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A first-principles theory of the quasiparticle surface-state energies on semiconductor surfaces is

developed. The surface properties are calculated using a repeated-slab geometry. Many-body
effects due to the electron-electron interaction are represented by the electron self-energy operator
including the full surface Green's function and local fields and dynamical screening effects in the
Coulomb interaction. Calculated surface-state energies for the prototypical Si(111):As and
Ge(111):As surfaces are presented. The calculated energies and dispersions for the occupied surface
states (resonances) are in excellent agreement with recent angle-resolved photoemission data. Pre-
dictions are made for the position of empty surface states on both surfaces which may be experi-
mentally accessible. The resulting surface state gap at I for Si(111):As agrees with recent
scanning-tunneling-spectroscopy measurements. Comparison of the present results to eigenvalues
from the local-density-functional calculation reveal substantial corrections for the gaps between

empty and occupied surface states. This correction is found to depend on the character of the sur-

face states involved.

I. INTRODUCTION

The local-density-functional approach has been quite
successful in explaining the structure of many surfaces,
including reconstructions. ' This rests on the ability to
calculate accurately the total energy associated with pro-
posed configurations of atoms. One then proceeds to find
that structure which minimizes the total energy. To this
stage, a complementary first-principles theory for com-
puting the electronic excitation energies associated with
the surface structure has been lacking. This hinders clear
comparison of the properties of a proposed surface struc-
ture to results from the various spectroscopic probes of
surface electronic structure.

In the present paper a theory of the quasiparticle
surface-state energies is presented which meets this need.
The previously developed theory of the electron self-
energy operator in bulk semiconductors and insulators is
extended to the case of semiconductor surfaces. In the
bulk case the self-energy approach provides a quantita-
tive theory for the band gaps and band dispersions. ' In
the surface case, the self-energy operator may be used to
deduce the energies of quas&particle surface states. This
allows the atomic coordinates resulting from total-energy
calculations to be used directly for a first-principles cal-
culation of the associated surface-state energies. These
can then be rigorously compared to spectroscopic data.

The eigenvalues that result from the Kohn-Sham equa-
tions in the local-density-functional approach (LDA)
often have been interpreted as representing quasiparticle
energies. This has well-documented difficulties highlight-
ed by the underestimate of the minimum gap in semicon-
ductors and insulators by 30—100% in comparison to the

measured value. Similar problems are encountered for
surface-state (resonance) energies. Previous comparisons
of calculated LDA surface-state energies to experiment'
reveal three systetnatic errors: (i) gaps between empty
and occupied surface states are too small, (ii) the place-
ment of the occupied surface-state energies relative to the
bulk valence band is incorrect (being too high in compar-
ison to measured values), and (iii) the dispersion of the
surface-state bands is too small in some cases. In the
present work, we address each of these problems by
demonstrating a first-principles theory of the quasiparti-
cle surface-state energies that properly includes the ex-
change interaction and higher-order correlations among
the electrons.

To elucidate the basic physical principles involved, it is
desirable to consider a surface free of the complication of
extensive reconstructions. Recently, this has been real-
ized in practice. Arsenic-terminated Ge (Ref. 7) and Si
(Ref. 8 and 9) surfaces have been prepared which exhibit
a 1X1 surface periodicity. For the (111) surfaces, ' the
As appears to substitute for the final layer of Si or Ge, re-
sulting in a chemically stable surface. The surface states
arising from the As lone-pair states have been carefully
measured using angle-resolved photoemission. The re-
sulting surface band is consistent with the 1 g 1 substitu-
tional geometry. This assignment is also consistent with
recent standing-wave x-ray studies of the Si(111):As sur-
face. ' These surfaces have been chosen as a prototype
for a first application of our theory because of their
geometric simplicity and careful experimental characteri-
zation.

In the present theory the self-energy operator X is
evaluated from first principles and the quasiparticle
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surface-state energies are obtained directly. The resulting
surface-state energies corresponding to the occupied As
lone-pair (p, ) orbital are in excellent agreement with the
angle-resolved photoemission data for both Si(111):As
and Ge(111):As. Both the placement and the dispersion
of the surface band is correct. In comparison to the LDA
surface-state energies, there is a substantial (10—20%}
correction to the dispersion. The offset of previous calcu-
lated LDA band energies from experimental values with
respect to the valence-band edge is largely due to one-
electron effects in this case. There may be many-body
corrections required for other surfaces.

There are also well-defined empty surface states near I
in the surface Brillouin zone. These states are split off
from the continuum states and have atomic character at
the surface similar to the I.„conduction bands which

form the conduction-band edge at I. For the Si case
these are in the gap in the projected bands, but above the
bulk conduction-band edge. For the Ge case the surface
states are in the minimum gap. The present theory pre-
dicts the position of those states relative to the bulk
valence-band edge. They should be experimentally acces-
sible using angle-resolved inverse-photoemission mea-

surements and possibly scanning tunneling spectroscopy.
The scanning tunneling experiment has recently been
done for the Si(111}:Assurface. " Not only is the 1X1
surface observed directly, the surface-state gap in the
normalized differential conductivity agrees very well with
the value predicted here. Optical transitions from the oc-
cupied lone-pair states to the empty surface states near I
are dipole allowed for p-polarized light. Therefore
surface-derived optical absorption may also be observable
with an onset given by the calculation.

The gap between the empty and filled surface states is
substantially opened up in comparison to the gap in the
LDA eigenvalues analogously to the bulk case. However,
the size of the correction depends on the detailed charac-
ter of the states. As a consequence, it is evident that the
shortcomings of the LDA spectrum can not be corrected
by a simple rigid shift of the empty states relative to the
valence-band edge.

