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Metastable conduction states in Mo2S3. Pulse conductivity and thermoelectric power
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Mo2S3 is a linear-chain-structure compound which has two inequivalent zig-zag Mo chains paral-
lel to the b axis. It undergoes at least two phase transitions below room temperature {at 182 and 145
K upon cooling). X-ray-diffraction measurements show that both incommensurate and commensu-
rate structural distortions are associated with the phase transitions. %'e report here the results of
electrical-conductivity and thermoelectric-power measurements on MozS3. By using pulsed electric
currents to rapidly heat and cool the sample while electrical-resistivity or thermoelectric-power
measurements are being made, we are able to show that below the lower-temperature phase transi-
tion, the carriers in Mo2S3 can be either in a poorly conducting ground state or in a relatively highly
conducting metastable state. The lifetime of a carrier in the metastable state is strongly dependent
on the temperature and is more than 200 s at 77 K. The temperature dependence of the conductivi-

ty and all of the pulse conductivity measurements are consistent with a phenomenological double-
well-potential model for the carrier in MozS3. Three possible models which can give rise to such a
double-well potential are discussed: (1) a defect-trapping model, (2) an acoustic-polaron model, and

(3) a charge-density-wave model.

I. INTRODUCTION

In its single-crystal form, Mo2S3 exists as long, needle-
like fibers which have a metallic luster. In external ap-
pearance, it resembles the quasi-one-dimensional conduc-
tors NbSe3 and TaS3. These latter compounds have ex-
tremely anisotropic physical properties and, further, they
undergo charge-density-wave-induced phase transitions
to structurally distorted states at low temperatures. As a
result of this, they show a number of unusual electrical-
transport properties, including nonlinear conduction and
large frequency-dependent fluctuations in the electrical
conductivity. ' X-ray-diffraction and transport-
property measurements show that Mo2S3 also undergoes
phase transitions to structurally distorted states at low
temperatures ' and so one might anticipate that it
would also exhibit some unusual conductivity properties.
It will be seen later that this is indeed the case, but that
the conduction properties of Mo2S3 are quite different
from those observed in NbSe3 and TaS3 and, further, that
the explanation of these properties will require a physical
model very different from those used to describe NbSe3
and TaS3.

Jellinek first determined the average room-
temperature crystal structure of the powder form of
Mo2S3 and found it to be monoclinic with the following
unit-cell parameters: a =6.092 A, b =3.208 A, c=8.633
A, and P=102.43. This structure was also found by
Kadjik et al. The x-ray measurements of DeJonge
et al. showed that the crystal structure becomes triclinic
below 173 K, and their transport measurements showed
that a first-order phase transition took place at this tem-
perature. This transition was found to have a large hys-
teresis, occurring at about 190 K upon warming.
Thermoelectric-power, ' and Hall' measurements

showed that the primary charge carriers are holes, with a
concentration in the range of 10 -10 '/cm .

Rashid et al. ' carried out temperature-dependent
electrical-resistivity, magnetic-susceptibility, and
Raman-scattering measurements on Mo2S3 between 4 and
300 K. Their results show that there are two first-order
phase transitions below 300 K (at 182 and 145 K upon
cooling) and, in addition, they observed an anomalous
peak in the resistivity at about 80 K. They found that
this peak decreased substantially in magnitude if the
cooling rate was increased above 1 K/min. Rastogi'
studied this effect in more detail and noted that if the
sample were quenched to a temperature near 140 K the
resistivity showed a logarithmic dependence on time, in-
dicating that the lower-temperature phase transition is
very sluggish. Deblieck et al. " carried out x-ray-
diffraction measurements between 100 and 400 K and
found structural distortions both commensurate and in-
commensurate with the lattice below room temperature.

More recently, Alova and Mozurkewich' investigated
the elastic properties of Mo2S3 below room temperature
using the vibrating-reed technique. They found a large
peak in the internal friction at temperatures between 130
and 150 K for frequencies between 2 and 33 kHz. The
temperature and frequency dependencies of this peak in-
dicate that it is due to a thermally activated process.

Rashid et al. ' suggested that the phase transitions in

Mo2S3 could be due to the formation of charge-density
waves at the phase-transition temperatures, such as has
been observed in a number of the transition-metal dichal-
cogenides (NbSe2, TiSe2, and TaS2) (Refs. 15—18) and tri-
chalcogenides (NbSe3„TaS3, and NbS3). ' As a conse-
quence of charge-density-wave formation, the trichal-
cogenides, in particular, often exhibit interesting trans-
port phenomena, including such effects as nonlinear con-
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ductivity, excess broadband electrical noise, coherent
narrow-band noise, and anomalous ac conductivity. '

These phenomena appear to be direct consequences of the
collective nature of the charge carriers which have been
"frozen out" in the charge-density wave. This type of
collective behavior was first hinted at by the theoretical
work of Peierls and Frohlich on one-dimensional con-
ductors.

Since Mo2S3 exhibits phase transitions which are ac-
companied by a loss of Fermi surface, and since it has the
outward appearance of a quasi-one-dimensional conduc-
tor, we made a more detailed study of its low-
temperature transport properties. It was expected that

phenomena similar to those observed in the transition-
metal trichalcogenides would be found. Instead, a com-
pletely different kind of conductivity behavior was ob-
served. In the experiments to be discussed here, a
current pulse was used to Joule-heat the sample a few K,
and the sample conductivity was measured as a function
of time after removal of the pulse. These measurements
show that below the lower-temperature phase transition
(about 145 K upon cooling) a long-lived metastable elec-
tronic conducting state coexists with a lower-
conductivity electronic ground state. The lifetime of a
carrier in the metastable state was found to depend ex-
ponentially on the temperature and to be about 200 s at
77 K. The existence of the metastable conduction state
results in an unusual time-dependent conductivity behav-
ior. It will be seen that for T & 145 K both the
temperature-dependent conductivity and the time-
dependent conductivity are consistent with a phenomeno-
logical double-well-potential model for the charge car-
riers.

