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We present kinematical calculations of the diffraction patterns from domain-wall systems on a

hexagonal substrate lattice.

Diffraction-peak positions and intensities are calculated for the

(V3XV3)R30° commensurate-to-incommensurate phase transition, assuming all possible domain-
wall systems: heavy, superheavy, light, and superlight walls for both the hexagonal and the striped
symmetry. In addition, we allow for wall relaxation and determine its effect on the diffraction-peak
intensities. As an example, the (V3XV3)R30° commensurate-to-incommensurate phase transition
of Xe/Pt(111) is explained as a continuous transition involving striped superheavy walls with in-
creasing relaxation followed by a first-order transition into a hexagonal incommensurate phase.

INTRODUCTION

Considerable interest has been given in the last decade
to the commensurate- (C-) incommensurate (I) phase
transition in two-dimensional systems. In theoreticall?
as well as experimental>* investigations the C-I phase
transition is described in terms of domain-wall formation:
At the transition, commensurate areas start to be separat-
ed by regions of different density. These regions are
called walls. Their density is higher or lower than that of
the commensurate areas depending on whether the I
phase has a higher or a lower density, respectively.
Proceeding further in the transition the number of walls
increases (i.e., their mutual mean distance decreases) at
the expense of the commensurate domains, and eventual-
ly the incommensurate walls form a homogeneous I
phase.

The number of topologically different, possible
domain-wall systems is determined by the order of com-
mensurability of the overlayc:r,5 i.e., the number of
equivalent types of adsorption sites in the commensurate
phase. In the case of a (V'3 XV 3)R 30° overlayer the or-
der of commensurability is p =3. The corresponding
p —1=2 domain-wall systems are called heavy and su-
perheavy® if the I phase has a higher density than the C
phase and light and superlight if it has a lower density.*
Depending on the wall crossing energy A, the walls may
either form a striped pattern or may cross each other
yielding a honeycomb-type array of walls (often called
hexagonal).” If A >0, wall crossings are energetically un-
favorable and consequently a striped domain-wall system
is formed. Instead, A <O results in the honeycomblike
domain-wall system. A survey of all possible domain-
wall systems in given in Fig.1.

To investigate domain-wall system, the most common-
ly used method is to measure the diffraction of x rays,>*
low-energy electrons (LEED) (Ref. 8), or thermal He
atoms.’ Therefore information on the type of domain-
wall structure has to be extracted from the diffraction-
peak positions and intensities. The question arises as to if
and how a domain-wall system can unambiguously be
identified and characterized by analyzing the diffraction
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pattern.

Following other authors,* who calculated the structure
factor within the kinematical approximation for several
hexagonal domain-wall systems, we give here a complete
description of the diffraction-peak positions and intensi-
ties for all possible domain-wall systems occurring in a
(V3XV'3)R30°-1I phase transition. We then allow the
walls to relax (i.e., the shift between two neighboring
commensurate domains is distributed over a characteris-
tic number A of atoms in the boundary region, which is
then called the width of the wall).

We show that the relaxation changes the diffraction-
peak intensities but not their position. From the position
of the diffraction peaks we can unequivocally extract the
type of domain-wall structure and their symmetry
(striped in a definite symmetry direction or hexagonal).
From the relative intensities we can estimate the degree
of wall relaxation.

As an example we apply our results to the high-
resolution He-atom diffraction data’® from the
(V3% V3)R30°-1I phase transition of Xe physisorbed on
the Pt(111) surface.

NUMERICAL RESULTS

The structure factor S(Q), where Q=(Q,,Q,) denotes
the scattering wave vector parallel to the surface, is cal-
culated using the kinematical approximation:

M
S(Q)= 3 frexp(—iQ-ry) (1)
k=0

where M is the number of scattering atoms, and r, and
S« the position and atomic form factor of atom k, respec-
tively. Since we are dealing with only one kind of atom
in the first layer, we can take f, =1 in (1). The normal-
ized scattered intensity is then simply given by
2

(2)

1 M
I( —_— —10)-
V=37 | 2,0 —IQm)

Assuming periodic boundary conditions, the number of
scattering atoms M can be reduced to fit into a unit cell
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6,1/ =| A| is the domain length.

FIG. 2. Unit cells used to calculate the structure factor for the unrelaxed domain-wall system as illustrated in Fig. 1; (a) hexagonal

symmetry, (b) striped symmetry. The number of atomic rows N
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defined by a set of two vectors A and B which is then
reproduced by every superlattice vector R=j; A+ j,B;
J1,J2 €Z. The shape of the unit cell and the distribution
of the atoms within the unit cell is defined by the type of
the domain-wall system,!® as shown in Fig. 2. The
domain-wall systems will be discussed first by assuming
no relaxation of the atom positions: the walls according-
ly consist of the one-dimensional boundary line separat-
ing two neighboring (V3XV3)R30° commensurate
domains. A large unit cell gives rise to a large number of
diffraction spots (at Q values for which RQ=2mn, n €Z).
The relative intensities of the diffraction spots are deter-
mined by the position of the atoms within the unit cell.
The calculation shows that only a few reciprocal super-
lattice points close to the commensurate lattice spots in Q
space have noticeable intensity (this may be rationalized
by the fact that most of the atoms in the unit cell still oc-
cupy commensurate lattice sites).

