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Covalent and metallic bonding within the quasi-ion approach
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A recently proposed theory of a quasi-ion description of solids is used to discuss simultaneously
the dynamics of bonding and its relation to the phonon dispersion in crystals. The theory can be ap-
plied in principle to all types of bonding and allows a rigorous separation into "two-center" forces
and proper many-body interactions. Applications for this separation are provided with respect to
the metallic and covalent bonding type. In particular it is shown, using Si as an example, how angu-

lar rigidity of the covalent bond can be described by relative rotations of the quasi ions. In case of
metallic bonding, special many-body efects leading to an anomalous phonon dispersion are investi-

gated within a simple model.

I. INTRODUCTION

A considerable amount of progress in the quantum-
mechanical description of electronic and lattice-
dynamical properties of solids has been achieved by mak-
ing feasible the density-functional theory of Hohenberg
and Kohn' and of Kohn and Sham by means of numeri-
cal procedures. On the other hand, the alternative route
to these subjects, the density-response approach, as de-
scribed by Pick, Cohen, Martin and by Sham is much
more complicated to perform numerically.

On the basis of the density-response approach we re-
cently have developed the quasi-ion (atom) description of
solids. In this theory the basic variable of the
Hohenberg-Kohn theorem, i.e., the electronic density p,
is further analyzed on a more elementary level. This
leads to the quasi ions or partial densities from which the
total density p can be reconstructed in a unique way. An
important feature of these objects is their localization in
space which allows a direct modeling of the electronic
and lattice-dynamical properties of solids and of the
electron-phonon interaction ' as well.

Section II of this paper presents a condensed review of
the construction of the quasi ions. Characteristic
features are demonstrated for covalent and metallic bond-
ing using Si and Na as examples. In Sec. III we are deal-
ing with the bonding dynamics in a crystal in terms of
quasi ions. The mechanism of angular rigidity of the co-
valent bond is described by special many-body forces in
terms of rotations of the quasi ions and the corresponding
effects on the phonon dispersion are studied. In case of
metallic bonding a fictitious model system with an inho-
mogeneous electron distribution is constructed and
effects related to the inhomogeneity are investigated.

II. QUASI IONS IN CRYSTALS

In the adiabatic approximation the electrons are re-
garded to follow the motion of the ions instantaneously at
all frequencies. Thus, from a physical point of view it is
easy to imagine that the electronic charge distribution of
the ion core moves rigidly with the nucleus. In Refs. 5—9

it was shown that something similar occurs also with the
valence electrons. The minimization of the change in en-

ergy of the system when an ion is displaced is physically
achieved by an electronic density response in such a way
that the displacement induced change of the ionic poten-
tial is self-consistently screened by the electrons. In this
way the system is kept locally neutral. Figuratively this
results in a displaced entity, the quasi ion, which consists
of the ion core and a neutralizing distribution of screen-
ing charge surrounding it during its motion. It should be
remarked that in general beside the rigid shift of the
quasi ions also distortions of the charge distribution may
occur during this polarization process. These are related
to proper many-body forces and will be discussed in Sec.
III.

Mathematically the unique decomposition of the
valence charge density p into a superposition of partial or
quasi-ion densities p can be achieved by the acoustic
sum rule. The result is represented in Fourier space
and the limit q~o is implicitly understood:

. 4m.

q
(4)

Here q is a vector from the first Brillouin zone and G a
reciprocal-lattice vector. D describes the static density-
response function (matrix) and V is the ionic pseudopo-
tential corresponding to an ion of sublattice type a. The
positions of the ions in the crystal are denoted by
R"=R'+R or A=a+a in short, where a and a
characterize the primitive and nonprimitive lattice vec-
tors, respectively.

p(q+G)= g p, (q+G) ~g(G)= g p (G),
a q~ A

with

p.(q+G) = — g U ~, (q+G)' g D(q+G, q+G')1

4~,. G'

X V i, (q+G'), ( )

V~1(q+G)= —i(q+G)J V (q+G)e (3)
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For a direct description of bonding and lattice dynam-
ics it is suitable to express the quasi ions p in direct
space. Correspondingly we obtain

p(r)= g p "(r)= g p (r —A),
A A

with

p (r)= — JdV'dV" g v ~.(r —r'}D(r', r")1

4m

X V (r"—A), (6}
J

The decomposition of p within the above scheme clarifies
the way which the quasi ions can be considered as new
complex unities building up the crystal.