II. CRYSTAL STRUCTURE
AND TRANSPORT PROPERTIES

A. Crystal structure

Deblieck et al." recently determined the crystal struc-
ture of Mo2 065S3 as a function of temperature. At room

temperature they found the average structure to be
monoclinic [space group P2, im (Czh)] with 10 atoms per
unit cell, as shown in Fig. 1. The Mo atoms are arranged
in two inequivalent zing-zag chains along the crystalline b
axis, with type-1 chains lying nearly in the (101) plane
and type-2 chains lying nearly in the (001) plane. The ac-
tual room-temperature structure of Mo206~S3 is more
complex than this, with small incommensurate distor-
tions of wave vectors (p, —,', q) and (—,', —,

' —u, 0) existing,
with p = —0.041, q =0.214, and u =0.059. Deblieck
et al. found that the distortion wave vectors varied with

temperature according to
—110 K

k(.. (0, —,', 0) = (0, —,', ~)
-200 K

=(p, —,', q),
—150 K

kz: ( —,', —,', 0) = ( —,', —,', 0. 153)

180 K
=( —,', —,

' —u, 0},

0 Mo (y=t/4)

6 Mo (y=3/4)

Q s (y=&/4)

C5 s (v=»~)

FIG. 1. Average crystal structure of Mo2S3 at room ternpera-
ture. There are two inequivalent types of Mo-Mo chains paral-
lel to the crystalline b axis. The crystal structure is monoclinic
[space group P2(/m (Cz„)],with lattice parameters a=8.633 A,
b =3.208 A, c =6.092 A, and P= 102.43'.

with the distortion wave vectors k, and kz associated
with distortions in the type-1 and -2 chains, respectively.
Below 180 K the Mo atoms cluster together in four-atom
units, apparently because of the strong metal-metal bond-
ing. Further, Deblieck et al. observed some crystals to
be multidomained, with two variants differing by a rota-
tion of 102.4' about the b axis. k) and kz showed some-
what different temperature dependencies in the multi-
domain crystals.

B. Crystal growth and analysis

Single-crystal samples of MozS, were grown using the
vapor-phase-transport method with iodine as the trans-
porting agent. Stoichiometric proportions of molybde-
num and sulfur powders were sealed in evacuated quartz
tubes with an iodine charge of 5 mgicm of tube volume.
The tubes were placed in a three-zone furnace, with the
starting-materials end of the tube at 1100'C and the
growth end at 1025'C. After a 2-week growth period the
furnace was turned om'and allowed to cool slowly. Single
crystals of MozS& (typical dimensions 20X 50X 5000 (Mm }
were found in the growth end of the tube.

Chemical analysis of the crystals revealed the composi-
tion to be Mo2S3.2+0.2' A slightly-metal-rich composi-
tion, as has been found by others, ' cannot be ruled
out. X-ray-diffraction measurements at room tempera-
ture using a standard 57.3-rnm powder camera with a
Gandolfi attachment revealed 20 diffraction lines which
could be indexed using the lattice parameters reported by
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Jellinek. No iodine above the detection limit of 2 at. %%uo

was observed in x-ray-ffuorescence measurements.

C. Temperature-dependent resistivity of Mo2S3
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FIG. 2. Electrical resistivity of Mo2S3 along the crystalline b
axis.

The single-crystal samples of MozS3 were mounted on
specially designed printed-circuit boards such that the
resistivity along the b axis (the longest crystal dimension)
was measured. The samples were attached to copper
fingers on the circuit board using silver paint in a stan-
dard four-probe configuration, with the two outer con-
tacts being connected to a constant-current source and
the two inner contacts being used for the sample voltage
measurement. The mounted sample was inserted inside a
copper can in the resistivity cryostat, and the tempera-
ture of the can was controlled by means of a resistance
heater wound around its outside. The sample tempera-
ture was measured using calibrated-silicon-diode or
platinum-resistance thermometers.

Figure 2 shows the electrical resistivity of Mo2S3 as a
function of temperature. These results show several
unusual features, as have been reported earlier. ' Upon
cooling from room temperature, the resistivity falls
smoothly, until it undergoes a sharp increase near 180 K.
A second increase is observed at 145 K, and a large peak
in the resistivity is found at 80 K. Upon warming from
low temperatures, sharp decreases in the resistivity are
noted at 175 and 192 K, suggesting that both phase tran-
sitions are first order. The warming curve finally joins up
with the cooling curve at 285 K. The temperatures of the
phase transitions show perhaps a +3-K sample-to-sample
variation. The resistivity measurements of Rashid
ef al. ' and of Rastogi' show that the size of the 80-K
resistivity peak is dramatically reduced for sample cool-
ing rates greater than about 1 K/min. In particular, the
rise in resistivity below 145 K is quite sluggish, with
small increases in the resistivity occurring (while the tem-
perature is held constant) over periods of hours. Rasto-
gi' has studied this effect in some detail. Identical resis-
tivity curves were obtained for samples with pressed
copper contacts instead of silver paint. Further, no aging

effects were observed over periods of many months. The
magnitude of the resistivity at room temperature was typ-
icaHy 1.5)& 10 0 cm.

D. Thermoelectric-power measurements

A schematic diagram of the thermoelectric-power sam-
ple holder is shown in Fig. 3. The ends of the sample
were clamped to copper blocks A and B, using copper
clamps. Blocks A and B each have resistance heaters at-
tached, so that their temperatures can be controlled in-
dependently. The temperature difference between blocks
A and B and, hence, of the two ends of the sample, was
monitored with a copper-constantan thermocouple. The
two junctions of the thermocouple are in thermal, but not
electrical, contact with blocks A and B. Copper wires
running from blocks A and B to the top of the cryostat
were used to measure the sample thermoelectric power.
A Keithley model 158 nanovoltmeter was used for this
purpose. In order to maintain a uniform sample temper-
ature, the whole sample mount fits inside a copper
cylinder, which is heated by means of a resistance heater.