In Fig. 3 we indicate all spots with intensities
I1(Q)>0.05 for the different kind of domain-wall systems
(the spot area in Fig. 3 is a measure of the relative intensi-
ty). The calculation has been performed assuming a

(a) hexagonal symmetry
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domain length of N =20 atomic rows. All diffraction-
spot positions are given relative to the original commens-
urate lattice spots in units of € defined by e=4#%/3/,
where / = | A | is the length of the domain. In the fol-
lowing we give a brief discussion of the results.

As a main feature, all the domain-wall systems yield in
the T M direction a triplet diffraction-spot pattern!! in
the vicinity of the (1,1) and (2,2) commensurate
diffraction spots indexed by the subscript c in Fig. 3. The
relative position of the two off-axis peaks and the single
on-axis peak depends on the kind of domain-wall system;
it changes in a characteristic way when moving from the
first-order (1,1) to the second-order (2,2) commensurate
diffraction spot. As can be seen from Fig. 3, in the case
of striped symmetry, there are two intercalated triplet
patterns, the inner one having much higher intensity.
Note that the inner spots of this high-intensity triplet are
at a distance €/2 from the commensurate position. For
the same domain length / = | A | this is just half as large
as for the case of hexagonal symmetry; i.e., in order to
obtain the same splitting, the mean domain length in the
striped system has to be a factor of 2 smaller. While the

(b) striped symmetry
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FIG. 3. (a) Calculated diffraction pattern of the domain-wall systems with hexagonal symmetry using the same type of unit cells as
in Fig. 2(b) but taking N =20. ¢ is defined by the domain length /: e=4x/(3/). (b) Same as (a) but for striped symmetry.
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first- and second-order diffraction spots in the T M direc-
tion split into a triplet spot pattern around the commens-
urate position, the third-order spot (3,3) for all domain-
wall systems does not split and has maximum intensity at
the commensurate position. This is not surprising since
all domain-wall systems consist of domains shifted by one
or by two-thirds of the interatomic row distance, and
thus their scattering amplitudes constructively interfere
in the third-order diffraction peak.

These shifts between the commensurate domains occur
perpendicularly to the walls. All the domain walls de-
scribed here being along the T K direction (see, e.g., Fig.
1), the diffraction in the T K direction is not influenced by
the presence of unrelaxed walls; therefore single
diffraction peaks at the original commensurate lattice
diffraction spots with maximum intensity as shown in
Fig. 3 are to be expected.

We have considered so far only an abrupt phase shift of
neighboring commensurate domains, without allowing
for a change of the atomic positions within the domains.
This is rather unphysical, since the stress induced by a
rigid wall will force the nearby atoms to shift towards the
wall (in the case of light and superlight walls) or away
from it (heavy and superheavy walls). By this relaxation
of the atom positions within the domains, the total phase
shift between two neighboring commensurate domains is
smoothly distributed over a range of interatomic dis-
tances. Figure 4 illustrates the relaxation of a superheavy
domain-wall system: Fig. 4(a) shows the nonrelaxed case
discussed above and Fig. 4(b) a partial relaxation, involv-
ing a characteristic wall width A; Fig. 4(c) represents the
limiting case of a fully relaxed domain-wall system:
domain walls and domains are indistinguishable, the
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FIG. 4. Relaxation in the superheavy domain-wall system
(N =10). The phase shift ¢ is plotted for each atomic row n
(n =0 denotes the wall position). (a) No relaxation, (b) partial
relaxation using Eq. (3) with @o=27/3 and A=3, (c) fully re-
laxed, incommensurate phase.
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overlayer becomes a uniformly compressed incommensu-
rate phase. The fully relaxed hexagonal domain-wall sys-
tem is isotropically compressed and therefore leads to
single diffraction spots at positions Q((n,n).)+ne and
Q((2n,n),)+V3ne in the T M and T K directions, re-
spectively [Fig. 5(a)], while in the striped superheavy
domain-wall system the compression is uniaxial in the
direction perpendicular to the orientation of the walls,
yielding diffraction-spot triplets!! as shown in Fig. 5(b).

