCTION

Recently there has been significant interest in nonlinear
optical properties of quantum wells (QW's) and superlat-
tices (SL's). ' Calculations and observations of strong
third-order nonlinearities were reported in GaAs-
Gai „Al„As QW and SL structures. Among phenomena
mentioned as leading to strong 7' ' in such structures are
conduction-band nonparabolicity, ' exciton line satura-
tion, and the quantum confined Stark effect (QCSE). '

Practical devices using QCSE, so-called self-electro-optic
effect devices, have been successfully demonstrated.

A typical multiple QW or SL system possesses an in-
version symmetry; therefore, according to Ref. 9, only
odd-order nonlinear effects can be observed. Second-
order effects such as frequency mixing, including second-
harmonic generation (SHG), and linear electrooptic
effects are of great practical interest in the areas of in-
tegrated optics and optical communications. It is desir-
able to extend the frequency range of semiconductor
lasers into the visible and to achieve tunability by means
of frequency mixing and parametric amplification.
Presently it is achieved using ordinary nonlinear materi-
als, like LiNb03. ' The efficiency of frequency conver-
sion is poor primarily because it is hard to achieve high
power density in the nonlinear crystal, due to low
efficiency of coupling of highly divergent laser radiation
into the nonlinear waveguide. Also there are consider-
able difficulties in growth and fabrication of nonlinear
waveguides. On the other hand, power density inside the
lasing layer approaches the order of MW/cm . The best
way to achieve such high power density in the nonlinear
material is, therefore, to grow it epitaxially on the same
substrate as the lasing layer, thus creating truly integrat-
ed optical devices. Although large-band-gap III-V and
II-VI materials which can be grown on GaAs or Si sub-
strates possess second-order nonlinearity, they are cubic
materials and phase matching is not easy.

Large third-order effects observed in QW structures
suggest that once the inversion symmetry is removed,

substantial second-order effects may result. Inversion
symmetry and optical isotropy in the material can be des-
troyed by either applying an electric field externally or
growing strained-layer, " doping, ' or graded band-gap
QW's and SL's with such a field built in. The electronic
states of asymmetric QW's are similar to that of giant di-
atomic covalent molecules with various degrees of ionici-
ty. Large dipole momentums of these "molecules" are
lined up in the same direction of growth or applied field.
According to Ref. 13, one should expect large nonlinear
susceptibilities.

Such second-order nonlinearity based on virtual intra-
band transitions between the bound states in the conduc-
tion band of QW structures was first described in Ref. 14.
The existence of such "envelope" transitions with large
oscillator strength was recently confirmed by intraband
absorption measurements of Levine et al. ' A different
approach to describing the nonlinear phenomena associ-
ated with electrons in the conduction band of the electri-
cally biased SL's was suggested by Tsu and Esaki. ' Ac-
cording to that approach, the nonlinearity results from
nonparabolicity of conduction subbands in SL. Second-
order effects mentioned in Refs. 14 and 16 are based on
asymmetry of bound states or subbands separated from
each other by energies less than conduction-band offset
(about 0.1-0.3 eV for the Ga, „Al„As-GaAs hetero-
structure), so their use is limited by the free-carrier ab-
sorption to wavelengths larger than 5 pm.

A quasilinear shift in absorption spectra of asymmetric
coupled QW's with applied electric field was recently ob-
served and explained by Le et al. ' and Little et al. '

Nishi et al. ' calculated linear QCSE in graded band-gap
QW's. The effects described in Refs. 17—19 are the mani-
festation of the imaginary part of X' '(co, 0), although no
explicit expressions were obtained for it in these papers.

In two recent papers, Yamanishi and Chemla et al. '

describe nonlinear processes associated with generation
of virtual carriers in biased QW's by optical radiation
with energy below absorption edge. The authors of Refs.
20 and 21 use a simple model based on interaction of vir-
tual electrons and holes, but the effect can also be regard-

38 4056 1988 The American Physical Society



38 SECOND-ORDER NONLINEAR EFFECTS IN ASYMMETRIC. . . 4057

ed as optical rectification from the point of view of the
standard nonlinear optics theory.

In our recent work an asymmetric coupled QW sys-
tem was proposed as a medium with large real second-
order susceptibility at the optical energies near band gap.
Both SHG and Pockels coeScients were estimated to be
comparable to most commonly used nonlinear and elec-
trooptic materials.

In this work using Bloembergen's theory we derive the
expression for second-order susceptibilities of asymmetric
QW structures in Sec. II. The equivalency of that ap-
proach and virtual carriers approach used in Ref. 21 is
shown. In Sec. III simplified formulas describing reso-
nant SHG and Pockels effects are obtained. Section IV
consists of the analysis of the second-order susceptibility
for three possible implementations of such structures:
asymmetric coupled QW's (ACQW's), linearly graded
band-gap QW's (GBQW's), and biased QW's (BQW's).
Three most important cases of second-order phenomena
are examined: SHG, linear electrooptic effect, and opti-
cal rectification. The dependencies of these effects on the
wide range of QW structure parameters are studied both
by numerical calculations and by means of second-order
perturbation theory calculations. The effect of absorp-
tion is determined. Finally, in Sec. V some practical ap-
plications are suggested, including methods of phase
matching. Section VI contains conclusions.

