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Atomic configuration and electronic properties of the metastable state of the EI.2 center in GaAs

C. Delerue and M. Lannoo
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A detailed study of the atomic and electronic structure of a recently proposed model for the
metastable state of the EL2 center in GaAs is presented. This consists of a split As; interstitial
configuration. The important lattice reorganization around the split As; pair is calculated in a new

renormalized valence-force-field model. This leads to a somewhat asymmetric situation for the As;
pair. Secondly, the electronic properties of such a split As; interstitial configuration are investigat-
ed through a Green s-function calculation. Both results are justified by simple qualitative argu-
ments. The main conclusion is that the metastable split interstitial form exists only in the +
charge state. This is the same charge state as that recently proposed as well for the stable state of
the pair.

I. INTRODUCTION

The EL2 center is a native, metastable defect in GaAs
which has been intensively studied due to its important
electronic properties. ' Although several points are still
unclear, important progress has been made recently in
the understanding of this defect. ' The EL2 center can
exist in two different states. The first one is the normal or
stable state for which von Bardeleben et al. have pro-
posed a model consisting of an arsenic antisite AsG, with
an arsenic interstitial As; nearby. Although this
identification is not yet unanimously accepted, this model
is now supported by several theoretical and experimental
studies. The EL2 center in the stable state gives rise
to levels in the gap ' and has an electron paramagnetic
resonance (EPR) spectrum very close to that of the isolat-
ed Aso, antisite. The fact that the interstitial As; is not
observed in the pair —and also the isolated interstitial-
in contradiction with theoretical calculations, ' has been
explained recently by Lannoo" in terms of a large Jahn-
Teller effect. This was then confirmed by a much more
detailed calculation by Baraff, Lannoo, and Schluter for
Asoa-As& pair.

The metastable state, being induced by optical absorp-
tion, " seems to be characterized by the absence of any
experimentally observed defect level. The transition from
the stable to the metastable state is made without change
in charge state. ' A mechanism for the metastability has
been advanced' ' where the interstitial moves closer to
the antisite so that the electronic properties of the antisite
are completely modified. However, there is yet no infor-
mation concerning the atomic configuration of this state.
Our aim in this paper is thus to propose a model for the
atomic structure of the metastable state of the EL2
center. ' We show that the two As of the pair tend to be-
come trivalent as in amorphous elemental As. For this,
we calculate the atomic configuration of the pair using a
valence-force-field model. As the entire calculation is a
very hard task, we introduce a new renormalized
valence-force-field model which allows to take into ac-
count only a small cluster composed by the two As and

their four neighbors. Using this atomic configuration, we
then show using a Green's-function calculation that the
electronic structure of the pair is compatible with the ex-
perimental evidence. We finally discuss and justify our
results by using simple physical models both for the
atomic configuration and the electronic structure.

II. MODEL FOR THE ELASTIC ENERGY
OF THE EI.2 CENTER IN THE METASTABLE STATE

As the stable state of the EL2 center (usually called 0)
probably corresponds to an AsG, -As,. pair, it is
reasonable to suppose that the metastable state (0') cor-
responds to the same interstitial As; either closer to or
more distant from the antisite Aso, . The distant pair
should have the same behavior as the isolated antisite and
therefore would be EPR active. ' As this is not the
case, the transition 0—0' is probably connected to a
motion of the As; towards the Aso, . Baraff and
Schluter' have analyzed the first-neighbor distance pair
which is the simplest situation. They found that in this
case an electrical level should be observed in the gap in
contradiction with the experiment. Nevertheless, a lat-
tice reorganization is possible, and then, another atomic
configuration might be expected.