It is interesting to see how the diffraction-spot pattern
changes by gradually increasing the relaxation from the
unrelaxed to the fully relaxed system. Following Ref. 3
we have introduced an algebraic form for the relaxation:

A(p(M:%tanh , n€EZL. (3)

n
A

Equation (3) gives the shift of atom » from its original
commensurate position with respect to the wall position
(n =0). The total shift ¢, between two neighboring
domains is now smoothened over a region characterized
by the number A that can be interpreted as the wall thick-
ness in units of the interatomic row distance [the relaxa-
tion in Fig. 4(b) is given by Eq. (3) with ¢y=27/3 and
A=3].

In Fig. 6 we show the results of a calculation of the in-
tensities for the diffraction spots in the vicinity of the
(2,2) commensurate spot as a function of the wall thick-
ness A for a superheavy domain-wall system with hexago-
nal (a) and striped (b) symmetry (the number of intera-
tomic rows was taken to be N =20). It can be easily seen
in Fig. 6 how the diffraction-spot pattern gradually
evolves from the unrelaxed case (Fig. 3) to the fully re-
laxed case (Fig. 5). By choosing another functional form
for the relaxation, the results are only marginally
gffected. We therefore believe, as long as the kinematical
theory is applicable, that the relative intensities of the
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FIG. 5. Diffraction pattern of the fully relaxed hexagonal (a)
and striped (b) superheavy domain-wall system.
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diffraction spots can give a reasonable estimate of the
strength of relaxation.

In most theoretical and experimental studies dealing
with structural phase transitions, the adlayers considered
are described in terms of the misfit m, defined as the rela-
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FIG. 6. Diffraction-spot intensities for the superheavy
domain-wall systems with hexagonal (a) and striped (b) symme-
try in the vicinity of the (2,2) commensurate diffraction spot
with increasing relaxation (wall thickness A). The spot positions
are indicated in the inset (see also Fig. 3). The number of rows
is N =20 resulting in a misfit m =3.3%.
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tive difference between the commensurate and the incom-
mensurate lattice spacings dc and d;, respectively; i.e.,
m = |(dc—d;)/dc|. Before applying the results
presented above to our experimental data, we therefore
establish the connection between the lattice misfit m and
the spot splitting parameter € obtained from the
diffraction pattern around the commensurate position
Q((n,n),). A straightforward calculation yields
m =ne/[QUn,n),)+ne]l, m=ne/[2Q((n,n),)+ne],
m=ne/[Q((n,n),)—ne], and m =ne/[2Q((n,n),)
—ne], for superheavy, heavy, superlight, and light walls,
respectively. As ¢ is generally small, the misfit equals ap-
proximately ne/Q((n,n).) for the superheavy and super-
light domain-wall systems and about half this value for
the heavy and light domain-wall systems.

It should be pointed out, however, that (a) the misfit m
is properly defined only for the fully relaxed domain-wall
systems, i.e., for homogeneous, incommensurate adlayers
and (b) the misfit may be different along different direc-
tions; indeed, in the direction parallel to the walls of the
striped domain-wall systems m =0.

THE (V3 X V3)R 30°~I PHASE TRANSITION
OF Xe/Pt(111)

To show how the results obtained above can be used to
characterize the C-I transition, we will apply them to the
case of the (V3XV3)R30°-I phase transition of
Xe/Pt(111). This adsorption system seems to be one of
the most interesting representatives of quasi-two-
dimensional structural phase transitions.>!> Xe on
Pt(111) exhibits at least six different phases and corre-
sponding phase transitions in the monolayer regime, all
of which can be explained by theory.”!* In our example
we focus on the C-I transition.

Let us first summarize the main features which have
been clearly established so far.'> The commensurate
(V3XxV3)R30° structure has been found to be stable in
an extended coverage (©Oy,<0.33) and temperature
(62<T <99 K) range. Upon increasing the coverage
above O©x,=0.33 (the maximum coverage of a commens-
urate layer fully covering the substrate) or decreasing the
temperature below 62 K the commensurate lattice is des-
tabilized. The ensuing C-I phase transition has been
found to be continuous and at misfits > 4% the nature of
the incommensurate phase has been unambiguously
identified: for misfits between 4% and 6.5% the mea-
sured diffraction patterns are consistent with a fully re-
laxed striped phase, i.e., a uniaxially compressed layer
(see Fig. 5): The observed (2,2)y, diffraction feature is a
triplet structure with an out of plane doublet located at
Q((2,2).)+¢€/2, symmetrical with respect to the T My,
direction and with a single on-axis peak at
0((2,2).)+2¢; whereas the (1,2)x. pattern consists of a
peak at the commensurate position and a shallow doublet
at Q((1,2).)+ 3V 3¢ (see Fig. 2 in Ref. 9).