II. DERIVATION OF THE g' ' EXPRESSION

The three asymmetric QW structures considered here
are shown in Figs. 1(a) (GBQW), 1(b) (BQW), and 1(c)
(ACQW). They are defined by the following set of pa-
rameters: d is the well thickness (in case of ACQW there
are two well thicknesses d, 2 and a barrier thickness rb),
B is the barrier thickness, b E, is the maximum depth of
the well in the conduction band, and hV is the potential
drop across the well. Because we are interested in near-
resonant susceptibility close to band-gap energy, only
confined states are considered. The wave function of a
bound state in the QW is

4b „(k,r)=Pb „~„~e
" ' =uz „(r)ttb „(z)e

where ub „(r) is normalized Bloch's function of the band
described by Kane, b =e, lh, and hh for conduction,
light-, and heavy-hole bands, respectively, P& „(z) is a real
normalized envelope wave function of the nth bound
state, and r

~~

and k~~ are the coordinate and wave vector in
the xy plane.

The second-order susceptibility of such a multiple QW
system can be calculated as

~2} +ze ~ ~ 0'i I I ri 142m 42m I rj 143n ~3n I
rk 14'l I

0~ ~P b, b, b,t, , k ~~ ~, (k~~ ) ~1(k~~ ) ~1
(2)

where gp means summation over all terms obtained by permutation of the pairs ( —co, co&,i)—, (co„j), (coz, k), and fz
is the Fermi function of the ground state P, I.

Because we are interested only in resonant effects and the lowest transition is that between ground electron state e1
and ground heavy-hole state hh1, we shall consider here only heavy-hole states. The light hole states' influence will be
dealt with below. Also, in order to observe most interesting nonlinear effects, the light must propagate in the xy plane,
so without loss of generality we assume it propagates in y direction. Consider now the product of three matrix elements
in (2). If the light frequency is close to band gap, two of the states involved in the transitions must lie in one band and
one state in the other band. Because Bloch s functions ub „are orthonormal, the intraband matrix element in (2) is

(3)

e2

aE,
e}

aU,
el

aV„

e2

(c)

zU„

IL

hhl
v h}12

av„ I I

hh1
aE„hh2

FIG. 1. Asymmetric multiple quantum well structures. (a) Graded band-gap quantum well. (b) Biased quantum well. (c) Asym-
metric coupled quantum wells.
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The interband matrix elements on the other hand are

I rl I dhh, n& = & 0,, I 4hh, n&r, .hhf2;, . (4)

where r, hh
——& u,'

I uhh & is interband matrix element of Bloch's functions, and 5, , follows from the fact that for heavy
holes in QW structures r, hh is equal to 0 for the direction perpendicular to the QW plane. Under all of the above as-
sumptions, the only resonant contributions to X' ' are

+ze re, hh 4hm I Pen Pen I
Z

I Eel Wel I 4hm

6EOA
kll m' n I [~hhm k

II
) ~l ~21[~hhm k

~~

) ~1]

and

& 0,. I fhhm & & fhhm I
z

I fhhl & & fhhl I 4..&

[02h~h (kll ) 0 1 ~2][~hhl(k~[) ~1]
(sa)

X,'„„(CO1, 022) =
0 kii m, n I [ hhm f 1][ hhm ii

+ 2]

& @en I fhhm & & tj'hhm
I

Z
I fhhl & & Phhl I @,.&

[~hhm ( ([) ~l ][~hhl( [[
)+~2]

(5b)

1

hhm (

and

01hhm( k )hhl

[cohh (kii ) —co, ]

1

l21fhm (k~~ )

Because we are interested in 7' ' near the band gap, only the terms with low m, n indices are significant. For small m, n

overlap integrals with rapidly oscillating unconfined levels can be neglected, and then one can assume that 1athhl and f,l

are complete sets of orthonormal wave functions. Substituting (6) into (Sa) one obtains

(6b)

X12'( z ehhEe r
+xzx 1& 2

0 k~~
m, n [~hhm(k~t) ~1 2][~hhm(k~~ ) 1]

2 &&- Iz I e.l&&&,l lehh &~,l(k(~~)
I (~n)