In Fig. 1 we have reproduced the contour plot of the
Fourier transform of p in Si from Eq. (2) in the (0, —1, 1)
plane. Figure 2 represents the superposition of the two
sublattice partial densities p (a=1,2) yielding the total
valence charge density p of Si. For the computational de-
tails we refer to Refs. 6 and 7. We deduce that as a
consequence of the local-field effect, originating from the
nondiagonal elements of the density-response function,
the quasi ion p is highly anisotropic and inhomogeneous
in the bond region and has locally tetrahedral symmetry.
Furthermore, we observe a strong localization effect of
the charge density neutralizing the ionic charge at short
distances. The distribution is essentially confined to the
bond region along the chains of Si atoms. This supports
the conclusion that essential parts of the interactions be-
tween the ions can be described via anisotropic effective
short-range force constants in phenomenological models.
The largest extension of the forces is along the Si chains.
This is in agreement with considerations given recently
by Lane. ' A more detailed inspection of the Si quasi ion
demonstrates that in the bond directions at about —,

' of the

FIG. 2. Contour line plot of the valence charge density of Si
in the {0,—1, 1) plane as calculated from the acoustic sum rule
according to Eqs. (1)-(4). Units and labeling as in Fig. l.

bond length the density response is significantly enhanced
leading to a very effective screening of the Coulomb po-
tential of the ions at short distances. On the other hand,
this "overscreening effect" gives rise to regions in space
where the electrons are pushed away. In the interstitial
region the density is nearly constant (Hat) and approxi-
mately zero.

Next we show how the different types of bonding can
be discussed in terms of their different screening proper-
ties. The latter are mapped as shown by Eqs. (2) and (6)
via D to the quasi ions and thus bonding in solids is quite
naturally displayed in direct space by these objects.

In the following we present an extract of our calcula-
tions recently performed for Na. " In this case (weak
pseudopotential theory) it is sufficient to use linear
screening with the response function of the homogeneous
electron gas being diagonal in q space. ' ' In order to
calculate the sublattice partial density [Eq. (2)j in analogy
to the Si case we artificially introduce a decomposition of
the bcc structure into two simple-cubic sublattices cen-
tered at R'=(0,0,0) and R = —,'a(1, 1,1) (a denotes the lat-
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FIG. 1. Partial charge density p&(r) in the {0,—1,1) plane for
one sublattice of Si as calculated from Eqs. (2)—(4). p, is in units
of electrons per cell. Ions are indicated as black dots and bonds

by dashed lines.

(-0.25, -0.25, -0.25) (0.75, -0.25, 0.75)

FIG. 3. Partial density of a sodium crystal in the ( —1,0,1)

plane. Units are in electrons per (simple) cubic cell; coordinates
are in units of the lattice constant a.
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FIG. 4. Superposition of the two simple-cubic sublattice par-
tial densities in the ( —1,0, 1) plane centered at (0,0,0) and
(a /2)(1, 1,1), respectively. Units and labeling as in Fig. 3.

tice constant). In Fig. 3 the results of the calculation are
displayed as a contour line plot in the ( —1,0, 1} plane.
Figure 4 shows the corresponding superposition of the
partial densities producing the total charge density of Na.
In Figs. 5(a) and 5(b) we have represented the atomic par-

tial density being of spherical shape because the density-
response function is diagonal in q space. Apart from the
long-range Friedel oscillations this density is remarkably
well localized.