Two different methods were used to measure the ther-
moelectric power of Mo2S3. In the first method the tem-
perature of the sample mount was monitored with the
platinum thermometer and controlled using a computer-
based temperature controller. Copper block A was heat-
ed using the voltage from a low-frequency (typically
0.001 Hz} ramp generator. The copper-constantan refer-
ence thermocouple was monitored using a Keithley nano-
voltmeter and its output was sent to the x-axis input of an
x-y recorder. Simultaneously, the sample thermopower
was monitored by a second Keithley nanovoltmeter, and
its output was sent to the y-axis input of the x-y recorder.
As the ramp voltage increased, the temperature
difference between the two copper blocks increased, and
the x-y recorder traced out a straight line. The slope of
this straight line is proportional to the thermoelectric
power of Mo2S3 relative to copper. The advantage of this
method is that the effects of stray thermal electromotive
forces (emf's) are largely eliminated, since only the slope
dVT/dT is measured. It is, however, a very slow mea-
surement method since the sample mount must attain
thermal equilibrium at the desired temperature before the
thermoelectric power can be measured.

The second method used allowed thermoelectric-power
data to be acquired much more rapidly. In this method
the platinum thermometer was read using a digital volt-
meter interfaced to a Digital Equipment Corporation
LSI-11 computer. The computer converted the ther-
mometer reading to a temperature, and slowly scanned
the temperature up or down by means of an analog-to-
digital converter and a resistance heater wound around
the sample-mount enclosure. The same computer was
used to read the reference thermocouple voltage and the
sample thermal emf (after amplification by Keithley
nanovoltmeters}, and also to control the temperature
difference between the two ends of the sample. The com-
puter determined the base temperature from the
platinum-thermometer reading, and then calculated the
desired voltage from the reference thermocouple. It then
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FIG. 3. Expanded view of the thermoelectric-power sample-holder assembly.

controlled the temperature difference between the two
ends of the sample (usually 0.5—1.0 K) by adjusting the
current through the heater on block A. The computer
averaged the sample thermal emf until the base tempera-
ture had changed a present amount (typically 0.25 —0.5
K), when it would record the thermoelectric power on a
Aoppy diskette. Stray thermal emf's appeared to be less
than 1 pV.

Figure 4 shows the thermoelectric power of Mo2S3 as a
function of temperature using the second (computer-
based) method. Thermopower data taken on other sam-
ples using the first method agree with these measure-
ments to within +2 pV/K. The thermoelectric power of
a given sample also reproduces upon temperature cycling
to within these limits. (Although we did not study the
dependence of the thermoelectric power cooling rate, it
seems likely that it will show behavior similar to that ob-
served in the resistivity. ' ' ) One should first note that

the thermoelectric power is positive, indicating that the
primary carriers are holes. As the temperature is lowered
from 300 K, the thermoelectric power falls slowly from
64 pV/K, with a small, sharp drop at 283 K. At about
180 K the thermoelectric power rises, indicating the oc-
currence of the first phase transition. As the temperature
is lowered further, the thermoelectric power increases
smoothly. The second phase transition is not as well
defined as it was in the resistivity data shown earlier and
in the magnetic-susceptibility measurements of Rashid
et al. ' Upon warming, the thermopower shows hys-
teresis similar to that observed in the resistivity measure-
ments. Note that the drop in thermopower associated
with the lower-temperature phase transition is quite
sharp.

Figure 5 shows the measured temperature derivatives
of the thermoelectric power for both cooling and warm-
ing for the Mo2S3 sample. Figure 5(a) shows the tempera-
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ture derivative upon cooling from room temperature. A
peak in the derivative is clearly evident at 283 K in the
cooling curve, indicating the presence of the anomaly ob-
served in the resistivity. The curve clearly shows the
phase transitions at 180 and 145 K. The small dip near
185 K is not reproducible. Figure 5(b) shows that the
two phase transitions occur at 175 and 192 K upon
warming from low temperatures. There is perhaps a
weak negative peak at 287 K, corresponding to the tem-
perature where the warming curve recombines with the
cooling curve.

TEMPERATURE (K)
FIG. 4. Thermoelectric power of Mo2S3 relative to copper as

a function of temperature for both heating and cooling, as indi-

cated by the arrows. These measurements were taken using the
scanning-temperature technique.

MozS3 can exist in metastable conduction states. A
schematic representation of the experimental procedure
and the results obtained is shown in Fig. 6. Figure 6(a)
shows the current through the sample as a function of
time. Initially, a large dc current (typically a few mA) is
passed through the sample. This current is large enough
to Joule-heat the sample a few K, as is indicated in Fig.
6(b). After the sample has approached equilibrium at this
elevated temperature, the current is reduced by an order
of magnitude or more, so that the sample cools rapidly to
near its original temperature. As will be seen, the time
constant for heating or cooling the sample appears to be
typically 1 ms. Figure 6(c) shows schematically the ob-
served conductivity as a function of time during this pro-
cedure. At the onset of the large current pulse, the sam-
ple conductivity falls rapidly for the first few ms, goes
through a minimum, and then approaches approximately
exponentially a fixed value from below. When the
current is lowered, the conductivity first rises rapidly,
goes through a maximum, and then falls exponentially
with a very long time constant which depends on the
temperature.

To carry out these measurements, the sample was
mounted in the four-probe configuration discussed ear-
lier, and the measurements were obtained using the LSI-
11 computer in conjunction with digital-to-analog and
analog-to-digital converters. One digital-to-analog con-
verter was used to supply the current pulse to the sample.
The sample voltage was then amplified using an Ithaco
model 1201 amplifier and measured at equally spaced

III. NONEQUILIBRIUM TRANSPORT IN MoqS3

A. Nonequilibrium electrical conductivity (aj

We carried out a series of conductivity measurements

using pulsed currents which shaw that the carriers in
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for Mo2S3. (a) Upon cooling from room temperature. (b) Upon
warming from low temperature.