X & &hhm I
z

I @hhl & & 11lhhl I @en &~hhl (k1)

where the factor —, follows from averaging over polarization directions.
The positive term in the large parentheses represents sum of all the electrons susceptibilities and the negative sum of

hole susceptibilities. From the point of view of Feinman s theory, the expression for electron (hole) susceptibility con-
sists of the creation of a virtual carrier in the conduction (heavy-hole) band, its subsequent interaction with the elec-
tromagnetic field through intraband transitions and, finally, its annihilation. In the perturbation theory formalism, di-
agonal matrix elements of the intraband Hamiltonian in (5) represent a linear shift of the interband transition energy
(linear quantum confined Stark effect) and nondiagonal elements represent linear changes in the oscillator strength of
that transition. According to the oscillator sum rule these changes tend to cancel each other; therefore, one should ex-
pect that nonzero second-order susceptibility in QW structures must be a consequence of the difference in the non-
resonant terms in the denominators in (5). Indeed, one can write for 1&n, m

1 a)',1"(k
ii

)
(6a)

~fh [l'0fh

Because the right-hand side of Eq. (5b) does not have resonance at co=011+co2, X,'2„' is much smaller than g„„and we
shall not consider it till later in the paper. Further simplification is achieved by going from summation over the k vec
tor to integration over energy, introducing line broadening I, and assuming that the following effective mass approxi-
mation energy splits between sublevels within one band are independent of the wave vector:

el"( k1 ) =~;„'

hhm hhm
hhl k

~~
~hhl

Performing integration one obtains
2

gaP ~& mn I &n m, n, l ) m

y(21, k

(ga)

(Sb)

(9)
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where E, is the average band gap of the bulk material, mr is reduced effective mass in units of mo, m„'=m, '+m hh',

ao is Bohr s radius, and dimensionless nonlinear susceptibilities are

en
~eI

, I +z & Phhm I See & & fee I
z

I |t'ei & & hei I fhhm &

~hhm —~&

for electrons and

)'+ r'
$2 ++2 (loa)

(2),hh +5,-)2+12
I 1(('hhm &&4hhm I2'

I fhli && Ah( I %em &

~hhm —~i $2 +$2 (lob)

for heavy holes, where 5„=ficofh —(rico, —Rco2 is detun-
ing.

In order to better estimate magnitude of the 7' ' and
compare it with linear susceptibility of the bulk material,
one can write

3

aoe Egap ~~1
for holes and

hh2 (g hh2+5)2+1 2
hh1

1
hh1

i6COhh2 —%CO i
s'+r'

hh2 (g hh2+g e2+5)2+I 2

ln
Acohh2 ficoi — (5+()lco', 1) + I

(15a)

where e, is the lang-wavelength dielectric constant of
bulk material, Eg p

is the mean gap energy, used by
Penn, usually a few times larger than E, , u is the lat-
tice constant, and 7' ' denotes the sum of all dimension-
less nonlinear susceptibilities in the large parentheses of
(9). If one uses GaAs as a benchmark material, then for a
large class of III-V and II-VI materials (11)can be rewrit-
ten as

e2 (g e2+5)2+I 2

f, (5)= ln
ficohh( —fico( 5 + I'

e2 (g e2+g hh2+5)2+I 2

(5+a~"„"„',)'+ r'
(15b)

X„„(co„co2)= AFX' '(5),

where A =0.96 X 10 ' m/V, and

mr Egap GaAs

r, QaAs gap ~]

(12)

(13)

III. g' ' DEPENDENCE ON QW PARAMETERS

Let us now further simplify our task by assuming that
only two confined levels in each band contribute to non-
linear susceptibility. Assuming completeness of the set of
envelope functions, one obtains

As one can see, the expression for nonlinear susceptibility
is now separated into two factors: One of them, F, is ma-
terial dependent through the effective masses and band
gap, and the other one, —7' ', which is dependent on the
shape of the QW's. The nonlinear susceptibility seems to
increase with increase in mr because the number of
confined states increases. However, 7' ' also depends on
efFective mass in a more complicated way which needs to
be studied.

D(2')(5) [y(2)f2'(5) y(2)f 2'(5)]

where band-splitting factors are

2~~hh 1 ( ~~hhl
hh2 hh

ln
gap

2+ 5 )2+ p2

2+ p2

hh2+g e2+5)2+I 2

—1n
(5+%co' ) +I

(16)

for electrons. In the above expressions, splitting factors
in the first order depend only on band offsets, effective
masses, and the well width, while geometrical susceptibil-
ities depend mostly on the degree of asymmetry of the
wells.