The balance of this paper is organized as follows. In
Sec. II the forrnal aspects of the present theory are briefly
reviewed. The technical details of the calculations in the
slab geometry and the evaluation of the self-energy opera-
tor are contained in Sec. III. The results for the
Si(111):Asand Ge(111):As surfaces are presented and dis-
cussed in Sec. IV. A detailed comparison to available ex-
perimental data is made. The quasiparticle energies are
compared to the LDA energies and implications for other
semiconductor surfaces are discussed. Section V contains
some concluding remarks.

II. SELF-ENERGY APPROACH FOR SURFACES

As in the bulk case, the quasiparticle energies are ob-
tained from the electron self-energy operator. In gen-
eral, ' these are determined by solution of

[T+V,„,(r)+ V&(r)]g(r)

+fdr'X(r, r'; Eq~)f(r') =E f(r), (1)

where the terms correspond to the kinetic-energy opera-
tor, the external potential due to the ion cores, the aver-
age electrostatic (Hartree) potential, and the electron
self-energy operator, respectively. The latter contains the
effect of exchange and dynamical correlations on the
motion of the quasielectrons and holes. The theoretical
challenge is to adequately approximate the self-energy
operator. As in the bulk case, we use the GR'approxima-
tion of Hedin

X(r, r', E)= den e ' "G(r,r', E—co) W(r, r', co),2'
(2)

where 5 is a positive infinitesimal. The full crystalline
Green's function G and dynamically screened Coulomb
interaction 8' enter. For the Green's function, a quasi-
particle approximation is used. 8'is defined as

W(r, r';co)= —fdr"e '(r, r";co)VC(r"—r'),

where e is the time-ordered dielectric matrix and Vz is
the bare Coulomb interaction.

In order to proceed for the surface case, a choice must
be made for representing the surface. The surface breaks
the crystalline periodicity so that, in general, new tech-
niques are required to calculate the electronic structure.
In order to treat the electronic energy levels associated
with the surface, we use the repeated-slab approach. '

The surface is modeled by a supercell containing several
layers of atoms and a vacuum region. In this fashion,
three-dimensional periodicity is restored. From a techni-
cal point of view, this allows us to carry over the ap-
proach developed for bulk semiconductors.

In evaluating the electron self-energy operator, the ap-
proach is to make the best possible approximation to G
and W separately. These are then combined to form X
and the quasiparticle energies are obtained directly.

The Green's function is written in terms of the solu-
tions to Eq. (1) analogous to the independent-particle
case:

(4)

where 5„&——0+ for occupied states and 5„&——0—for
empty states. The states are indexed by Bloch wave vec-
tor k in the supercell and band number. In the present
case, k is in the surface Brillouin zone (two dimensional).
Initially, the wave functions and spectrum are taken from
a LDA calculation. Then the spectrum is updated to
reflect the true quasiparticle energies. As in the bulk
case, the wave functions require no further modification.

The dynamical screening is treated in two steps. Ex-
ploiting the periodicity in the supercell approach, the
static dielectric matrix e&&.(q; co=0) is obtained as a
ground-state property from the LDA calculation. ' Here
the matrices are written in terms of the reciprocal-lattice
vectors associated with the supercell and q is in the sur-
face Brillouin zone. The off-diagonal elements of the
dielectric matrices describe the local fields in the materi-
al. These are the microscopic variations in the screening
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response to a perturbation. In a bulk semiconductor
there are important differences in the screening potential
around an added point charge, for example, in the bond
chain in comparison to the interstitial region. ' These lo-
cal fields are crucial in the self-energy operator and, in
particular, in opening the band gap. For the present sur-
face systems treated in a supercell, the local fields play a
similar role. However, in addition, the off-diagonal ele-
ments of the dielectric matrix distinguish the screening
response of the bulklike region of the supercell from the
response of the vacuum region. This is obviously impor-
tant as the surface states of interest here are sensitive to
the decay of the potential (self-energy operator) into the
vacuum region.

The static dielectric matrices are extended to finite fre-
quency using a generalized plasmon-pole model. For
each G, G', q, the weight in the imaginary part of the
dielectric matrix is collapsed into a single pole of some
amplitude. The amplitude and position of the pole are
determined from exact sum rules. The Kramers-Kronig
relation gives the inverse co moment in terms of the static
dielectric matrices calculated for the surface:

Redo& (q; co=0)=So& +—P dc@—Ime&& (q;co) .
2 ~ 1

0 N

The generalized f-sum rule relates the first co moment of
the imaginary part of the dielectric matrices to the super-
cell charge density:

dao co lmeoo (q;co)
0

m 2 (q+G) (q+G') p(G —G')
COp (6)

I
q+G I'

Here, p(0) and co refer to the average density in the su-
percell. This approach has been quite successful for bulk
semiconductors and reproduces the expected behavior for
the bulklike states in the repeated-slab geometry.