TIME

FIG. 6. Schematic behavior of the conductivity of MozS3
during a pulsed-current-conductivity measurement. (a) Sample
current vs time. (b) Sample temperature vs time. (c) Sample
conductivity vs time.
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time intervals using a 12-bit analog-to-digital converter.
The rate of measurement of the sample voltage was
varied from 0.1 Hz to 10 kHz, depending on the time
scale desired. During this time, the computer was also
used to read the thermometer and control the sample
temperature.

A typical plot of the conductance of Mo2S3 as a func-
tion of time is shown in Fig. 7 for a sample temperature
of 100 K. The data appearing on the left-hand side of the
figure (above the axis labeled tH) is the sample conduc-
tance as a function of time, G(t), during the high-current
pulse. The right-hand side of this plot, above the ti axis,
shows the sample conductance for times after the onset of
the lower current. The origin of each plot is indicated by
tH or tL

——0. It should be noted that the time scales for
the two sets of data are quite different.

In the high-current-pulse data a sharp minimum
occurs in 6 (t) near tH —0. The horizontal dashed line in
Fig. 7 shows the value of the 1ow-current conductivity.
Immediately after the minimum, 6 (t) increases with time
until it reaches an almost constant value. This relatively
large increase in 6 (t) is due to the increased sample con-
ductivity at the elevated temperature. (The conductivity
of Mo2S3 increases with increasing temperature in this
temperature region. ) The rise in sample temperature dur-
ing the high-current pulse was estimated from the magni-
tude. of the change of the sample conductivity. The
current during the high-current pulse was set at a value
such that the increase in sample temperature was be-
tween 2 and 7 K. The much slower increase in 6 (t) that
follows this is likely due to the slow heating of the sample
contacts and the surrounding exchange gas, the details of
which are unimportant for this experiment. The more in-
teresting occurrence of the minimum near tH ——0 cannot,
however, be explained by a simple heating effect, and it
will be discussed later.

c- ru
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After tL ——0 (the onset of the lower current), the first
measured data point shows that the sample conductance
is larger than that given by the last high-current-pulse
data point. (Data taken at more rapid sampling rates
show that the conductance immediately after ti ——0 rises
from the high-current value and goes through a max-
imum similar to the initial minimum during the high-
current pulse. } The conductance then decreases with
time, asymptotically approaching the value of the con-
ductance of the sample before the application of the
current pulse.

Let us now concentrate on the sample conductivity
after the onset of the lower current. Figure 8 shows the
measured time dependence of the sample conductivity
after the onset of the lower current for three different
sample temperatures. The experimental data points are
shown as points, while the solid lines are nonlinear least-
squares fits to the equation

6 {tL ) = 'Go+ EGo exp( tL «—)

where Go is the low-current value of the conductance at
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FIG. 7. Electrical conductivity of Mo2S3 as a function of time
at T= 100 K. The left-hand side of the graph is the conductivi-
ty during the large current pulse, while the right-hand side of
the graph is the conductivity after the onset of the lower
current. Note the different time scales during the low- and
high-current measurements.

FIG. 8. Electrical conductivity of MozS3 during the low-
current pulse for three different temperatures. The points are
the measured conductivities, awhile the solid curves are least-
squares fits to Eq. (I). The fitted curves have been displaced
vertically for clarity.
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tt ——ao, and bGo ——6(tL ——0) —G(tH ——0). The constant r
is the characteristic relaxation time for the conductivity
at the temperature of the measurement. Note that Fig. 8

actually shows in[6(tt ) —6( oo )] as a function of time,
and that the fitted curves have been displaced upwards a
small amount for clarity.

The good fits of Eq. (l) to the data for the three tem-
peratures of Fig. 8 indicate that the time dependence ob-
served for the sample conductance after the onset of the
lower current can be represented by an exponential func-
tion of time, characterized by a single relaxation-time
constant ~. Furthermore, ~ is strongly temperature
dependent, varying from a few ms to a few hundred
seconds as the temperature is changed from 105 to 77 K.
Several points should be made about these observations.
First, the complicated time-dependent conductance,
shown in Figs. 6 and 7, cannot be explained by a simple
heating effect. During either the high-current pulse or
after the onset of the lower current, the conductance both
increases and decreases. Second, the observed relaxation
times, at least at low temperatures, seem far too large to
be ascribed to time constants associated heating or cool-
ing of the sample. As the temperature is raised above 110
K, the titne constant measured in this fashion saturates at
approximately 1 ms, depending on sample size. This time
constant appears to be roughly the right magnitude to be
a heating or cooling time constant.

The temperature dependence of ~ is shown explicitly in
Fig. 9, where log, o(r) is plotted as a function of 1/T. The
squares are the values of ~ obtained from the measure-
ments, while the solid line is a least-squares fit to the
equation

r= re exp( W/k T) .

The parameters ~o and W are determined from the fit,
and k is Boltzmann's constant. The data shown in this
figure were taken on a single MozS3 sample, and they cor-
respond to W=0. 256 eV and ~o=5.1)&10 ' s. Mea-
surements on a number of different samples resulted in

nearly identical values of W (0.25 & W &0 &6 e~), an«o
between 10 ' and 10 ' s. The somewhat large varia-

tion in ~o is not unexpected, since ~o is determined by an

extrapolation to T= ~.
It should be noted that identical results are obtained

for samples with pressed-copper contacts, rather than

silver-paint contacts. Also, the time-constant effects are
observed in samples heated with an argon laser beam

rather than with a current pulse.
The internal-friction measurements carried out by Alo-

va and Mozurkewich' show that the internal-friction

peak is caused by a thermal-activation process. Their
values for W and ~o were found to be 0.33+0.03 eV and
—10 ' s, respectively. These values, while not identical
to the values obtained here, do suggest that the internal-
friction peak arises from the same physical origins as the
nonequilibrium conductivity.