We shall now consider three distinct situations: SHG,
linear electrooptics effect, and optical rectification. These
situations differ primarily by the fact that the denomina-
tor in first term of the splitting factors in the last two
cases can become quite small for small detuning 5, while
for the SHG coefficient that term is practically indepen-
dent of detuning. The dimensionless second harmonic
coefficient D' "' has only one resonant component:

X' '(5) =[Xh„'fhh(5) —X'e 'f, (5)],
where the geometrical electron susceptibility is

geometrical hole susceptibility is

~hh + & 4)I |(hl&&|t'h( I I kh2&&0h214, (&

and band-splitting factors are

(14a)
and

(14b)

(14c)

2%co
f,"(5)= ln

Egap

(A'co' +5) +I
$2+ p2

(g~ 2+ehh2+ 5)2+ p2

(5+g hh2)2+I 2

(17a)

(17b)
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~ (2') g p(2')D(2') (5)15 15

where

r g GaAsm E

r GaAs Eg

For linear electrooptics efFect, one obtains

R]3(5)=l4~'fhh (5}—&,'"fe (5)1

where band-splitting factors are

( gnihh2+ 5)2+ I 2

f„'„(5)=ln
52+ 1 2

and

(A'co" +5) +I'
f, (5)=ln

52+ 1 2

(18a)

(18b)

(20a)

(20b)

and where 5=A'cohh& —co and relation between real and di-
mensionless Pockels coefficients is

and where 5=%cosh, —2', and relation between real and
dimensionless SHG coefficients is

IV. RESULTS AND DISCUSSION

The results of calculations for the dimensionless SHG
coefficient and for the Pockels coefficient are shown in
Figs. 2-4 for GBQW, BQW, and ACQW, respectively.
The barrier in all examples is made of Gao 4Alp 6As, and
the well in all examples is either pure GaAs or, in the
case of GBQW, is graded from GaAs to Ga, „Al„As
where x (0.6. The maximum conduction band offset
hE, is thus 300 meV and, corresponding to it, the
valence band offset is 200 meV. Detuning 5 in all cases
was assumed to be 75 meV, which in material of good
quality should eliminate absorption. The existence of
Urbach's tail may, of course, interfere and lead to in-
creased absorption, but we shall neglect it for now.

In Figs. 2(a) and 2(b) the dependence of D]]25"](5}and
R]]3](5) on the tilt of the conduction band of GBQW,
EV„are shown for different thicknesses of wells. Both
second-harmonic and electrooptical coefficient first rapid-

0 05

,'n r]3 ———AF' R]3(5),

where

F( )
mr g GaAs

mrG A, h5

(21a)

(21b)

0.0%

3 ~ 0.0&~ LA

Cl

~r ~~a

50

There is also a much smaller Pockels coefficient R»
coming from Eq. (Sb}, where both x- and z-polarized light
are involved in the virtual transitions but only the x-
polarized component is close to resonant with interband
transitions:

0.02

0 01 ioo
— 1 2I5

- 100
R 51(5} l~hhf hh(5}—&e"f,'e'(5}l

where band-splitting factors are

and

f51(5) ]f2'

(22)

(23)

(24)

0.0
0.0

0 15

0 iR

0. OS 0. 10 0. 1]s}] 0.RO

nV, (eV)

0.2S

(b)

I

0.30

and relation between real and dimensionless Pockels
coefficients is 0.09 .

—,'n r 51
——AF]5]'R5](5),

where

r g, GaAs
Fsi

m r, GaAs Eg

(25a)

(25b)

0.06

0.03

+~T5
50i' & 0o
—125

S3](5) R ]3(5) (26}

Although much smaller than r, z, the coefficient r» can
lead to many interesting phenomena in the waveguide
geometry involving nonlinear interaction of TE and TM
modes, but that subject is beyond the scope of the present
paper, and we shall consider only the "double-resonant"
Pockels coefficient r3& from now on.

Finally, the optical rectification coefficient in accor-
dance with the Kleinman rule is equal to the Pockels
coefficient

0.0
0.0 0. 05 0. 10 0. &S 0.Bg 0.25 0.30

gV, (eV)

FIG. 2. Dimensionless SHG coefficient D'I, ' (a) and Pockels
coefficient R „(b)of GaAs-Alo 4Ga06As GBQW as functions of
potential gradient across the well in the conduction band 6 V,
for various well thicknesses d. Solid lines: exact wave-function
calculations. Dashed lines: first-order perturbation calcula-
tions.
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ly increase with an increase in tilt, and then either satu-
rate or even decrease. This behavior can be explained by
the fact that small increase in tilt or, in other words, in
well asymmetry, causes previously prohibited transitions
in Eq. (14) to become partially allowed, thus increasing
X' ', while large tilts cause a decrease in oscillator
strength of nominally allowed transition in Eq. (14) and
thus a decrease in g' '.

Both dI~ '(5) and R', 3'(5) are larger for thinner wells.
This behavior is caused by larger energy splits %co&&& and
fico,'f reducing the cancellation due to contributions of
states with opposite polarity. Unfortunately, in very thin
wells, level e2 becomes unconfined and such states are
not considered in this paper, although they can also con-
tribute to nonlinearity of the superlattice.

0 10

In absolute values, D', 5 '(5) reaches a maximum of
0.025 corresponding, according to Eq. (18), to
Z(tp'=5 X 10 ' m/V. That value is comparable to
values for LiNb03 or KTiOPO4. For the linear electro-
optic coefficient RI3'(6) the maximum value is 0.1 and,
therefore, according to (21), ri3=3 1X. 10 ' m/V, and
the practical value is n r» =1.1

' m/V, which is better
than for bulk GaAs.