The self-energy operator for the surface will differ from
the bulk case for two reasons. First, there are states lo-
calized near the surface. This affects the self-energy
operator through the Green's function. It can lead to dis-
tinct results when the self-energy operator acts on surface
states in comparison to bulk states. Furthermore, some
of the states in the energy gap may be built up of both
bulk valence- and conduction-band states. This will
affect the results obtained when the self-energy operator
acts on those states. Second, the plasmon modes are
different near the surface. In particular, a distinct
surface-plasmon mode appears. Viewing the correlation
energy of a quasielectron as arising due to virtual absorp-
tion and reemission of plasmons, the modified plasmon
energies may introduce novel effects. '

III. TECHNICAL DETAILS

The (111)surface is represented by a supercell contain-
ing eight, ten, or twelve atoms periodically extended in
the lateral direction and a vacuum region corresponding
to four or six layers of missing atoms. A 1X1 surface
periodicity is assumed in keeping with the observed low-

energy electron-diffraction (LEED) pattern. The outer-
most layer of atoms on each side of the slab is As in a
substitutional position. The resulting unit cell has an in-
version center in each case. The final results are largely
independent of the thickness of the slab or the vacuum
region in the present case. The one exception to this is
the splitting of the occupied surface resonances near I .
As usual, the surface states occur in pairs (one for each
surface on the two sides of the slab) which are split by
their interaction through the bulk region of the slab.
(Splitting due to interaction across the vacuum region is
quite small. ) At I this splitting is relatively large because
of the slow decay of surface resonances into the bulk re-
gion. Means for handling this problem are discussed
below. In order to minimize this difficulty, the final re-
sults reported were calculated with 12-atom unit cells and
a vacuum region equivalent to four atomic layers.

The calculations were performed using the ab initio
pseudopotential approach. ' The pseudopotentials used
for Ge and As include scalar-relativistic effects. ' The
position of the As layer at the surface was relaxed using
standard local-density-functional energy-minimization
techniques' with the wave functions in the Kohn-Sham
equations expanded in a plane-wave basis. ' The relaxed
position of the As atoms is relatively insensitive to the
number of plane waves used in the expansion as well as
the number of k points in the Brillouin summations.
However, the final placement of the surface states is more
sensitive. In particular, the empty surfaces states found
in the gap near I' on the Ge(111):As surface were difficult
to converge. This reflects the basis-set-convergence
difficulties associated with the I &., state in bulk Ge. In
the LDA band structure this state is the conduction-band
edge in the projected bulk band structure. As a function
of plane-wave cutoff, it drops precipitously, squeezing the
empty surface band down ahead of it. For this reason,
large cutoffs have been necessary in the final LDA band
calculations reported. We have used plane waves up to a
maximum kinetic energy of 10 and 11 Ry for the Ge and
Si surfaces, respectively. In the Si case all surface ener-
gies are well converged within about 0.1 eV. For the Ge
case most energies are similarly converged, although the
uncertainty for the empty I surface state just discussed is
about 0.2 eV;

The surface states of interest in the present calculation
are the occupied As lone-pair (p, ) states (resonances) and
the empty states split off the continuum near I . The oc-
cupied surface states (resonances) can be clearly identified

by their weight in the region outside the As atom. The
empty states are similarly identified. However, the empty
resonances near the zone edges reported below are not
very strong and their surface character is less clear.
Through most of the Brillouin zone the splitting due to
surface-surface interaction through the bulk region is rel-
atively small. This splitting is eliminated by taking a sim-
ple average. However, near the zone center the occupied
surface resonances are strongly split, reflecting the slow
decay of these states into the bulk. This indicates a large
overlap between the surface states on opposite faces and a
simple average is no longer appropriate (as this assumes
near-zero overlap). A simple model (see the Appendix) is
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used to estimate the overlap and extract the decoupled
position of the surface resonance.

Placement of the surface states relative to the bulk pro-
jected band structure is important for comparison to ex-
periment. Identifying the bulk valence-band edge with
the energy of the highest occupied bulklike state in the
slab is not adequate. There are simply not enough bulk-
like states in a 12-layer slab. One can envision two ways
to get around this problem. First, the major peaks in the
occupied density of states should be reproduced by the
slab calculation. Therefore, the s-p peak, for example,
can be aligned between the bulk density of states and the
slab density of states. This places the bulk valence-band
edge on the energy scale of the slab calculation. Second,
the local potential near the center of the slab should con-
form to the local potential in the bulk semiconductor ex-
cept for an overall shift. Therefore, the valence-band
edge in the bulk relative to the average potential can be
aligned to the average potential in the central region of
the slab. These two methods yield the same result for
Ge(111):As within less than 0.1 eV. For simplicity, we
employ the average potential approach throughout. It
should be noted that in the present cases the energy of
the highest occupied bulklike states in the slab calcula-
tion deviates from the valence-band edge determined
from the average potential by as much as 0.2-0.3 eV.

In the self-energy calculations several numerical cutoffs
enter. Because of the magnitude of the surface problem,
these must be reduced from the values used in bulk Si and
Ge which assured full convergence. In reducing the
cutoffs, it is essential to verify that the calculated gaps
and band dispersions are only minimally affected.

The dielectric matrices employed were cut off at
~
q+G

~
(2. 1 a.u. , yielding matrices of order 400X400

for each q. In the calculation of eoG(q; co=0), LDA
bands were used with plane waves up to a kinetic energy
of 7 Ry. The sum over empty states included about 600
bands. Dielectric matrices were generated for q evenly
spaced in the surface Brillouin zone and including q =0.
Sets of four and seven points in the irreducible wedge
were used. The latter includes l, M, and K as well as in-
termediate q corresponding to division of I -M into
thirds. This sampling of q in the surface Brillouin zone
for the q summation required for X yields quasiparticle
energies converged to better than 0.1 eV. In the calcula-
tion of X, the sum over empty states includes about 200
bands. This includes empty states within about 45 eV of
the bottom of the valence band. The wave functions and
spectrum were taken from well-converged LDA calcula-
tions (cutolfs of 10 and 11 Ry for Ge and Si, respectively).
Also, the spectrum in the Green's function was not up-
dated in these calculations. The effect of this is quite
small for the occupied surface-state energies and is about
0.1 eV for the empty surface-state energies. Finally, the
effect of the self-energy on the bulk valence-band edge
must be taken into account. This was done by shifting
the calculated LDA valence-band edge by Eq"—e, cal-
culated in the bulk using precisely the same cutoffs. In
particular, the sum over empty states was cut off in ener-

gy (instead of band index) to assure that the bulk calcula-
tion completely mirrored the slab calculation.