B. Nonequilibrium thermoelectric power

Time-constant effects similar to those described above
are also observed in the thermoelectric power of Mo2S3.
The sample was mounted in the thermoelectric-power
cryostat and a temperature gradient was set up across the
sample. The sample was then heated a few K with a
current pulse. After removal of the current pulse, the
sample voltage (the thermal emf) was measured as a func-
tion of time. Since a Keithley nanovoltmeter was used to
measure the thermal emf, these measurements were limit-
ed to the low-temperature range, where the time constant
is rather long. Figure 10 shows the thermal emf as a
function of time for a sample temperature of 77 K
(pluses). For comparison, the resistance as a function of
time measured on the same sample (at a different time,
but with the same temperature gradient present) is also
shown (squares). (During the resistance measurements,
the sample voltage due to the iR drop was 3 orders of
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FIG. 9. Time constant of Mo2S3 determined from the
pulsed-conductivity measurements plotted as a function of
1000/T. The squares are the measured time constants and the
solid line is a least-squares fit to the equation ~= so exp( W/k'P.

FIG. 10. Time dependence of the thermoelectric power
(pluses) and the resistance (squares) of Mo&S3 after rapid
thermal quenching. The sample temperature was 77 K.
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magnitude greater than the thermoelectric voltage, so no
corrections for this effect were necessary). While the
resistance and thermopower data are similar, the frac-
tional change in the resistance over the period of the
measurement is about 19%, while the corresponding
change in the thermopower is only 11%.

In Fig. 11 the quantities log, o[R '(t) R—'(ao )] and

log, o[S '(t) —S '( 00 )] are plotted as a function of time.
Since 6 ~R ', such a plot should result in a straight
line. As can be seen, however, the plot in Fig. 11(a) has
an upward curvature with respect to the solid line, which
represents a least-squares fit to the data. This curvature
is not unexpected, since a temperature gradient was
present during the resistance measurements. The gra-
dient results in a distribution of relaxation times, which,
it is easy to show, will result in an upward curvature, as is
observed.

Despite the nonlinearity of the data, the relaxation
times found from the least-squares fits in Fig. 11 should
be approximately correct. With this assumption, the re-
laxation time from the resistance data is 230 s, while that
for the thermopower data is 210 s. This suggests that the
time dependencies of the thermopower and the conduc-
tance have a common origin. The fact that the conduc-
tance shows a change of greater magnitude than the ther-
mopower is presumably due to the fact that the thermo-
power is not simply proportional to the number of car-
riers.

IV. THE DOUBLE-WELL-POTENTIAL MODEL

At this point let us consider only the temperature re-
gion below the lower-temperature phase transition—

below 145 K. In this temperature region the conductivi-
ty falls, goes through a minimum at 80 K, and then rises
again. It is also this temperature region where the time-
dependent conductivity and thermoelectric power are ob-
served. Further, the linear dependence of log&o(r) on
1/T suggests that thermal-activation processes are im-
portant. These observations lead us to suggest a double-
mell-potential model for the carriers, as illustrated in Fig.
12. In this model the carriers can be either in a low-
conductivity ground state or in a relatively-high-
conductivity metastable state, with a large energy barrier
existing between the two wells. The double-well potential
shown in Fig. 12 is not necessarily a potential well in real
space; it is meant only to represent the existence of two
states for the carriers. The presence of the energy barrier
between the ground state and the metastable state does
not afFect the equilibrium distribution of carriers in each
state. It does, however, serve to define a transition rate
for carriers transferring from one state to the other. If
thermally activated hopping over the energy barrier is as-
sumed to be dominant over quantum-mechanical tunnel-
ing through the barrier, then the frequency of a success-
ful hopping event, f, can be written as

f=fo exp( —W/kT),

where fo is an attempt frequency for barrier crossing and
W' is the barrier energy. Letting f '=r and fo '=so
gives

r = ro exp( W /k T),
which is just Eq. (2).

A. Temperature dependence of the conductivity

K
I

K
D

0 I

nH Inl ——exp( E/kT), — (3)

where nH is the carrier density in the high-conductivity

The charge-density temperature dependence, n ( T), can
be calculated in a straightforward fashion. If the system
is in thermal equilibrium, then

(A
I

o I

0
0

I I

200 400
TIME

I

600
(~)

FIG. 11. (a) log, o[R (t) ' —R ( ao ) '] vs time and (b)

log&0[S(t) ' —S(ao ) '] vs time, for MozS3 after rapid thermal
quenching. The symbols are the measured values and the
curves are least-squares fits to a straight line.

FIG. 12. Double-well-potential model for MozS3. The left-
hand well has nH highly conducting carriers per unit volume,
while the right-hand well has nL poorly conducting carriers per
unit volume.
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(metastable) state, nL is the density of carriers in the
low-conductivity (ground) state, and E is the energy
difference between the two states. We assume that the to-
tal carrier density np is constant, so that nH+nL ——np.
Then,

and

np
nH(T) =

1+exp(E IkT)

np
nL(T)= 1+exp( EIk—T)

(5)

If, for simplicity, the conductivity of carriers in the
ground state is taken to be zero, then we find the sample
conductivity to be

noe rs(T}
cr( T)=

m [1+exp(E/kT)]
(6)

In order to estimate the temperature dependence of v~,
the carrier-scattering time, it is observed that at tempera-
tures above 200 K the conductivity exhibits a metalliclike
behavior, being approximately proportional to 1/T. This
suggests that ~& varies as T '. If this also holds for tem-

peratures below 145 K, then the conductivity can be writ-
ten as

the nonconducting state and w& is the same for a carrier
initially in the conducting state.

Now let us assume that the system is initially disturbed
from thermal equilibrium, so that nH =nH p+ AnH p,
where nHp is the thermal equilibrium value and AnHp is
the initial size of the disturbance. Then, using Eqs.
(8)—(10), we have

hnH =nH nH—O
b—n—H0 exp( —t/r),

where r is given by r=rHrLI(rH+rz)
Since the conductivity is proportional to the carrier

density, and assuming that the conductivity of the
ground state is zero, we can write

ho( t) =b o 0 exp( t /r—) .