In Figs. 3(a) and 3(b) the dependencies of DI5"'(5) and
R I3)(5) on the tilt of the conduction band of BQW, b, V„
are shown for different thicknesses of wells. Both second
harmonic and electrooptical coeScients are somewhat
larger than in the case of GBQW, and their thickness and
band tilt dependencies are similar to the GBQW case, ex-
cept the curves tend to saturate faster, which follows
from the fact that the e2 function becomes unconfined by
tunneling from the well. The increase of nonlinearity of
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FIG. 3. Dimensionless SHG coefficient D(i5 ' (a) and Pockels
coefficient R» (b) of GaAs-A104Ga04As BQW as functions of
potential drop across the well in the conduction band AV, for
various well thicknesses d. Solid lines: exact wave-function cal-
culations. Dashed lines: Srst-order perturbation calculations.

FIG. 4. Dimensionless SHG coefficient D»'"' (a) and Pockels
coefficient R, 3 (b) of GaAs-Alo 4Gao, As ASQW as functions of
well asymmetry s for various total well thicknesses d&+d2 and

0
constant barrier thickness tb ——10 A. Solid lines: exact wave-
function calculations. Dashed lines: first-order perturbation
calculations.
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the BQW can be easily explained by the fact that virtual
holes and electrons in the BQW are moved in opposite
directions by the band-gap gradient, while in the GBQW
they move in the same direction; thus nonlinear dipole
momentum is larger in the BQW. In the Gai „Al„As
BQW the maximum dimensionless SHG coefficient
Di5"'(5}=6X10, corresponding to Z'i5 '=1.2X 10
m/V. For the BQW electrooptical coefficient the max-
imum value of R i3'(5} is 0.23, corresponding to
ri3 ——=7.1X10 ' m/V, and n ri&--2. 3 ' m/V,
value only 1.5 times smaller than LiNb03.

For the ACQW, besides total thickness d, second-order
susceptibility depends on two parameters (Fig. I): barrier
thickness tl, and asymmetry parameter s =(d, —d2)/
(d&+dz). If we consider the "diatomic molecular analo-

gy,
" s can be loosely treated as ionicity and t& as binding

energy. In Figs. 4(a) and 4(b) the dependence of DI~"'(5}
and R'(&'(5) on the degree of asymmetry is shown for
different thicknesses of wells for fixed tI, ——10 A. Both
second-harmonic and electrooptical coefficients exhibit
similar dependence on asymmetry. The interesting point
is that both have their maximums close to s =0.5 which
qualitatively agrees with most theoretical investigations
of nonlinearity, where the diatomic materials where
shown to have maximum g' ' when their bonds are some-
where in between purely ionic and purely covalent.

In Figs. 5(a) and 5(b) the dependencies of DI5 '(5) and
R', 3'(5) on the barrier thickness ti, for different s are
shown. The overall well thickness is kept at 50 A. 10 A
seems to be about the optimal barrier thickness for both
SHG and Pockels coefficients.

In the Ga, „Al„As ASQW the maximum dimension-
less SHG coefficient DI5"'(5)=4X 10, corresponding
to ZI5 ' =6X10 ' m/V. For the ASQW electro-
optical coefficient the maximum value of R Ii'(5) is 0.15,
corresponding to r i3 =4.9X10 ' m/V, and n r i3
=1.8 ' m/V.

Comparing the three geometries one concludes that the
BQW has the largest values of nonlinear coefficients, but
it also is the least practical of geometries, requiring either
external fields or large stress. Therefore, for practical ap-
plications the ACQW seems to be the most appropriate
candidate. Some additional improvement in 7' ' can be
achieved by combining the ACQW and GBQW.

In order to more deeply understand the influence of
material parameters on X' ' it is desirable to obtain an
analytical expression for P' ' which does not require cal-
culation of wave functions. One can obtain a simple
rough approximation for D'i5 '(5) and R'i3'(5) of the
GBQW and BQW by treating asymmetry as a small per-
turbation to the infinitely deep square QW and assuming
that energy splits %co,'& and Ace&&& are much smaller than
the band gap:

0.05-
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0.0
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d4
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S(d) (27)

and

RIPE'(5)=C' '(O, m, '+Oi, i,mi, i,
'

)

(m, O, 'b V„—m„„O„„'b,V, )
S(d), (28)

where

FIG. 5. Dimensionless SHG coefBcient D'&5"' (a) and Pockels
coefficient R» (b) of GaAs-Ala 46ao 6As ASQW as functions of
barrier thickness t& for various well asymmetries s and constant
total well thickness d&+d2 ——50 A.