IV. RESULTS FOR Si(111):As
AND Ge(111):AsSURFACES

The minimum-energy geometry for the surface atoms
is presented in Sec. IVA. Results for the quasiparticle
energies are given in Sec. IV B and compared to available
experimental data. In Sec. IVC the quasiparticle ener-
gies are compared to the LDA energies and implications
for other semiconductor surfaces are discussed.

A. Relaxed As position

The first step in determining the surface-state energies
is to establish the positions of the atoms near the surface.
For the present case we have used total-
energy-minimization techniques relying on the local-
density-functional approach. ' Just as in the previous
work for these surfaces, ' the surface periodicity is as-

TABLE I. The accuracy of the self-energy corrections to the
LDA eigenvalues for the surface calculation performed with re-
duced cutoffs is assessed. The correction relative to that of the
valence-band edge is compared to fully converged results for
bulk Si and Ge.

E

I 2s'
I Is
r, .,
X4,
XI,
L3„
I.„
L3,

Reduced

0.00
0.74
0.90

—0.22
0.59

—0.10
0.72
0.78

Si
Full

0.00
0.74
0.76

—0.08
0.72

—0.06
0.67
0.76

Ge
Reduced

0.00
0.62
0.89

—0.20
0.47

—0.09
0.64
0.62

Full

0.00
0.62
0.71

—0.06
0.55

—0.03
0.61
0.63

Equation (1) is not solved directly for E .Instead, the
first-order corrections

5„|,——(nk
i
X(Eq~) —V„,

~

nk)

are calculated. The quasiparticle energies follow when
the 5„l, are combined with the LDA bands. The second-
order corrections have been checked and are found to
change the results by a few hundredths of an eV in the
worst case. For bulk materials the LDA wave functions
were found to be an excellent approximation to the solu-
tions of Eq. (1). Evidently, a similar situation holds in the
present case.

The reduced cutoffs were tested by performing self-
energy calculations for bulk Si and Ge. The results for
the near-band-edge states (of primary concern here) are
shown in Table I. The difference Eq~ —c is displayed
in comparison to fully converged results obtained previ-
ously. Values relative to the valence-band edge are
shown. These enter the quasiparticle band dispersions
and band gaps. For states within 2.0 eV of the gap re-
gion, the diff'erences are less than 0.1 eV. (The X4„state
is about 3 eV below the valence-band edge. ) This pro-
vides confidence that the present calculation will yield
relative quasiparticle energies reliable to about 0.1 eV.
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0.1
Si (111):As

0.0—

sumed to be 1 X 1 and the position of the As atom above
the perfectly terminated Si(111)or Ge(111) surface is con-
sidered. The substitutional geometry is assumed. Then
the energy as a function of position is calculated. These
results are summarized in Fig. 1. The relaxation energy
per two surfaces (slab unit cell) is plotted as a function of
the relaxation of the position of the As atom from the
ideal termination of the (111)surface. The minimum en-
ergy occurs for about 20% outward relaxation.

The present results are in good agreement with the pre-
vious calculation of the equilibrium. position. For the Ge
case, Bringans et a/. report 0.20 A outward relaxation,
while we find 0.17 A. For the Si case, Uhrberg et al. give
0.19 A outward relaxation in comparison to 0.16 A in the
present calculation. These values agree within the estab-
lished precision of the present technique. Furthermore,
the position of the As atom on the Si surface has been
determined by x-ray standing-wave techniques. ' The re-
sult is 0.17+0.03 A outward relaxation, in excellent
agreement with the theoretical values. In addition, this
technique unambiguosly confirms the substitutional
geometry. The recent scanning tunneling images ob-
tained for the Si(111):As surface clearly show the 1 X 1

periodicity of this surface. "

B. Quasiparticle surface-state energies

The results of the quasiparticle calculation are summa-
rized in Figs. 2 and 3. The calculated quasiparticle
surface-state (resonance) energies are plotted along sym-
metry lines in the surface Brillouin zone for Ge(111):As
and Si(111):As. The projected bulk quasiparticle bands
are shown as the shaded region. The dashed lines are the
corresponding LDA surface-state (resonance) energies.
The k points for which the quasiparticle energies are ac-
tually calculated are indicated by the solid dots. The
solid line is an interpolation.

The overall features are quite similar for the Ge and Si
cases. The character of the states has been mentioned
previously: the occupied surface states (resonances) are
the As lone-pair state, while the empty surface states
derive their character from the bulk band-edge states.
The lone-pair state is resonant through much of the Bril-
louin zone, being outside the bulk-projected bands only
near the zone edge (especially near E ). These states have
been illustrated in Ref. 7 and are discussed further below.
The empty surface resonances near the zone edge are
quite weakly localized at the surface and their
identification as surface features is somewhat ambiguous.
However, the empty surface state in the gap near I (in
the projected gap for the Si case) is strongly localized at
the surface.