A comparison of the results for Na with those obtained
for Si visualizes the qualitative differences of semiconduc-
tor screening and metallic screening. In case of Si locali-
zation is more strongly enhanced and we obtain a very in-
homogeneous distribution with sharp maxima and mini-
ma which is confined to the bond region along the Si
chains. On the other hand Na displays a more smooth
but nevertheless localized sublattice partial density. No
maxima appear along the directions towards nearest
neighbors. However weak maxima evolve towards
second and third neighbors and it seems to be remarkable
that one can obtain with the structured partial density of
Fig. 3 a nearly structureless total density corresponding,
of course, to the Fermi-gas picture of the electrons in a
simple metal.

%'e conclude this section by noting that the quasi-ion
approach allows also for a direct application to lattice dy-
namics. In its simples version (rigid quasi-ion approx-
imation) the knowledge of the partial density and the ion-
ic pseudopotential alone are sufhcient. In the following
section we shall discuss this matter in more detail.

1.6 III. BOND DYNAMICS AND PHONON DISPERSION
IN TERMS OF QUASI IONS
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The basic quantity which contains all the relevant in-
formation for microscopic lattice dynamics in harmonic
approximation is the vector field

P (r}=P'(r A}=f dV'D—(r, r'} V, (r' —A),
J

or

pA DyA

in a compact notation. This field has the meaning of the
charge-density variation at the space point r produced by
a unit displacement of ion A in direction j. From its
knowledge we can compute all the relevant quantities as
the total charge-density variation 5p and the electron
mediated part AE of the dynamical matrix. The corre-
sponding expressions are given in Refs. 6—9.

Following these references, the quasi-ion picture can be
used for the decomposition of P (r) into a rigid and a
distortion part. This is achieved by decomposing P (r)
into a gradient and a rotational (distortion) contribution

O. o
0.0 2.0

f

3.0 4.0 5.0 P"(r)=Vp "(r)+VX~"(r) .
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FIG. 5. (a) Atomic partial density p (
~

r
~

) for sodium nor-
malized to l.

~

r
~

is in units of the lattice constant a. (b) Same
as in (a), but with a better resolution for p A(

~

r
~

).

For such a decomposition see also Ball' and Pickett. '

The p (r) are just the quasi ions defined in Eq. (6) and
represent the rigid part of the density variation while the
distortion is described by the curl of the vector field W
see Refs. 7 —9 for more details. From Eqs. (6) and (9) it is
then obvious that the density which moves rigidly with
the ion is not determined alone by the ion itself but de-
pends implicitly via D on all the ions in the crystal. The
investigations for Si have shown that the charge redistri-
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bution and the phonon dispersion are quite well described
by the rigid part indicating that an approximative
description of lattice dynamics in terms of rigid quasi
ions provides a promising starting point. The influence
of the distortions turned out to be relatively small for
most of the phonon modes. However, for certain modes
and at some particular points in the Brillouin zone the
distortions play a more important role. Particularly for
the transverse acoustic (TA) mode the distortion term
produces a lowering of the calculated phonon frequen-
cies. Furthermore, in case of the transverse optical (TO)
(I )-phonon-induced charge-density variation we extract
a non-negligible contribution to the interbond charge
transfer, due to the distortions. Yet, this additional non-
rigid charge transfer seen in the TO (I )-phonon has no
influence on the phonon frequency at I for symmetry
reasons.

If only rigid nonspherical quasi ions are taken into ac-
count this approximation is equivalent to using "two-
center forces" which reduce to central forces for spheri-
cal densities like in Na. On the other hand proper
many-body forces can be introduced into the quasi-ion
description by considering the distortion part of P +(r).
This can be done by relating the charge-density variation
P A induced by displacing ion A to the positions of the
neighboring ions. In this way the violation of rotational
invariance caused by rigid nonspherical quasi ions can
also be restored. In the following we rewrite the vector
field from Eq. (9) in the form

damping of the rotation and which is essential in order to
satisfy the requirement of rotational invariance expressed
by Eq. (12). If only nearest-neighbor rotations are taken
into account this parameter is uniquely determined by
this condition. The total density variation which is in-
duced by rotations of the surrounding ions B when A is
displaced then follows as

A( ) y 5 B(r) PA. A

BeS (A)

with

P„(r)= g 4(
I

A —BI )
BeS (A)