To have an idea of this new configuration, we view the
metastable state of the EL2 defect as an inclusion of six
As atoms (As;, Aso„and their four As neighbors) in a
void surrounded by Ga atoms. Elemental arsenic is
trivalent and it thus seems natural that the two extra As
(Aso, and As,. ) tend to become trivalent, i.e., tend to be
in an electronic configuration similar to the one occuring
in amorphous arsenic. This leads to the split-interstitial
form depicted in Fig. 1(a). Obviously, an important elas-
tic energy should be associated with this kind of structure
if the four nearest neighbors of Fig. 1(a) stay at their per-
fect lattice position. Therefore, we are going to analyze
the relaxation induced in such a system to get an idea of
the cost in elastic energy and of the atomic configuration
in the metastable state.
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As a full first-principles total energy minimization of
such a defect pair is practically impossible at present, we
proceed in a different way and write the elastic energy E„
under a valence-force-field form:

III. ENERGY MINIMIZATION
WITH RENORMALIZED FORCE CONSTANTS

We first show here how it is possible to introduce for-
mally the concept of effective or renormalized force con-
stants. For this let us write the elastic energy of the de-
fect explicitly in terms of the positions R (a=1,2) of the
two central atoms of Fig. 1 and also of the displacements
u, of all other bulk atoms with respect to their perfect
lattice position. This gives

E =E(R,u;)=Eo(u;)+5E(R, u;), (2)

where Eo(u;) is the elastic energy of a perfect crystal
with a central Ga vacancy and 5E(R,u,. ) is the addition-
al energy due to the introduction of the two extra As
atoms. It is important to note that the additive term 6E
is of short-range character and that consequently only a
few u; must be included in the mathematical expression
of 5E. In the following, we will consider that the u; are
components of a column matrix u in which one part up
occurs in 5E and the remaining part uz does not. Then

E„=—,
' g k„s(mrs) + —,

' /k' (rsvp, 8 )
8 a

where Ar„ is the change in bond length rz of the bond 8
while 50 is the change in bond angle between the two
adjacent bonds. Such an expression is certainly valid pro-
vided that the atomic configuration corresponds to well-
defined covalent bonds which is precisely implicit in our
model. Making the assumption that the two central As
atoms tend to become trivalent, we consider only bonds
schematized by lines in Fig. 1. There are five bonds in
this system: two for each of the two central As (namely,
atoms 1 and 2 in the figure) with its two neighbors and
one between them. The changes in the bond angles 68
are evaluated with respect to the normal tetrahedral an-
gle 109' for tetravalent atoms (i.e., the four neighbors).
For the two As (1 and 2), this change is referred to the
normal angle 97' for trivalent As (amorphous As). The
change in bond length is calculated with respect to the
amorphous As bond length which is close to the intera-
tomic distance in GaAs.

Even the calculation of the elastic energy of the defect
under this simple form is a very hard task: indeed, the
relaxation of the pair and its surroundings induces defor-
mations in the whole crystal. Even if these deformations
are small far from the defect, it is impossible to neglect
long-range effects. Two common approaches to such a
problem are the use of a large cluster calculation' or a
Green's-function technique. ' We shall develop here a
model which considerably reduces the complexity of the
calculation. We will see that it is possible using effective
force constants to consider only a small cluster composed
by the pair and its four neighbors. This approach is built
in the same spirit as the concept of renormalization
developed for transition metal ions in semiconductors.

5E(R,u;)=5E(R, uo) . (3)

The elastic energy Ep can be expanded to second order in

the atomic diplacements. This gives

Ep ———,'u A u, (4)

where A is the force-constant matrix. It is then easy to
minimize E with respect to u&. This leads to

(A u)a=0.

The matrix A can be written in four blocks using the
same basis as for u:

—00 —ORA A
A= —RO —RR

(6)

The relation (5) can be rewritten as

~~aux+ ~aouo =& (7)

and, using (2), (4), and (6), we can expand the energy E:

E(R, u ) =5E(R,uo )

+ ~(-uo~oo-uo+uo~oz "~

+—R—Ro-0+ —R —RR-R )

which can be simplified using relation (7) as

E(R, u ) =5E(R,uo)

+ ~(uo+oouo —uoA0R Axlt Aao o)
—1 (9)

G = lim [(co +i e)I —A ]~+ (10)

We can split the matrix G in the same manner as A in (6).
It is also interesting to consider the Green s function g as-
sociated with the matrix a defined by

App 0
a= 0 (11)—RRA

In this case, the elements depending on uz and up are
decoupled. The Dyson equation gives a relation between
the matrices G and g

G=g+gVG, (12)

where the coupling matrix V is simply given by

0
V— —RO

—ORA

(13)

The application of Dyson's equation allows one to write

Equation (9) still looks rather complicated since there are
terms which depend on R (i.e., characteristic of the whole
crystal). Nevertheless, it can be transformed using
Green's-function theory.