There are detailed angle-resolved photoemission results
for these surfaces. ' The results of the present quasipar-
ticle calculations are compared to experiment in Figs. 4
and 5. There is excellent agreement both in the disper-
sion and the placement of the lone-pair band with respect
to the photoemission data. The data at the symmetry
points is summarized in Table II. One can see that the
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FIG. 1. Relaxation energy per two surface atoms plotted as a
function of the relaxation of the As atom from the ideal ter-
mination of the (111)surface in the case of (a) Si and (b) Ge.

F$G. 2. For the As-capped Ge(111) surface, the calculated
quasiparticle surface bands along the indicated directions in the
surface Brillouin zone are plotted against the bulk-projected
bands. For comparison, the LDA surface band energies are also
shown (dashed lines) ~
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FIG. 5. Same as Fig. 4 for the As-capped Si(111) surface in

comparison to the photoemission data from Ref. 9.

FIG. 3. Same as Fig. 2 for the As-capped Si(111)surface.

LDA energies for the lone-pair band exhibit significant
discrepancies with experiment. However, the results of
the present self-energy calculation agree with the photo-
emission data to within about 0.1 eV in the overall place-
ment and rather better for the dispersion.

The position of the empty surface states in Figs. 2 and
3 are predictions. The present theory gives quantitatively
reliable band gaps and dispersions. These states may we11

be observable in either angle-resolved inverse-
photoemission or scanning tunneling spectroscopy mea-
surements. The obvious difficulty is associated with the
rather low density of states in the surface band near I .
The bands disperse upwards, sharply following the edge
of the bulk-projected bands. Dipole matrix elements
have been calculated in the slab geometry. Transitions

between the occupied and empty surface states at I are
dipole allowed for p polarization of the light. Thus, the
onset of surface-derived absorption may be observable for
these surfaces starting at energies indicated in Figs. 2 and
3. The differential reflectivity for the Si(111)-(2X 1) sur-
face shows broad features above bulk band edge which
are interpreted in terms of surface band transitions.
Such surface transitions might also be seen in electron-
energy-loss spectroscopy.

Quite recently, the Si(111):As surface has been studied
with the scanning tunneling microscope. " The normal-
ized differential conductivity measurements definitely
show a large surface gap of 1.9—2.2 eU. Generally, these
measurements exhibit features associated with the surface
density of states near the I point. Therefore the mea-
sured gap should be compared to the calculated surface-
state gap between the empty surface states and the As
1one-pair resonance near I . The theoretical result of 2.2

—1-
S ,(II

(i

II~

Ge(111):As

I'~JIIg

~ I,'

III
III

I I I

'"I:)~
- Theory

Expt.

LDA

—0.31
—1.23
—1.45

1.14

Si

qp

—0.39
—1.44
—1.71

1.31

Expt. '

—0.39
—1.44
—1.75

1.36

TABLE II. The results of the present quasiparticle calcula-
tion (qp) for the occupied surface band energies at symmetry
points in the surface Brillouin zone are compared to the LDA
eigenvalues and the angle-resolved photoemission data. The
overall dispersion of the surface band is also compared.

—0.43
—1.45
—1.61

—0.28
—1.68
—1.92

—0.44
—1.81
—2.06

FIG. 4. For the As-capped Ge(111) surface, the calculated
occupied surface band is compared to the photoemission results
from Ref. 7. Both are plotted against the bulk-projected bands.

1.18 1.64

'Si results from Ref. 9; Ge results from Ref. 7.

1.62
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eV for the Si(111):As surface is in excellent agreement
with the measurement.

C. Comparison to LDA

In Sec. I we pointed out that the common interpreta-
tion of the LDA surface band energies as quasiparticle
energies has three systematic difficulties: (i) surface-state
gaps are too small, (ii) occupied surface states are placed
too high relative to the bulk valence-band edge, and (iii)
the surface band dispersion may be too small. The
present theory addresses each of them. Comparing the
LDA energies to the quasiparticle bands in Figs. 2 and 3
shows that the quasiparticle surface bands have a sub-
stantially larger gap. This illustrates that the self-energy
approach leads to larger surface-state gaps just as it gives
larger bulk gaps. The question of how this difference
might scale in different cases is discussed below. Refer-
ring to Figs. 2 and 3, the quasiparticle long-pair band is
broader than the LDA band. The dispersion of the sur-
face states (resonances) is in considerably better agree-
ment with experiment.

The other difficulty does not play a large role for the
surfaces studied. The LDA occupied surface band is al-
ready approximately in the correct position relative to
the bulk valence-band edge (at least near I'). The general
problem may depend on two factors in the one-particle
part of the band problem which are cleanly treated here.
First, the present calculation is quite well converged with
respect to the basis set. As the number of plane waves in-
cluded was increased, the surface band has tended to
drop lower relative to the bulk valence-band edge.
Second, considerable care was taken to properly place the
true bulk valence-band edge on the energy scale of the
slab calculation. Due to the small number of bulklike
layers in the slab calculation, relying on the highest occu-
pied bulklike state in the slab structure to represent the
valence-band edge introduces noticeable errors. For the
present surfaces the discrepancy is about 0.2—0.3 eV. We
feel the potential alignment method used here (Sec. III) is
soundly based. It also leads to the occupied surface states
being lower with reference to the bulk valence-band edge
for the present surfaces.

Having emphasized the one-electron aspect of the

placement problem, we point out that the many-body
corrections may be important for other surfaces. In par-
ticular, this may be true for surface states that are closer
to midgap, where the character of the states may no
longer be strongly derived from the occupied bulk bands.
An important example of this case would be the
Si(111)-(2X1) surface where the n-bonded chain model
leads to both empty and occupied surface bands near
midgap. This issue is amplified below.