1 ++ ~e ~ ~c 8e
' m v 8hh ~ ~v d
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is a correction factor arising from the reduction of the os-
cillator strength of the allowed transitions in the tilted
well:

and

2
C' "'=— =0.7X10 eV A

4 h 2 2 ~ 4

9 mp

C"=0.04,
2mpK= =0 17 eV 'A

9 3 fi

Ace'„( hE, )
8 =

%CO'1( ~ )

2

1+0.71m (yb E,m, d —1)'

(30a)

(30b)

(31)

(32a)

hh2(gE
~hh hh2( )

2=1—
1+0.71'(y hE, m hhd 1)'~— (32b)

are ratios of the energy splits between the lowest confined
states of the real wells and the energy splits in the case of
infinite depth wells, for conduction and heavy-hole bands,
respectively, where hE, and EE„are band offsets and

2mp
y= =0 029 eV 'A

2/2
(33)

Xcos sin(ms)S(d)
ITS

(34)

and

For the ACQW perturbation theory assuming very
thin barriers yields the following results:

C(2')
D15 (~) 4 (~erne +~hhmhh )

(2~) ACQW b —1

d4 d

(H, m, 'hE„—Hhhm hh' hE, )

@~hh1 —~1}fi

(27) and (28) fail to predict correct values of D', 5 '(5) and
RI3'(5), especially for large asymmetries, due to the fact
that the inAuence of asymmetry on level splitting is not
included in (27) and (28) and penetration of the wave
function into the barrier is discounted. Also, by lineariz-
ing logarithmic expressions in (15), the dependence on d
is overestimated. Still, qualitatively, expressions (27) and
(28) are correct and allow us to make general observa-
tions about nonlinear susceptibilities of asymmetric
QW's.

First, it is very clear that nonlinear susceptibility in the
BQW is always larger than in the GBQW because for the
BQW the band tilts are of opposite sign, b, V, = —b, V„
while for the GBQ they are of the same sign, hV„
=b, V, EE„/b,E, . It also follows that for light holes the
nonlinear susceptibility of the Ga, „Al„As GBQW or
ASQW is very small because the term in parentheses in
(27} and (28} and (34) and (35) is almost exactly zero, due
to

mph

me

hE, =1.4 .
hE„

(37)

These results were also obtained by the authors of Ref. 24
in their calculation of the QCSE in the GBQW. The ab-
sence of nonlinear susceptibility 133 is, therefore, just a
peculiar feature of the GaAs-Ga& „Al,As system, and in
materials made of other material one can obtain
significant Z33 ' and r33(cu), of which the first one is of
major importance as one allowing type-I phase matching.

The most important is, of course, the dependence of
nonlinear constants on the size of the well. The depen-
dence of DI& '(5) on d is very strong, due to "triple" can-
celation described in Sec. II, which occurs when levels be-
come very close to each other. One then should try to
keep the wells as small as possible, yet then levels become
less confined and less asymmetrical. The dependence on
effective masses is even more complex because on one
hand smaller effective mass increases level energy splits,
but on the other hand it leads to reduced density of
states, thus reducing the number of states creating non-
linear polarization via the term m„ in (11).

From the point of view of material engineering it
would be most interesting to obtain the dependence of
X' ' on band offsets and effective masses. Assuming that

Eb

13 (~ ACQW (~ +~hhmhh )
d

(m, O, 'AE„—mhh8hh'hE, )
X

%$
X cos sin(~s)S(d), (35)

mhh

me

one obtains

hE,
m e gE

rm

re

(38)

(39)

where

2 2

CACQw = ——3.8X10 eV A
4 mp

(36a)

and

r
rIp3' —m hE, +1 (r '+1),

re
(40)

CACQw
——0.22 .(~) (36b)

The results of the approximate analysis are plotted in
Figs. 2—4 as dashed lines. The approximate expressions

where the + sign in the large parentheses corresponds to
the BQW and —to the GBQW and ACQW.

According to (39) and (40) one has to look for materials
with large band discontinuities and large effective masses,
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though the difference between effective masses of conduc-
tion and valence bands should be large. Unfortunately,
for many interesting combinations of materials, the band
offsets are not known. As an example of a system with
large band offsets, one may consider the GaAs-ZnSe
lattice-matched heterostructure. Although no structure
like that has ever been grown yet, we find it is still in-
teresting to see what kind of nonlinearities one may ex-
pect in such systems. The band-gap offsets are AE„=960
meV and bE, =300 meV. We have chosen the ACQW
as an example. The largest SHG coefficient was obtained
for two coupled QW's of di ——25 A and d2 ——12 A
separated by a 5-A barrier, ec'pp'=45X10 ' m/V. The
largest Pockels coefficient was obtained for the ACQW
system with parameters d, =20 A, d 2

——16 A, th = 5 A.
The value of n3r»=4X10 ' m/V. As expected from
(39) and (40) the SHG coefficient increases far more
significantly with an increase in band offsets than the
Pockels coefficient.