This equation is the equation used to fit the measured
time-dependent sample conductance after the onset of the
lower current (see Fig. 8).

In order to calculate r(T) from this model, the life-
times in the two states, ~H and ~L, must be defined. This
can be done in a straightforward fashion by noting that
the barrier energy, shown in Fig. 12, as seen by a carrier
in the upper or lower potential well is W+E/2, so that

7 H =T'Hp exp[( W —E /2 ) IkT]

1 1o(T) ~—
T 1+exp(ElkT)

and

7 I, =&Lo exp[( W + E /2 }/kT]
Caution should be taken in placing too much faith in

this result, but its only purpose here is to obtain an esti-
mate of the energy difference, E. By comparing Eq. (7)
with the resistivity data between 80 and 145 K (Fig. 2},E
was estimated to fall in the range 10gE ~20 meV. It is
not essential for the development of the model to obtain a
precise value for E, but, as will be shown, it is only neces-
sary that E be small in comparison with 8'.

B. Temperature dependence of the relaxation time

The time-dependent nonequilibrium conductivity ob-
served experimentally can be treated within the frame-
work of this model. The rate of change of the carrier
density in the metastable state can be written as

dnH

dt
=g (n }Hr(nH ), — (8)

r(nH} nH/rH (10)

where ~L is the relaxation time for a carrier initially in

where g (nH ) is the rate at which carriers cross over the
barrier from the ground state to the metastable state, and
r(nH) is the rate for the reverse transition. These rates
are, in general, dependent on nH, as g (nH) must be zero
if nH no and r——(nH) must be zero if nH =0

If only weak carrier-carrier interactions are assumed,
then the transition rates are expected to be proportional
to the respective carrier densities, so that

g(nH)=ttL Irt =( rttloH)/7t

and

At equilibrium, dnH /dt =0, which leads to the result

rH /rL ——exp( —E/kt),
which requires 'THp=7Lp=ip and gives

ro exp( W/k T)
r(T)=

exp(E /2k T) +exp( E!2kT)— (12)

C. Comparison ~ith experimental results

As we have seen, the double-well-potential model pre-
dicts the time-dependent conductivity and time-
dependent thermopower in Mo2S3. The model also pre-
dicts the temperature-dependent conductivity as given in
Eq. (6). According to Eq. (6) the conductivity should
continue to fa11 below 80 K, whereas experimenta11y the
conductivity goes through a minimum at 80 K and rises
in a metalliclike fashion below that temperature. This be-
havior is completely consistent with the double-wel1-
potential model. As the temperature is lowered towards
80 K, the relaxation-time constant becomes several
minutes, and at 70 K the time constant is expected to be
nearly 3 h. Thus, for typical sample cooling rates of 0.25
K/min, the carriers will not remain in thermal equilibri-

It is observed that the asymmetry of the double-well
potential is responsible for the term in the denominator
of Eq. (12), and so Eq. (12) is a good approximation to
Eq. (2) only if E && W. This condition is well satisfied by
the values of E and 8'determined experimentally. As T
changes from 80 to 130 K, the denominator changes by a
factor of about 1.4, while exp(W/kX} changes by a factor
greater than 10 .
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um during the measurement. The carriers cannot
transfer from the metastable state to the ground state at a
rapid enough rate —they become frozen in the metastable
state, and the conductivity behavior becomes metalliclike
at low temperatures.

As the temperature is lowered, one expects that the
transition rate due to quantum-mechanical tunneling will

eventually dominate thermally activated hopping. We
carried out one experiment at low temperatures to test
this hypothesis. The sample was slowly cooled to 4.2 K
and its resistance was monitored over a period of several

days. The predicted hopping time constant at 4.2 K is
10 yr, so that any increase in the resistance with time
would be attributed to quantum-mechanical tunneling of
carriers from the high-conductivity state to the low-

conductivity state. During this experiment, essentially no
change in resistance was observed, suggesting that tun-

neling is unimportant. (In fact, a small decrease in the
resistance, on the order of 0.01%, was observed, but this
could have been due to a time-dependent thermal emf. )

At this point we are also able to explain the details of
the observed time-dependent conductivity. Referring
back to Fig. 6(c), at the onset of the high-current pulse,
the conductivity first falls rapidly, goes through a
minimum, and then rises until it asymptotically ap-
proaches a constant value. The initial fall in the conduc-
tivity is due to the heating caused by the current pulse,
which leads to an increase in the carrier-scattering rate
by phonons. The carrier-hopping time, for the measure-
ments presented here, is much longer than the thermal
time constant (believed to be —1 ms). Thus, as the sam-

ple heats up the scattering by phonons increases, lower-

ing the conductivity. Then carriers begin transferring
from the ground state to the metastable state, so that the
conductivity rises, asymptotically approaching the new
steady-state value. At the onset of the lower current, the
behavior is simply reversed. The sample cools rapidly,
thus reducing the scattering by phonons and hence in-

creasing the conductivity. Then the excess carriers slow-

ly transfer from the metastable state to the ground state,
giving rise to the exponential time dependence of the con-
ductivity.

V. POSSIBLE ORIGINS
OF THE DOUBLE-%KLL POTENTIAL

The preceding analysis shows that the double-well-
potential model can predict the observed features of the
conductivity of Mo2S3 below 145 K in considerable de-
tail. The question remains as to the physical mechanism
responsible for creating the double-well potential. In this
section we outline three possible sources of the double-
well potential. These models will also be discussed in a
planned second paper dealing with conductivity fluctua-
tions in MopS3.

A. The carrier-trapping model

Perhaps the simplest physical picture of the electronic
properties of Mo2S3 is a single-carrier-trapping model, in
which the trapping occurs at impurity or other defect
sites. Such a model could be appropriate in view of the

fact that Mo2S3 tends to be metal rich, and also in view of
possible contamination by iodine during the crystal-
growth process. To be consistent with the experimental
results, the defect would obviously have to produce a
trapping site (potential-energy minimum) separated from
the free-carrier state by a rather large potential-energy
barrier. Trapping of the carriers would then remove
them from the conduction process. Random thermal ex-
citation of the carriers out of the traps would allow con-
duction to occur, with the average number of free car-
riers determining the magnitude of the conductivity.