There appears to be anomalous dispersion associated
with the LDA lone-pair band (occupied resonances) near
1 for the Ge case (Fig. 2). This may be partly associated
with the strong resonant character of these states and the
corresponding coupling of the two surfaces through the
slab in the present calculation. However, we point out
that the quasiparticle calculation appears to correct this
situation. Further note that the empty surface state as
calculated in the LDA is quite close to the valence-band
edge. This is due to the fact that the direct gap in a bulk
LDA calculation is quite close to zero. Thus the empty
surface state is "pinched" down between the bulk bands
and tends to couple to the occupied resonance. This then
drives the lone-pair states down in energy near the I
point. As the gap problem is relieved in the quasiparticle
calculation, this coupling is less.

It turns out that the magnitude of the self-energy for
the surface states is quite distinct from that for the bulk
like states. This is illustrated in Table III for near-gap
states at I for Si(111):As. The quasiparticle energies rel-
ative to the bulk valence-band edge are shown together
with the matrix elements of the LDA potential and the
self-energy operator. The self-energy for the occupied
surface resonance at I is more than 0.6 eV smaller in
magnitude than the self-energy for a nearby bulklike
state. A similar effect pertains, with opposite sign, for
the emyty surface state. It is interesting to note that
much of this effect is reproduced by the LDA potential.
In that case, the magnitude of the potential is decreasing
with the charge density through the surface region and
into the vacuum region. The surface states have more
weight there and hence the reduction. For the nonlocal
self-energy operator the situation is more complex. The
intermediate states may be either surface or bulk derived.
This is illustrated by the matrix element of the bare-
exchange operator:

OCC

(nk
l
Xz(r, r')

l
nk) = —g g (nk

l

e'q+ "l n, k —q)(n, k —q l
e 'q+ "

l
nk)v(q+G),

nl qG

where v(q) is the usual Coulomb kernel. The sum over
intermediate states (n

&
) includes both bulk- and surface-

derived states in the slab. One can imagine dividing these
contributions so that the self-energy derives from ex-
change with states from the bulk manifold and the sur-
face manifold. For surface states one would expect the
surface-surface exchange to be more important and the
surface-bulk exchange to be less so.

In order to probe this more quantitatively, we have

I

partitioned the slab into bulk and surface (vacuum) re-
gions. Rather than arbitrarily assigning bulk or surface
character, the self-energy has been divided into two
pieces according to the weight of the intermediate state in
the surface region:

w„k —— f dzf f xdydlf k —q(r)l'.
C

Here, Q, is the slab unit-cell volume to which all wave
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TABLE III. For the Si(111):Ascase the magnitudes of the matrix elements of X and V„, are com-
pared for bulk and surface states from the slab calculation with the indicated quasiparticle energy rela-
tive to the bulk valence-band edge. Occupied (occ) and empty (emp) states near the band edge at I are
considered. The self-energy is evaluated at the corresponding LDA energy and hence does not include
some of the renormalization that enters the final quasiparticle energy. The self-energies are further bro-
ken down into screened exchange (SX) and Coulomb-hole (COH) terms with contributions from the
bulk region (Bulk) and surface-vacuum region (Surf. ) of the slab as described in the text.

Bulk
Surf.
Bulk

Surf.
Bulk

—0.57
—0.39
—0.22

1.82
2.48

V„,

—11.08
—10.47
—11.16

—10.53
—10.14

Bulk

r(occ)
—11.31 —3.61
—10.71 —3.09
—11.37 —3.64

I (emp)
—9.62 —1.66
—9.38 —1.73

&sx
Surf.

—0.24
—0.60
—0.21

—0.28
—0.14

Bulk

—6.75
—5.67
—6.83

—6.37
—6.80

~COH
Surf.

—0.71
—1.35
—0.69

—1.30
—0.71

functions are normalized and z& to z2 define the surface-
plus-vacuum region of the slab. Here we have taken this
to extend from one plane of As atoms through the vacu-
um to the other plane of As atoms, which is somewhat
arbitrary. The sum in Eq. (8) is partitioned into two
pieces, one weighted by w„& q

and one weighted bynI —q

1 wn Q q Clearly, these sum to give the same result asnI —q

before. Also, the partitioning straightforwardly extends
to the full dynamical self-energy operator [Eq. (34) in
Ref. 3].

The results of this exercise are shown in Table III, bro-
ken down further according to X=Xsx+ XcoH, the
screened-exchange and Coulomb-hole contributions to X.
The bare exchange is contained in Xsx. The general idea
concerning the relative importance of surface-surface and
surface-bulk exchange is supported. The surface states
have an enhanced contribution from surface-surface ex-
change and a reduced contribution from surface-bulk ex-
change in comparison to the bulklike states (where it is
bulk-surface and bulk-bulk exchange). These effects com-
pensate for one another, leaving a small net reduction in
the magnitude of Xsx. A somewhat larger effect is seen
for XCQH Here the changes also more strongly reQect
the modified screening response near the surface region.
In the static limit, XcQH reduces to a local potential
which is the screening potential at r due to the added
electron at r. This behaves very much like the LDA po-
tential in that it tends to follow the magnitude of the lo-
cal density. Examination of Table III shows that much
of the reduction in the magnitude of X for occupied sur-
face states comes from the Coulomb-hole term (treated
dynamically here). Therefore it is somewhat less surpris-
ing that the general behavior of X is reproduced by V„, in
the LDA. The difFerences between X and V„, are smaller
and somewhat subtler.