This and similar calculations for other imaginary het-
erostructures show that the values of nonlinear
coefficients for heterostructures with large discontinuities
become larger than for any known bulk inorganic rnateri-
als. The fact that X'2' of the ACQW approaches X' ' of
nonlinear organic materials reflects the similarity of the
charge transfer process in both systems. In a nonlinear
organic molecule virtual absorption of a photon causes an
electron transfer from one end of the rather long mole-
cule to the other. The distance traveled by an electron is
large on atomic scale, of the order of 10 A; hence non-
linear susceptibility is also very large. In the asymmetri-
cal QW structure, virtual absorption of a photon causes
virtual electron transfer from the confined state in the
valence band to the confined state in the conduction
band. The difference in dipole momentums of ground
and excited states due to both asymmetry of the wells and
effective mass difference is also of the order 10 A, and
that is the cause of large nonlinearity.

The major difference between QW structures and or-
ganic molecules is, as shown in the preceding section, the
presence of more than one ground state in QW struc-
tures. The symmetries of these states are different and

I

where
(41)

Xe r (i 1i )'
y(])„(2 ) I z ehh y Thh117el

3ep& g cohh)(k,
~

) 2co+i I—
il

't

(42)

is imaginary part of linear susceptibility at frequency 2'.
The solution of (41) is

.X' '(2co)(E )

X""(2~)

(43)
Second-harmonic power seems to saturate at few absorp-
tion distances; therefore the maximum efficiency of SHG
1S

there is compensation of nonlinear polarizabilities creat-
ed by transitions originating at different ground states.
As a result, nonlinearity becomes resonant [hence, strong
dependence of X' ' on detuning 5 in (27), (28), (34), and
(35)], so just like in organic materials, the major criterion
of material applicability becomes whether large non-
linearity can be achieved without having large absorp-
tion.

To take full account of absorption one has to consider
all the states in the bands, or to use a Kramers-Kronig
approach. Still, just to estimate the order of magnitude
of the ratio of 7' ' to absorption, one may use the fact
that energy splits %co,'t and A'cohhi, as well as detuning 5,
are all larger than broadening I, so only the states with
energies between first and second bound states in each
band contribute to absorption.

In the presence of absorption there are two competing
processes occurring at frequency 2': absorption and
SHG. Under the assumptions that a fundamental wave is
not depleted by SHG and the phase-matching condition
is satisfied, one can write the following equations for slow
electric field amplitudes E and E

BE2 = —(k/2n)[g""(2 c)oE —iX' '(2co)(E") ]
3'

2
2X' '(2co) I
1""(2co) cap

&&,21~hhl) e(f, i lz14,2)~~ i |'+~~
(Eg %co) — I cn Ep

(44)

where all of the assumptions about absorption made
above were used. The result of (44) is very interesting
from the point of view of g dependence on well thickness:
On one hand, dipole momentum in the first set of large
parentheses is proportional to d; on the other hand, the
level splitting iiico', , sharply decreases with increase in d.
Larger splitting should also allow larger detuning 5 fur-
ther decreasing absorption. In order to make order of
magnitude estimation of g, we assume

Ez ——=1.4 eV, Ac@=0.6 eV, d =50 A,
fico'„=200 rneV, &=75 meV, I =25 meV .

I

We also assume that D', 5"'(5) has been optimized, so

(feq1fhh~) =0.5, and (tp„1z 1f,2) =d/2. Then one
obtains

q=(1.9 x 10—")I", (45)

where I" is measured in W/cin . Therefore, to achieve
1% conversion efficiency, the required fundamental
power density is of the order of 50 MW/cm, about an
order of magnitude higher than maximum power avail-
able from today's injection lasers. In order to increase
conversion efficiency one can cool the system, thus reduc-
ing I, or increase simultaneously the detuning 6 and the
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interaction length. Still, by far the best way to improve
saturation conversion efficiency is to seek novel materials
with larger band offsets. Calculations for the described
above the hypothetical GaAs-ZnSe MQW heterostruc-
ture show that only 2 MW/cm of fundamental power is
required for 1% efficient SHG conversion at a length of
about 1 mrn.

For linear electrooptic effect, the influence of absorp-
tion can be dealt with in a similar way. The absorption
coefficient for the waveguide of one-half wavelength is

o.
2~7 ( Ct7 )

X"I(~)E,'
~ Pe2I1hhl~ e(((, i lz l42~E ~+~~ I

(lt„~ q„, )

(46)

where E, is the low-frequency field applied to the system
in the z direction. For the optimal GaAs-A1„Ga&, As
system described above, and E, = 10 Vjcm, al' ~ '= 1.2,
meaning that light is attenuated approximately three
times. The absorption, in fact, is significantly larger be-
cause of the shift of the absorption due to linear confined
Stark effect.
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FIG. 6. Large-scale-twinned multiple quantum well struc-
ture.