We introduce the matrix of the resolvent operator 6
defined by Refs. 19 and 21 (I being the identity matrix)
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Fig. 1(b) (the origin of the axes being the center of the
cube). This configuration is compatible a posteriori with
the assumption made for the calculation. Each As has
only three first neighbors (d, z

——2.27 A, d, „=d,s
=dzc ——dzD ——2.38 A, dic=d&~ ——2.80 A, and
d, D =dzs ——3.91 A). As will be discussed later, the ob-
tained asymmetric configuration results mainly from the
importance of k, z compared to kz . this explains why
bond lengths are not far from the bulk ones. Thus the
bond angles can differ a little more from their perfect lat-
tice references (the angles are 74', 114', 118' around an As
and are 80', 118', 115' around a neighbor). Nevertheless,
deviations from 97' and 109' are small enough to justify
the use of expression (1).

We found a total elastic energy of 2.3 eV: this value is
sufficiently low to expect that such an atomic
configuration effectively is metastable, provided that it
corresponds to covalent bonds of course. The following
step is then to perform an electronic structure calculation
for the atomic configuration of Fig. 1(b).

IV. GREEN'S-FUNCTION CALCULATION
OF THE ELECTRONIC STRUCTURE OF THE 0 STATE

6=Go+Go VG (21)

where Go is the Green's function of the bulk crystal with
the vacancy, 6 is the final Green's function, and V is the
matrix of the perturbation induced by the defect. As usu-
al, the local density of states on an orbital i is obtained
using the following relation:

n,.(E}=——Im[G,.;(E)],1
(22)

where G, , (E ) is the diagonal Green's-function element on
the orbital i.

The interatomic terms of the perturbation matrix V for
the metastable configuration of Fig. 1(b) are deduced
from Harrison's rules as given in Ref. 28 for nearest-
neighbors interactions (each interstitial As has three

0
nearest neighbors, at a distance 2.27 A for the second As
of the pair and 2.38 A for the two others}. We also in-
clude the inAuence of close second nearest neighbors at a

0
distance 2.8 A for which we consider the interactions to

We present here a Green's-function calculation of the
electronic structure of the As pair in the 0' state. This is
done in a tight-binding approach. All the atoms are de-
scribed classically by one "s" and three "p" orbitals. We
first calculate the Green's functions for the perfect GaAs
crystal. The Hamiltonian in the basis of the Bloch states
is obtained by the procedure described in Ref. 24: in-
teractions up to second nearest neighbors are determined
from a fit to the band structure. Green's functions are
derived by integration over the Brillouin zone as it has
been done for Si (Ref. 26). The second step consists of
the removal of a Ga atom to create the vacancy: the
latter is simulated by an infinite potential on the Ga site
as is described in Ref. 27.

Then the As pair is introduced and coupled to the crys-
tal with the vacancy. This coupling is performed using
Dyson's equation

be reduced by a factor of 2 with respect to nearest neigh-
bors. This reduction is more important than the one pre-
dicted by Harrison's rules. This is justified by the fact
that the empirical rules are no more valid for longer dis-
tance. Recently, the following law for the second
nearest-neighbor interactions has been successfully
used:

V(d)= V(do)exp —2.5 —1
d

dp
(23)

E, =E,p+hE,

Ep ——Epp+ hE,
(24)

where E,p and E p are the As bulk energies given in Ref.
24 (respectively, —6.72 and 0.64 eV) and hE is a com-
mon shift adjusted in such way that each As is neutral
(five electrons). A potential b V is also applied on the
four neighbors to assure the global neutrality of the cell
composed by the six As. We obtain b,E = —1.81 eV and
b V= —0.74 eV. The total ("s"+ "p") local density of
states on the six As is plotted in Fig. 2 and the partial "s"
density in Fig. 3. The absence of gap levels is in agree-
ment with existing experimental evidence. This implies
that the defect only exists in one charge state found to be
the + one (this will be discussed in the next section)
which precisely corresponds to the quenchable charge
state of the 0 configuration, ' in agreement with the fact
that the charge state does not change in the 9-~0* trans-
forrnation. The local "s" density in Fig. 3 clearly shows
that "s" states are present mainly in the valence band as
expected in a molecular model (see Sec. V). We find
again a very covalent situation (Fig. 2) since there is no
level lying in the proximity of the band gap (strong in-
teraction). This situation gives us confidence in our cal-

where V(d ) is the second neighbor interaction at distance
d and do is the first neighbor distance. This rule is equal-
ly justified in Ref. 30. In our case (do=2. 27 A and

0
d =2.8 A), this relation leads to a reduction factor close
to 2.