The trends in the difference between LDA and quasi-
particle energies through the calculations are illustrated
in Fig. 6. Here the difference between the quasiparticle
and LDA band energies are plotted as a function of ener-
gy for selected bands and k points in the surface Brillouin
zone near the gap region. Figure 6 can be loosely inter-

preted as the correction required to "fix" the LDA bands
in the present surface systems. The first feature to note in

Fig. 6 is that the bulklike states for both the Si and Ge
cases approximately follow two smooth lines with a sharp

jump at the gap. The bulk states reproduce the behavior
observed in the full bulk calculations. Secondly, the sur-

face states in the Si(111):As case follow a similar trend.
However, the correction to the occupied band dispersions
(the correction as compared to that at the valence-band
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FIG. 6. Calculated difference between the quasiparticle ener-

gy (Eq ) and the LDA eigenvalue (c" ")plotted as a function of
energy for states near the gap region for the (a) As-capped
Si(111)and (b) As-capped Ge(111) surfaces. Bulklike states and
surface states (resonances) are distinguished.
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S 1 {111):As
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FIG. 7. Density
i P(rl i

' associated with the even occupied
and empty surface states (resonances) at I drawn for the As-

capped Si(111)surface.

edge) is distinct for the surface-derived states. This is a
rather small effect here, but leads to more broadening of
the surface bands in comparison to the bulk bands. The
correction for the surface band gap is essentially the same
as for the bulk in the Si case.

The Ge case exhibits two exceptional points in Fig.
6(b). Otherwise, the features are the same as for Si, with
the occupied surface dispersions showing a distinct
correction and a large increase in the surface band gap.
The exceptional points tend to bridge over the jump be-
tween occupied and empty states. They correspond to
the occupied and empty surface states at I . For the oc-
cupied states, this distinctive placement shows that the
self-energy calculation corrects for the anomalous disper-
sion in the LDA lone-pair band near I . The empty states
near midgap display a correction that is intermediate be-
tween bulk valence- and conduction-band states.

This interesting result can be qualitatively understood
by examining the character of the states involved. In Fig.
7 the occupied and empty surface states at I are shown
for the Si case (S+ bonding combination in the slab ).
From Fig. 6(a} there is nothing anomalous in the self-
energy for these states, so they can serve as a reference.
The occupied state is a p, state near the As atom, but
clearly extends well into the bulk as it is a resonance.
The empty state has a combination of atomic s and p,
character deriving from the projected conduction-band
edge (L „states). The state has weight directly above the
subsurface Si and directly below the As at the surface.
Figure 8 shows the same states for the Ge surface. With
reference to Fig. 7, these states are of mixed character,
having features from both the lone-pair state and the an-
tibonding backbond state. Alternatively, these states re-
sult from strong coupling between states of that charac-
ter. We believe it is precisely the mixed character exhib-
ited in Fig. 8 which leads to the anomalous corrections in
Fig. 6(b). If a state derives character both from bulk
valence- and conduction-band states, then the correction
to the LDA energies should be intermediate in magni-
tude.

It was not a priori clear that this would be the case.
That the character of the surface wave function should

Ge(111):As

S+ Occ
(a) Sy Empty (b)

FIG. 8. Same as Fig. 7 for the As-capped Ge(111)surface.

determine the correction to the LDA surface band ener-
gies is certainly an appealing result. It suggests that the
crucial change in the self-energy operator at the surface
may be largely contained in the Green's function. The
screened Coulomb interaction may more closely follow
the variation in the local density at the surface. Howev-
er, this is certainly not a rigorous conclusion. It will re-
quire further examples in order to substantiate it as well
as a critical evaluation of the slab approach for the sur-
face self-energy operator. It also does not follow that the
same result will hold in other situations, e.g., point de-
fects. In that context, the "scissors operator" has been
used to correct the LDA bands for use in the Green's
function and for evaluating defect levels. There, the
correction is based on the relative weight of bulk
conduction- and valence-band character in a particular
state. This is similar to our observation in the
Ge(111):As case. However, the correct treatment of the
self-energy for the defect case remains to be done.

This raises the issue of whether LDA calculations for
surface-state energies can be simply corrected in a reli-
able way. In the bulk case the plots analogous to Fig. 6
are dominated by a large jurnp at the gap region. This is
consistent with the formal result that there is correction
6 which must be added to the exact gap in the Kohn-
Sham spectrum in a semiconductor or insulator in order
to obtain the correct minimum gap. In the bulk case
the necessary correction required to obtain quasiparticle
energies away from the gap is more complex. A priori,
there is no reason to expect the correction required for
surface-state gaps to be the same as the bulk. In particu-
lar, 6 might be rather different. The results for
Ge(111):As illustrate this point. The region of Fig. 6(b}
which would exhibit a jump in the bulk case is bridged by
the midgap states.

Since the bulk correction cannot be carried over to the
surface states, one may ask whether the correction may
be obtained by some reasonable scaling. On this point,
our results can only be suggestive. We observe a qualita-
tive dependence on the character of the surface states in-
volved. The qualitative picture can be supported in-
directly. Surface states which fall near midgap may be
expected to have both valence- and conduction-band
character on general grounds. An example of this cited
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above is Si(111)-(2X1) for which the n bonded chain
model seems to be the correct reconstruction. ' This
surface exhibits a "band-gap problem" as discussed previ-
ously. The measured surface gap of 0.45 eV is about
twice as large as the calculated LDA gap. ' The required
correction is therefore considerably smaller than the 0.7
eV found for bulk Si. However, the dependence of the
correction on the character of the states explains this
qualitatively. The surface gap will open less than the
bulk gap since the relevant states are of mixed character.
The correction will fall in an interpolation region in Fig.
6(b).