If the trapping sites were due to the presence of extrin-
sic defects, one might expect sample-to-sample or
growth-batch-to-growth-batch variations in the sample
conductivity and/or measured time constants. No such
variations were observed in our samples. Further, sam-
ples grown with Sn as the transporting agent show the ex-
pected temperature-dependent resistivity. ' Similarly, if
the trapping were due to intrinsic defects such as disloca-
tions, one might expect sample-to-sample variations due
to differences in sample history. That is, such things as
the number of electrical contacts, the type of electrical
contacts, and the number of thermal cycles could all play
a role in the determination of the conductivity and the
measured time constants. However, all samples mea-
sured showed the same room-temperature conductivity
within experimental error limits (+20%) and the same
value of the barrier height within 2%.

Another source of defects might be the electrical con-
tacts themselves, but this is quite likely. We found no
evidence of intercalation of the silver-paint chemical
components into Mo2S3, in that conductivity measure-
ments on samples with contacts that were several months
old resulted in the same sample conductivity as when the
sample contacts were first attached. Further, it should be
noted that some samples were studied using contacts
made by pressing between two copper blocks (no silver
paint). These samples showed the same phase-transition
temperatures and the same low-temperature time con-
stants as samples which had silver-paint contacts.

It is also possible that the presence of iodine in the
samples could lead to defects of the sort required. The
samples investigated here were all grown with —5

mg/cm of iodine in the growth tube. X-ray-Iluorescence
measurements showed no traces of iodine at the detection
limit of 2 at. %. Further, one would expect sample-to-
sample variations in the amount of iodine present, with
consequent changes in the conductivity properties. In
addition, Alova and Mozurkewicz, ' in their measure-
ments of internal friction, found a thermally activated
internal-friction peak, with barrier height and hopping
times similar to ours, but their samples were growth with
Sn, not I, as the transporting agent.

B. The acoustic-polaron model

The concept of the polaron was introduced by Lan-
dau ' as a process whereby an electron (or hole) can in-
teract with a deformable lattice. Through this interac-
tion the charge carrier can become localized in the lat-
tice, or "self-trapped. " A great deal of attention has been
given to this problem in the literature and only a brief
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W=Aq /2, q&q,

W=Aq /2 Ed(q —q, ), q&q—, .
(13)

The constant A in the above equations corresponds to
an elastic constant of the lattice, while q, is the minimum
lattice distortion required to produce a bound state. The
terms involving q represent the increase in potential en-

ergy due to the lattice distortion and the term linear in q
is the energy reduction resulting from the formation of
the bound state, consistent with Toyozawa's model. Plot-

survey of the properties of the acoustic-mode polaron will
be given here. The result important to the discussion
here is that the acoustic-polaron model can give rise to a
double-well potential of the form necessary to explain the
observed electronic behavior of Mo2S3.

The various polaron models assume that a charge car-
rier in a deformable medium can interact with the vibra-
tions of the medium via long-range Coulomb forces (opti-
cal phonons) or the short-range deformation potential
produced by the acoustic phonons of the medium. The
self-trapped states formed due to the long-range Coulomb
interaction are referred to as dielectric (or large) po-
larons, while those formed from the acoustic-vibrational
modes are called acoustic (or small) polarons. Qualita-
tively, the difference between these two types of self-
trapped states is in the behavior of their effective masses
(carrier-plus-lattice deformation) as the degree of cou-
pling between the carrier and the lattice increases. The
dielectric polaron effective mass increases continuously as
the interaction strength increases. In contrast, the
effective mass of the acoustic polaron undergoes a discon-
tinuous jump as the coupling is increased. This change in
effective mass may be as large as several orders of magni-
tude. Where this occurs, the carrier becomes so "heavy"
that it is essentially frozen in the lattice. It is the acoustic
polaron which will be discussed here.

Holstein, in his pioneering work on the small po-
laron, used the deformation-potential-carrier interaction
to produce a self-trapped state in a one-dimensional
molecular-crystal model. Of more interest here, though,
is the work of Toyozawa in three dimensions. Toyo-
zawa assumed a uniform dilation of the lattice inside a
sphere of radius R, with the deformation energy being
proportional to the size of the dilation. He showed that a
bound state (self-trapped state) will be produced if the di-
lation is large enough. In the case of a discrete lattice, he
was able to show that, along with the acoustic-polaron
ground state, a metastable state is also produced in which
the charge carrier is delocalized, or untrapped, with an
adiabatic potential barrier separating the trapped and
delocalized states. Toyozawa speculated that if this bar-
rier energy is large enough, very-long-lived free-carrier
states could be produced.

Small-polaron formation is also discussed by Mott and
Davis and Mott and Stoneham. Using a simplified
version of the lattice-carrier interaction producing the
free and self-trapped states, they represent the degree of
the lattice distortion by a configurational coordinate q.
Neglecting the kinetic energy of the carrier, they find the
carrier-plus-lattice energy W to be

ELASTIC ENERGY

ELECTRONIC
ENERGY

FIG. 13. Carrier energy as a function of configurational
coordinate in the acoustic-polaron model. q, is the minimum
lattice distortion required to produce a bound state. The curves
indicating the lattice energy, the electron bound-state energy,
and the total energy are labeled.

ting W as a function of q gives an interesting picture of
the system, as shown in Fig. 13. The center curve
represents the sum of the linear and quadratic terms in
Eq. (13). Ws and Eb are the barrier energy and small-
polaron binding energy, respectively. This figure is quali-
tatively identical with the phenomenological double-well
potential used to describe Mo2S3. - Using typical values
for the various parameters in the acoustic-polaron model,
one can calculate values of Wz ——0.5 eV and Eb ——33
meV. These values are similar to the measured values of
0.25 eV and —15 meV, respectively.