(14)

X[(r—B)XVp (r)] (lg)
(A —8) B

I
A —BI

The second type of distortions considered here are
those of breathing type. A displacement u parallel to
the axis joining ion A and B cannot generate rotations of
tlie quasi ions. But an additional charge-density varia-
tion can occur in comparison with the variation induced

by the rigid shift of the quasi ions if the latter are allowed
to expand or to contract. This effect is also present in the
case of spherical quasi ions (simple metals) where rota-
tions are ineffective. In our model we treat it by a suit-
able scaling of the quasi ions. The charge-density varia-
tion induced by breathing of the neighbors of a given ion
A is then represented by

P (r) =Vp (r)+PP(r), (10) X [4 '(var) —p'(r)]
BES ( A)

g [( A —r) XP"(r)]=0 .
A

(12)

The mathematical realization of the models in the case of
rotations is accomplished by calculating first the charge-
density variation 5p which arises from a rotation of the
quasi ion at 8 when ion A is displaced,

5pa(r)=@(
I

A —8
I

)

X 2 X[(r—8)XVp (r)] u
(A —8)

I
A —8

I

'

(13)

Here 4(
I

A —8
I

) is a parameter which describes a

where Pd stands for the distortion contribution. For a
representation of this part, i.e., for an extension of the
rigid quasi-ion description, we will allow for specific as-
sumptions. We shall investigate two types of distortions.
One contribution to Pd is constructed by admitting rigid
rotations of the quasi ions (P„)and the second one by al-
lowing for a contraction or expansion, i.e., breathing
(PA)

The definite representation of these effects is performed
in such a way that translational and rotational invariance
of the system is maintained, i.e.,

g Pz (r)=0
A

and

where gB is linear in u

r)n=l+ q(I A —BI) u (17)
I

A —BI
Finally, we obtain for the corresponding vector field of
breathing type

~(I A —BI)
BES ( A)

X [3p (r)+(r —8) Vp (r)](A —8)
I

A —BI~

(18)

In a real-space picture these nonrigid contributions of the
charge-density variation correspond to quasi ions that
lose their fixed shape and size according to the change of
the local environment.

From our microscopic calculations for Si within the
density-response approach in Ref. 7 it can be seen that
the phonon-induced charge-density variations as well as
the corresponding phonon frequencies are described quite
well within the rigid quasi-ion approximation. Thus, we
conclude that charge relaxation tends to preserve the
tetrahedral quasi-ion configuration and so it is natural to
include distortion contributions in the form of rotations
via P, . For the bond dynamics this means that the angu-
lar rigidity of the bond is determined by the relative rota-
tions of the quasi ions leading to a deviation from col-
inearity of the two partial densities participating in a
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common bond. This is in contradiction with the well-
known valence force model. See, e.g., Ref. 16 where an-

gular rigidity is related to a change of the bond angle be-
tween adjacent bonds while the bond remains straight.
Our reasonings concerning rigid rotations point into a
similar direction as a discussion recently given by
Kane io

We now give a quantitative investigation of the e6ect
of P„, i.e., of this special type of a three-body interaction,
on the phonon dispersion in Si. For the model construc-
tion of the quasi-ion density p (r) we use the model ex-
plained in Ref. 7:

(19)

100—

80

60

40

This leads to the phonon dispersion in the b =[1,0,0]
direction as reproduced in Fig. 6. The ionic pseudopo-
tential is taken to be the Appelbaum-Hamann poten-
tial. "

In expanding the quasi-ion density into a sum of ansatz
functions as in Eq. (19) we benefit from the good localiza-
tion properties of the quasi ions generated by the self-
consistent screening mechanisms as already mentioned io
Sec. II. Consequently, the partial densities can be ex-
panded in terms of a well-localized set of basis functions
(three Gaussians centered at an ion and another three
centered at each of the four bonds in our model). This is
crucial for numerical calculations. This feature of strong
localization is similar to the self-consistent Green s-
function method' ' where the defect induced density
change b p is well localized in real space and only a high-
ly localized basis set of functions is necessary for an ex-
pansion. Comparing the results for b,p, as obtained in

20

0
r

FIG. 7. Phonon dispersion curves ~(q) along the 5 direction
in Si within the rigid quasi-ion approximation (solid curves).
The dashed (4=2a 2) and dotted curves [4=(16/3)a 2] re-
sult if distortions of the quasi ions in form of nearest-neighbor
rotations are taken into account.