The important relaxation of the four neighbors of the
pair (see Sec. III) from their perfect lattice position sure-
ly modifies the local electronic density. In our calcula-
tion, we do not calculate explicitly the positions of the
backbond atoms of A, B,C,D. These wi11 move in such a
way that the angles will be as close as possible to the per-
fect tetrahedral angles. In terms of the sp hybrids be-
longing to A, B,C, D, this means that one of them (i.e.,
the dangling bond if atoms 1 and 2 are removed) will
point from the displaced atom A, B, C, or D towards its
neighboring As 1 or 2. To take this effect into account,
we have thus determined Gp on A, B, C, and D by im-

posing a rigid rotation on the unperturbed vacancy ma-
trix such that the dangling bond hybrids are correctly
oriented.

Finally, approximate self-consistency is achieved. As
discussed in Ref. 31, we use a local charge-neutrality
condition corresponding to a very efficient screening.
The "s" and "p" orbital energies (E„Er ) of each As of
the pair are given by
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FIG. 2. (a) Schematic level scheme in the molecular model of the split interstitial with respect to the band gap (the numbers indi-

cate the degeneracy of the levels). (b) Local density of states on one of the two central As atoms in the configuration of Fig. 1(b).

culation because modifications of our parameters or of
our self-consistency procedures will not change the main
conclusions (for example, we have observed that the rota-
tions previously described are not fundamental). Strong
peaks can be assigned to bonding and antibonding states
as in a simple molecular model.

V. DISCUSSION OF THE RESULTS

In this section, we analyze the numerical results ob-
tained above (both for the elastic and electronic calcula-
tions) on the basis of simple models. This will allow us to
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FIG. 3. Local "s"density of states on one of the two central
As atoms in the configuration of Fig. 1(b).

X) = —g), X2=/2

2x21+(z 1+1/v'3)2 = 3i

2x 2+(z2 —1/&3)2= —,',
2x, +x~+(z, —zz) =1 .2 2—

(25)

The last three of Eqs. (25) concern four unknowns. ~e
can thus impose one extra condition; we choose this one
to be

understand the physical origin of the results and will, in
some way, confirm their validity.

Let us then first consider the problem of finding the
minimum atomic configuration for the metastable state.
Our simplified description will be based on the fact that
in the valence-force-field expression (1) of the elastic ener-

gy the angular force constants ks are much smaller than
the radial force constants k„, as shown by Ref. 19. The
most trivial simplification then consists of taking ke ——0
as a zeroth-order approximation. We also kept the four
neighbors A, B,C,D of Fig. 1(a) fixed at their perfect lat-
tice positions. In searching for the corresponding
minimum energy configuration, one can wonder if the
elastic energy can reach its lowest possible bound, i.e.,
zero. This would also mean that all interatomic distances
of the cluster of Fig. 1 are equal to the corresponding
bulk material bond length. As this one is practically the
same in crystalline GaAs (2.43 A) and in As (2.49 A), we
search for solutions where any of the five bonds of Fig. 1

has the same bond length as in GaAs. Calling x, ,y&, z,
and x2,y2, zz the coordinates of the two As atoms in units

of the bulk GaAs bond length, we easily end up with the
following equations to be fulfilled:
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21 ——22 (26} VI. SUMMARY AND CONCLUSIONS

which preserves some symmetry for the system. This
directly imposes x2 ———x, from (25). Injecting these con-
ditions into (25) gives

21 = —0.37 x1 =0.38 (27)

One can check easily that this minimum configuration is
in fact close to what was found numerically before. In-
troduction of the angular terms will simply push the four
neighbors outward and will only slightly affect the atomic
arrangement.