At present our results suggests that a self-energy calcu-
lation is required to get the correct surface gap for a
given case. The bulk correction does not carry over sim-

ply to the surface. It may be possible with further data to
support a relatively simple scaling rule for correcting
LDA surface states based on bulk data and a scheme for
projecting bulk conduction- and valence-band character
of the surface states.

V. SUMMARY
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APPENDIX: MODEL FOR DECOUPLED
SURFACE-RESONANCE ENERGIES

We have developed a first-principles theory for the sur-
face quasiparticle energies in semiconductor surfaces. In
the investigation of physical properties of surfaces, this is
a natural complement to the total-energy-minimization
techniques based on the local-density-functional ap-
proach. The total-energy approach can be used to find
the atomic configuration at the surface with the lowest
total energy. With the atomic positions thus determined„
the present theory may be applied to derive the energies,
dispersions, and gaps associated with the electronic states
localized at the surface. This allows the results of first-
principles calculations to be directly compared to rnea-
surements based on the various spectroscopic surface
probes. Because this unified approach provides quantita-
tively reliable information on the surface electronic struc-
ture, it should prove to be a powerful technique.

We have applied this program to the interesting test
cases of the As-capped Si(111) and Ge(111} surfaces.
These have been shown to be geometrically simple and
have been well characterized both structurally and elec-
tronically. The total-energy calculation yields the posi-
tion of the As atoms at the surface, in good agreement
with the results of x-ray standing-wave measurements.
The self-energy approach for the electronic structure
gives the As lone-pair surface band in excellent agree-
ment with angle-resolved photoemission data. The posi-
tion of an empty surface state is predicted for both sur-
faces. The recently measured surface gap on the
Si(111):As surface agrees quite well with the present cal-
culation. The present results do not yield a simple
prescription for correcting LDA surface band energies.
Further work is required in this area.

Extension of the self-energy approach to the surface
case involves heavy computations. The geometric simpli-
city of the present surfaces (1 X 1 surface periodicity) has
certainly been helpful. Application to surfaces with more
atoms in the surface unit cell would be more demanding.
However, the present: results have already provided some
insight for other semiconductor surfaces.

F.+ ——(Eo+ V}/(1+S) . (Al)

Here, E+ are the energies of the split doublet which are
actually calculated in the slab band structure. Clearly, if
S is not negligible, the decoupled surface-state energy can
be significantly different than the simple average of E+
and E . However, there are only two energies and three
parameters to be determined. Here we use a simple mod-
el to extract S separately from the wave functions associ-
ated with E+ in the slab calculation.

In this simple model the slab wave functions are linear
combinations of the decoupled surface wave functions:

q+ ——(y, +y, )/(2+2S)'" . (A2)

Here the slab wave functions are denoted by f+ and P,

When using the slab geometry to represent a surface,
one always has two surfaces and therefore a doublet in
energy for each surface state. In the limit of a very thick
slab, these would be degenerate and equal to the surface-
state energy. In practice, the finite thickness of the slab
used means that there is always some coupling which
derives from the slight overlap of the surface states on
the two sides of the slab. These form bonding and anti-
bonding combinations and the associated doublet is split.
If the coupling is relatively small, the decoupled surface-
state energy can be taken to be the simple average over
the doublet. However, for surface resonances, especially
near I' in the surface Brillouin zone, the states may ex-
tend well into the bulk region, leading to significant over-
lap and a relatively large splitting of the doublet. This is
the case in the present calculation for the occupied lone-
pair resonance near I . In order to place more accurately
the decoupled surface-resonance energy, we use a simple
model to estimate the overlap matrix.

We use a simple 2X2 model with Eo being the decou-
pled surface-state energy, V being the coupling, and S the
overlap in the finite slab geometry. Then the energies of
the split doublet are simply given by
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and $2 refer to the surface wave function on the left- and
right-hand sides of the slab, respectively. The idea is to
exploit the fact that P, is largely localized on the left-
hand side and similarly for $2 on the right. Split the slab
into two halves, left (R, ) and right (R&). Then integrate
the product of the bonding and antibonding slab wave
functions over half the slab:

1 —S= (A5)

From this and Eq. (A3), it follows that

(A6)

can be done analytically. The integral for S can be ap-
proximated using these model wave functions and one
can show that roughly

(A3)

(A4)

where 2a is the thickness of the slab. With the simple
cylindrical symmetry, the integrals appearing in Eq. (A3)

This follows since P, 2 may be chosen with the same
overall phase.

The result in (A3) is quite general at this point. In or-
der to exploit it, a simple relation between the integrals in
(A3) and S must be obtained. Here we use a simple mod-
el. The decoupled surface wave functions at large dis-
tance are modeled by simple Slater orbitals centered at
opposite surfaces of the slab:

' 1/2

(r) e
—a

~

rkaz
~

7r

Thus from a simple integral over half the slab, the
relevant overlap matrix is estimated. The only remaining
point is to assign the bonding and antibonding wave func-
tions to the proper elements of the doublet. This gives
the sign of V and may be done by a cursory examination
of the slab wave functions.

In application to the lone-pair resonance at I in the
present calculation, we find S=0.63 and 0.22 for the Ge
and Si cases, respectively. This alters the position of the
decoupled surface-resonance energy from that found by a
simple average by 0.27 and 0.06 eV, respectively. In both
cases the decoupled resonance energy lies higher than
would be found for a simple average. Numerical evalua-
tion of S in the present model yields somewhat smaller
values for S, e.g. , 0.4 in the Ge case, but this alters the
surface-resonance energy by less than 0.1 eV.
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