Refs. 18 and 19 for the unrelaxed Si vacancy, with the re-
sult from Fig. 1 for the quasi ion in Si shows apparently a
great similarity (b,p= —p ).

Using the quasi-ion density of Eq. (19) in Eqs. (10) and
(15) we can calculate after Fourier transformation the
electronic contribution AE to the dynamical matrix. The
results for several calculations including distortions of ro-
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FIG. 6. Phonon dispersion curves co(q) for Si along the
5~~ [1,0,0] direction as calculated from the rigid quasi-ion model
(Ref. 7). The barred dots indicate the experimental data includ-
ing error.

0
r

FIG. 8. Phonon dispersion of Si along the 6 direction using
first- (dashed curves) and first- and second-neighbor rotations
(solid curves).
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tation type are shown in Figs. 7—9 for Si in the 6= [1,0,0]
direction.

First of all we notice that phonon modes other than the
TA mode are less (TO) or not at all influenced by these
type of three-body forces. In Fig. 7 we consider nearest-
neighbor rotations only. The broken curves were ob-
tained fixing 4(=2a ) in Eq. (15) by the condition of
rotational invariance [Eq. (12)]. The solid lines represent
the rigid quasi-ion model, 4=0, while the dotted curves
are calculated with 4= 16/(3a ) corresponding to a rigid
undamped rotation. As a result, we extract from these
investigations that a decrease of the rigidity of the quasi
ions during rotations, characterized by increasing 4
values, leads in a Arst step to a decrease and flattening of
the TA dispersion (4=2a ) and finally to a softening
[4=16/(3a )] of this mode. Figures 8 and 9 demon-
strate the effect of second-neighbor rotation contributions
on the phonon frequencies. The broken curves in Fig. 8
are as before the dispersions curves for nearest-neighbor
rotations with 4=2a, while the solid curves are the re-
sults from a calculation taking into account second-
neighbor rotations. The main effect of the latter is a sta-
bilization of the TA frequencies without destroying the
flattening of the dispersion. Compare also with Fig. 9
where the comparison with the rigid quasi-ion model
(4=0) is given.

Next we discuss possible effects of three-body contribu-
tions of breathing type, Eq. (18), on the phonon disper-
sion. Because this type of a many-body interaction could
also be present for spherical partial densities we have
studied here the case of metallic bonding using Na as an
example. In Ref. 11 we also have investigated a charge-
density distribution of a hypothetical system which is in-
tended to represent directional bonding originating from
localized (d) electrons. This type of bonding is very im-
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portant for a description of the vibrations of the ions in
the transition metals. ' ' See Ref. 11 for more details,
especially as far as the effects of the rotations of the quasi
ions are concerned.

In Fig. 10 the contour line plot of the valence charge
density of such a hypothetical system with nonspherical
quasiatoms is shown in the ( —1,0, 1) plane. Here we
have assumed that 5% of the total density is ascribed to
the nonspherical part. The density should be compared
with Fig. 4 where the corresponding charge density of Na
using spherical quasiatoms is shown. The main effect de-
rived from the anisotropic part of the quasiatom consists
in a more inhomogeneous electron distribution with an
increase of the density in the region between nearest
neighbors. This leads to an elongated shape with two
weak maxima and thus gives rise to weak directional
bonding. In addition more charge is contracted in the
neighborhood of the ions. Such a kind of charge redistri-

FIG. 10. Contour plot in the ( —1,0, 1) plane of the valence

charge density of the hypothetical system consisting of non-

spherical quasiatoms as discussed in the text. Units and labeling
as in Fig. 3.
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FIG. 9. Comparison of the phonon dispersion of Si in the rig-
id quasi-ion approximation (solid curves) with a calculation in-

cluding first- and second-neighbor rotations (dotted curves).