As regards the electronic structure, one can build a
simple molecular model as for GaAs or As based on a
tight-binding description of the defect. The two As of the
pair are each represented by one "s"and three "p" atom-
ic orbitals. These orbitals interact mainly with the four
sp hybrid orbitals of the four neighbors pointing towards
the two As. Due to the important difference between the
"s" and "p" energies (=8 eV), we can treat "s" states
separately. The interaction between "s"orbitals and the
other atoms leads to bonding and antibonding "s" states
lying deeply in the valence band (see Fig. 3).

For the remaining orbitals (six As "p" and three sp
hybrids), we can adopt the following simplified point of
view (see Fig. 4}. If bond angles around the As of the
pair were equal to 90' and if the sp hybrids point to-
wards the interstitial As along the bonds, the orbitals in-
teract mainly by pairs so that there would be four sp —p
bonds and one p—p bond along the axis between the two
As. These bonds are very covalent so that we expect the
bonding-antibonding splitting to be larger than the GaAs
gap (see Fig. 2}. Therefore this electronic structure is
mainly characterized by the absence of gap states. More-
over, the split-interstitial corresponds to a positive charge
state since a neutral defect would contain 15 electrons
(five on the sp hybrids of the Ga vacancy and five per As
atom of the pair). Obviously, the use of the atomic
configuration obtained previously complicates the
description of the electronic structure. There will be
mixings between the various orbitals but we can expect
that the main conclusions remain valid. The complete
calculation of the electronic structure performed before
confirms this simple picture.

In this work, we have proposed and justified theoreti-
cally an atomic configuration model for the metastable
state of the EL2 center. The electronic structure of the
split-interstitial fulfills the experimental requirements.
This defect is characterized by the absence of gap levels
and is in the + charge state. Consequently, according to
Ref. 12 and the above discussion, we can associate the 0
state with the AsG, -As; pair at about 1.5 bond-length dis-
tance and the 0* state with the split-interstitial pair. The
paramagnetic state of 0 is 0 +, corresponding to
Aso, +-As;+; its quenchable state 0 is AsG, -As, +

which, by optical excitation around 1.1 eV, should then
be transformed into our proposed split-interstitial (0*}+
metastable configuration.

APPENDIX

We discuss here the numerical values of the force con-
stants k„and ks. For GaAs, the Keating model used by
Martin gives

k„=7.99 eV/A, ks ——0.37 eV/A (A l)

This model is not strictly equivalent to the valence-force-
field model used here but the two force constants should
be close to those given by (Al).

A discussion for a-As can be made very easily in terms
of a simple model. First, the infrared absorption spec-
trum of a-As consists of a dominant and relatively sharp
band at -230 cm ' and relatively weak secondary struc-
tures. To get some feeling of the value of k, in this ma-
terial let us idealize this material by assuming that the
bond angles are 90' instead of -97' and that we first
neglect k&. On each atom, we can thus define three
orthonormal displacements directed along each bond.
Such displacements will couple by pairs within each
bond. Let us call u; and u;. the displacements involved
in the stretching in the bond connecting atoms i and j.
Clearly the combination (u; +uj, )/&2 leads to no
stretching at all and corresponds to a mode of zero fre-
quency. On the other hand (u,, —u; ) /&2 corresponds to
pure stretching and a potential energy equal to
k„(u; —u;/&2) . Such a mode gives rise to a vibration
frequency

' 1/2

CO= (A2)

FIG. 4. Simplified model for the atomic structure of the As
pair allowing the simple molecular description of the electronic
structure of Fig. 2{b). Bonds between the six As are taken per-
pendicular as in amorphous As.

where M is the As atomic mass. Thus the vibrational
density of states in our idealized description corresponds
to two delta functions of equal weight at co=0 and B. In-
clusion of kz will broaden and slightly shift these two
lines. As discussed in Ref. 23, the ratio k/k„ is again
very small so that one gets a good order of magnitude of
k„by identifying 6 with the main line at 230 crn . This
leads to k, -6.44 ev/A . The bonds considered in Fig. 1

are As-As bonds and as the k, for GaAs and elemental
As are close enough, we have decided to use this value in
Ref. 19. For k&, we have taken a value similar to the one
occurring in CxaAs but our results are not very sensitive
to kz provided it remains small compared to k, .
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