Here we address the question concerning the nature of
the striped incommensurate phase close to the C-I transi-
tion, i.e., at smaller misfits, where the topography of the
adlayers should be more consistent with a domain-wall
phase than with a homogeneous, incommensurate phase.
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In particular, we want to infer the type of domain-wall
system (heavy or superheavy) as well as the degree of re-
laxation. They are more difficult to obtain, because at
small misfits the characteristic splittings are also small
and thus often not clearly resolved.

In Fig. 7 we show azimuthal He-diffraction scans of the
(2,2)x. diffraction feature, taken from a weakly incom-
mensurate Xe monolayer. The Xe monolayer has been
prepared by exposing the Pt(111) crystal at T =50 K to
Xe gas until a converage of Ox,=0.36 was obtained and
then cooling down to 25 K. The diffraction scans have
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FIG. 7. Azimuthal scans of the (2,2)y, diffraction at various
absolute wave-vector transfers: (a) Q =3.126 A-L
0 =3.047 A !, and (c) Q =3.045 A ~!, taken from an incom-
mensurate Xe monolayer on Pt(111) with a misfit of 3.4%.
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been recorded with a He beam of wavelength Ay, =1.062
A and a monochromaticity AAy,/Ay,=0.007. Azimu-
thal scans are monitored by rotating the crystal around
its surface normal; i.e., in each scan, the absolute wave-
vector transfer Q = |Q| is kept constant, while the
wave-vector transfer projected onto the high-symmetry
axis of the adlayer (here T My, ) varies as the cosine of
the angle between the scattering direction and the sym-
metry axis. In Fig. 7(a) we show an azimuthal scan taken
at 0 =3.126 A ~1. In the case of superheavy walls, the
on-axis peak  observed corresponds to  the
0 =0((2,2),)+2¢ peak with Q((2,2).)=3. 020 A ~!and
2e=0.106 A ~! [spot 4 in Fig. 6(b)]; the resulting misfit
of the layer is 2e/[Q((2,2).)+2¢e]=3.4%. Scan (b)
displays an azimuthal profile taken at Q =3.047 A-
The observed doublet corresponds to the calculated dou-
blet with the projected wave vector
0((2,2),)+€/2=3.045 A ~! [spot 3 in Fig. 6(b)]. The
azimuthal angular separation of the two doublet peaks
A@=3.1° corresponds to an orthogonal wave-vector com-
ponent of the two peaks at 0.10 A ~! and —0.10 A 1,
respectively. This is in excellent agreement with the pre-
dicted value V3¢/2=0.09 A ~' using €=0.106 A ~! as
obtained above. Finally, scan (c) shows an azimuthal
profile recorded at a polar angle only 0.018° apart from
the polar angle of scan (b) ie, at an
absolute wave vector Q =3.045 A-!. We observe a
sharp on-axis peak and no doublet [spot 2 in Fig. 6(b)].
Accordingly at misfits of about 3.4%, the second
diffraction order features is composed of one single on-
axis peak at Q((2,2).)+2¢ and three peaks, one on axis
and a doublet, all with the same projected wave vector at
Q((2,2).)+€/2. These three peaks could be resolved
only because of the particular characteristic of the azimu-
thal scans, i.e., scans with constant absolute wave-vector
transfer and not with constant projected wave vector.

An energy analysis of the diffracted He intensities in
the patterns discussed above proved the purely elastic na-
ture of the scattered intensity; furthermore, the
diffraction spot splittings occur in a very narrow Q range,
so that a significant dependence of the scattering form
factor on Q over this range can be discarded. This
justifies the use of the kinematically calculated relative in-
tensities to deduce the amount of relaxation.

The comparison with Figs. 3 and 6 shows that the in-
commensurate Xe layer on Pt(111) at a misfit of 3.4% is a
striped phase involving superheavy walls [running in the
I' K, direction, see Fig. 1(b)]. Comparing the intensities
of the various measured diffraction peaks in Fig. 7 with
the theoretically evaluated relative intensities as a func-
tion of the wall relaxation (Fig. 6, corresponding to a
misfit of 3.3%), provides us with an estimate of the width
of the superheavy walls of A ~3-5 interatomic rows.

SUMMARY

We have shown how a particular domain-wall system
involved in a (V3XV3)R30°-1 transition on a hexago-
nal substrate lattice can be identified from the spot posi-
tions in the diffraction pattern. Within the kinematical
approximation we can interpret relative intensities in
terms of relaxation of the domain walls.
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13K. Kern, Phys. Rev. B 35, 8265 (1987).
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FIG. 1. Domain-wall systems for a (V3 V3)R30° phase on a hexagonal substrate lattice. (a) hexagonal symmetry, (b) striped
symmetry. Different shadowing is used to indicate the three topologically different adsorption sites. Abbreviations used throughout:

shw, superheavy; hw, heavy; lw, light; and slw, superlight wall system.