FIG. 11. Phonon dispersion of Na along the main symmetry
directions as calculated on the basis of spherical quasiatoms.
The calculation is performed by approximating the quasiatom
density displayed in Fig. 5 with three Gaussians only. The
barred dots indicate the experimental data including error.



3992 C. FALTER, H. RAKEL, AND W. LUDWIG 38

40 40

30— 30—

N

20 I 20

10 10

0 r N

FIG. 12. Illustration of the breathing effect of spherical
quasiatoms on the phonon dispersion of Na (solid curves). For
reference the results from the rigid quasiatoms are also drawn
(dotted curves). The barred dots represent the experimental
data including error.

FIG. 14. Phonon dispersion in the main symmetry directions
for our hypothetical system including breathing effects from the

anisotropic quasiatoms. Solid curves are the reference curves

for the rigid but anisotropic quasiatoms while dashed and dot-
ted curves correspond to opposite breathing corrections

g = —0.03 and g = +0.03, respectively.

bution allows for a more effective screening of the
Coulomb interaction between the ions and it is an in-
teresting question of how these features are reflected in
the phonon dispersion.

Just as in the case of Si the spherical quasiatoms of Na
shown in Figs. 5(a) and 5(b) are approximated by Gauss-
ian ansatz functions as given in Eq. (19). The results for
the phonon dispersion of such a model calculation based
on rigid quasi ions are displayed in Fig. 11 where only
three Gaussians have been taken into account. We ex-
tract from these calculations that the description of lat-
tice dynamics of simple metals with rigid and spherical
quasiatoms is in good agreement with experiment.

The breathing effect of the spherical quasiatoms on the
phonon dispersion of Na can be extracted from Fig. 12.

40

For comparison the frequencies as obtained from the rig-
id quasiatom model as calculated with three ansatz
Gaussians are also drawn (dotted curves). The breathing
parameter g was taken to be g= —0.024 and only
nearest-neighbor breathing was considered. The breath-
ing corrections act on the longitudinal modes only and
lead to a slight improvement of the longitudinal-
acoustic-phonon frequencies.

In Figs. 13-15 phonon dispersion curves for bcc struc-
ture based on our nonspherical fictitious quasiatoms are
presented. The results of a calculation using the aniso-
tropic but rigid quasi ions are displayed in Fig. 13 and are
compared with the rigid isotropic quasi ion results from
Fig. 11 (dotted curves). We realize a lowering of the
whole phonon spectrum which can be attributed by this
calculation to the inhomogeneous redistribution of
chapge and a more effective screening between the ions as

40
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FIG. 13. Comparison of the phonon dispersion as calculated
from the anisotropic but rigid quasiatom (solid curves) with the
corresponding curves as obtained with the rigid isotropic quasi-
atom from Fig. 11.

N

FIG. 15. Same as in Fig. 14 but with an increased breathing
contribution (g =+0.06).
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discussed in context with Fig. 10. Finally, the effect of
the many-body corrections of anisotropic breathing on
the phonon dispersion can be read off from Figs. 14 and
15. Solid curves result from the rigid but anisotropic
quasi ion while dotted and dashed curves include breath-
ing with r1=0.03 (Fig. 14), g=0.06 (Fig. 15), rl= —0.03
(Fig. 14) and g= —0.06 (Fig. 15), respectively. The most
remarkable effect which is brought about by this many-
body force related to anisotropic quasi-ion breathing is
that characteristic and anomalous structures now appear
in contrast to the featureless phonon dispersion of the
simple metals. We obtain phonon stiffening and phonon
softening which is very similar to what is observed in d-
electron metals. Thus, despite the fact that we are
dealing with investigations of a fictitious model system

the results of our calculation lead to the conjecture that
the anomalous behavior in the phonon dispersion of the
d-electron metals should be related to the distortion part
of the vector field P and consequently to many-body in-
teractions which may be modeled in terms of the quasi
ions.
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