C. The charge-density-wave model

In view of its quasi-one-dimensional character and the
presence of phase transitions, it would seem reasonable to
assume that Mo2S3 is a charge-density-wave system simi-
lar to NbSe3 or TaS3. This would appear especially likely
since Deblieck et al." found both commensurate and in-
commensurate structural distortions to be associated
with the phase transitions and, further, that the phase
transitions result in a loss of Fermi surface. Such proper-
ties appear to be endemic to charge-density-wave sys-
tems.

In addition to the anomalies in the resistivity found at
the charge-density-wave transition temperatures, NbSe3
and TaS3 exhibit nonlinear conductivity when the electric
field, E, is greater than a well-defined critical threshold
value, E„. The nonlinear conductivity in these com-
pounds is believed to be caused by the electric field depin-
ning the approximately rigid charge-density-wave struc-
ture, enabling it to participate in the conduction process.
Related to this nonlinear conductivity is the occurrence
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of an unusually large amount of excess current noise for
E & E„where E, is the critical value of the electric field

in the sample below which no excess noise is found. The
electrical noise generally has a broadband component in

the low-frequency range and narrow-band components in

the MHz range. The narrow-band noise appears to be
associated with the regular motion of the charge-density
maxima past the electrical contacts, but the origin of the
broadband noise has not yet been firmly established. It
should also be noted that the critical fields E„and E, are
generally not equal for a given compound (although they
are usually similar in magnitude) and are generally tem-

perature dependent below the transition temperature.
No nonlinear conductivity was observed in Mo2S3 us-

ing either dc currents or pulsed currents up to 10 V/cm.
This implies that if a charge-density wave forms in

Mo2S3, it is very strongly pinned to the lattice or to de-
fects. It appears as if E„-cc. However, broadband
electrical noise is observed in MozS3 for temperatures
below 200 K. The results of these measurements will be
presented in a planned subsequent paper, but we sum-
marize the main results here. The noise first appears as
the temperature is lowered below 200 K. The critical
electric field for the noise, E„appears to be zero, and the
magnitude of the noise power is proportional to I . The
temperature dependence and frequency dependence of
the broadband noise is quite consistent with the predic-
tions of the double-well-potential model. (In the double-
well-potential model the electrical noise arises because of
the thermal fluctuations of the carrier densities in the two
wells of the potential. ) These results are quite different
from the corresponding observations in the mell-known
charge-density-wave conductors.

In view of these results, we conclude that if MoQS3 is a
charge-density-wave system, it must be quite different
than NbSe3 or TaS3.

VI. DISCUSSION

Three models which can possibly explain the electronic
properties of Mo2S3 have just been presented. The
defect-trapping model and the acoustic-polaron model
are both single-carrier models, in that no cooperative
motion of the carriers is expected. The charge-density-
wave model, however, involves a condensation of the car-
riers into a spatially periodic charge-density wave in

which cooperative motion of the carriers is possible (as in

depinning). While we have not presented our electrical-
noise data on Mo2S3, one important point should be
made: The frequency dependence of the electrical noise
is consistent with the prediction of the double-well-

potential model, and the magnitude of the noise power is
quite large. Our Hall-effect measurements, and those dis-
cussed by Rastogi, ' indicate that Mo2S3 has greater than
10 holes/cm . Using this carrier concentration, the
magnitude of the noise power predicted by the double-
well-potential model is more than 3 orders of magnitude
smaller than the observed noise power. For the double-
well-potential model to predict the correct noise-power
magnitude, either the carrier concentration must be less
than 10' cm, or a cooperative motion of the carriers
must occur. This result strongly suggests that the motion

of the carriers is cooperative, and so favors the charge-
density-wave model over either of the single-carrier mod-
els. It is not easy to see how the defect-trapping model or
the acoustic-polaron model can result in cooperative
motion of the carriers. Furthermore, the defect-trapping
model cannot give rise to the observed phase transitions.

In spite of the dimculty with the carrier concentration
the acoustic-polaron model does have two points in its
favor. It can certainly give rise to a double-well potential
of the type needed to explain our experimental results. It
also holds some promise in its ability to explain the pres-
ence of the phase transitions. Toyazawa has shown that
the effective mass of the carriers can change discontinu-
ously as a function of the carrier-lattice coupling. This
could, of course, result in the conductivity behavior ob-
served experimentally at the phase transitions. However,
to date no convincing experimental evidence exists for an
acoustic-polaron-driven phase transition in any system.

The charge-density-wave model of conduction in

Mo2S3 has a natural appeal. Mo2S3 is a linear-chain-
structure compound that shows phase transitions ap-
parently similar in nature to the phase transitions ob-
served in the known charge-density-wave systems NbSe3
and TaS3. NbSe3 and TaS3 are also linear-chain-structure
compounds. Furthermore, the charge-density-wave mod-
el can result in a large excess noise magnitude even when
the sample has a large carrier concentration. The large
noise magnitude arises because a whole charge-density-
wave segment can break loose and contribute to the con-
ductivity. The effective charge of such a segment might
be 10 e. In this case, perhaps a realistic physical picture
would be the charge-density-wave segment being pinned
by solitonlike kinks and antikinks. The destruction of a
kink (perhaps by thermal excitation) would allow the seg-
ment to conduct. Thus the phenomenological double-
well potential would be associated with the kinks and an-
tikinks, rather than with the individual free carriers. It
has, however, not been shown that kink formation can
lead to a double-well potential of the kind required by ex-
periment. Clearly, more theoretical work needs to be
done. ""

At this point it also seems dificult to reconcile the
charge-density-wave model with all of the experimental
results. Experimentally, the critical electric field for gen-
eration of excess noise seems to be zero and the critical
field for nonlinear conductivity seems to be infinite, or at
least larger than can be experimentally achieved. None
of the existing theories of charge-density-wave formation
predict this kind of behavior.

Thus, while it is not possible to rule out a charge-
density-wave model for Mo2S3, it seems that existing
models are inadequate to explain the experimental results
presented here.
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