V. SOME PRACTICAL APPLICATION ASPECTS

Second-order optical nonlinearity, besides being, in

general, of stronger effect than third-order nonlinearity
and thus being observable at lower light intensities, has
another important advantage. This advantage lies in the
fact, that unlike g' ', g' ' has a sign, and that sign can be
easily reversed by growing the structures that are mirror
images of each other (Fig. 6). One can achieve reversal of
X ' in both the ACQW and GBQW as well as in the
BQW where bias is achieved by modulation doping or
built-in stress. The regions in QW structures where 7' '

keeps its sign are large-scale equivalents of ferroelectric
domains or twins. One may call them "large-scale twins"
and the whole structure in Fig. 6 "large-scale-twinned
QW structure" or LSTQWS.

Without going into details, we would like to note a few
useful applications of the LSTQWS. When an electric
field is applied in z direction the indices of refraction in
domain 1 increase and in domain 2 decrease (or vice ver-
sa). As a result, if the domain thickness is A, /4, then for
light propagating in the z direction the transmission or
reflectivity changes. Such a device can be a very efficient
spatial modulator.

One can fabricate a waveguide around LSTQWS or,
what is even better, two coupled waveguides —one
around each domain. Then, a small electric field applied
in the z direction shall cause the guided light to move in
the z direction toward the domain with the larger n or to
couple from one waveguide to another. That would
create a very nice coupler or modulator. Also, such a de-
vice, being very responsive to small electric field varia-
tions, may be used in fiber-optics sensors of voltage,
stress, and other parameters.

The LSTQWS is also very useful for phase matching in

SHG. It is well known that in waveguides it is possible to
compensate material dispersion with modal dispersion of
the guide, i.e., to match phase velocities of lower-order
fundamental waves, say TM0 and Te0 and a higher-order
harmonic wave, say TM, . Unfortunately, the efficiency
of SHG is proportional to overlap of two waves in the xz
plane,

2

fd„,(z)E,' (z)E, (z)E„(z)dz (47)

which is very small due to the oscillatory character of
E, . One can, however compensate for the change of
sign in the electric field of the harmonic wave using the
change of sign in SHG coefficient, which is of course
easily accomplished in the LSTQWS with two domains.

VI. CONCLUSIONS

In this work the expression for the second-order sus-
ceptibility of asymmetric QW structures based on inter-
band transitions has been rigorously derived. It is shown
that nonzero 7' ' is the result of both asymmetry of band
offsets and difference in effective masses of valence and
conduction bands. The total 7' ' is the sum of nonlinear
susceptibilities arising from transitions originating from
many individual electron and hole levels, and is, there-
fore, a much more complex function of frequency and
QW parameters than intraband g' ' studied in previous
works. The large number of ground and excited levels
with different charge distributions results in extensive
compensation. In accordance with sum rules for oscilla-
tor strength, we have shown that large separation be-
tween sublevels in each band, and therefore large band
offsets, is the foremost condition necessary for large 7' '.

Using the above results, in resonant approximation, ex-
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pressions for SHG and Pockels coeScients were ob-
tained. They were studied for different well geometries
and materials. In GaAs-Al„Ga, „As structures the
magnitude of SHG and Pockels coelcients are of the or-
der of most electrooptic materials used today. However,
the room-temperature excitonic effects were not included
in our calculations. According to Ref. 2 one should ex-
pect an increase in nonlinearity by an order of magni-
tude. We have also concluded that due to the resonance
character of nonlinear effects, the practical limitation to
efficiency of nonlinear or electrooptic QW devices is ab-
sorption rather than magnitude of g' '. We have also
shown that the ratio of X(z) to absorption can be im-
proved drastically by using novel heterostructures with
large band offsets. For one of the hypothetical, but not
entirely impractical, ZnSe-GaAs lattice-matched QW
structures, our calculations predicted more than 1% SH
conversion efficiency in the waveguide of only I mm in
length.

The way toward synthesizing materials with extraordi-
nary nonlinear properties thus lies in the direction of
growing of ordered structures of two quite dissimilar ma-
terials. Obviously, one could arrive at such a conclusion

without all the involved calculations performed by us, but
it seems that our results based on a simple effective mass
model are useful in the predictions of the magnitude of
the nonlinear effects, without going into the calculation
of the band structure of the new materials. Still, when
band offsets and effective mass differences become large
and well thicknesses small, one has to refine the theory
and use a better model which would include unconfined
levels and excitonic effects.

As for practical applications, we have suggested a nov-
el type of heterostructure —LSTQWS which has in-
teresting electrooptics properties and allows effective
phase matching. The future work should concentrate in
the expanding the range of these novel materials toward
visible light using II-VI semiconductors, and maybe
even chlorides. On the other hand, for longer-wavelength
applications one should pay more attention to nonlinear
devices based on intersubband transitions within the con-
duction band because X(z) compensation in such struc-
tures is less severe. Although not an easy way, this ma-
terial engineering may become an alternative to "molecu-
lar engineering" of nonlinear organic materials and lead
to further advances in integrated optoelectronics.
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