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A phenomenological theory of the ordered phase of short-range Ising spin glasses is developed in

terms of droplet excitations and presented in detail. These excitations have free energies with a
broad distribution whose characteristic magnitude grows with length scale L as Le. A small frac-
tion of droplets of all scales are thermally active; these dominate much of the physics. The mean-

square correlation functions are found to decay with distance as 1/r for all T (T, and the auto-
correlations decay logarithmically with time because of large activation barriers for creation and
annihilation of the droplet excitations. A renormalization procedure is sketched in order to de5ne
excitations at positive temperature. It is found that the long-distance equilibrium correlation func-
tions are extremely sensitive to small temperature changes, yielding breakdown of certain relations
between fluctuations and thermodynamic derivatives. The behavior near to the critical temperature
is discussed and some of the ideas are extended to systems with power-law interactions and to spin
glasses with X-Y or Heisenberg symmetry. The inequality 8((d —1)/2 is also derived.

I. INTRODUCTION AND SUMMARY

In spite of a large volume of both theoretical and ex-
perimental work' on spin glasses there has been little con-
tact made between theory and experiment at tempera-
tures below the point at which ordering or freezing
occurs. The main reasons for this state of affairs are two-
fold: On the theoretical side, much of the effort has been
focused on questions of the existence of an equilibrium
phase transition at positive temperatures and on the pos-
sibility of many pure states at temperatures below such a
transition. However, experimental implications of the
latter are by no means clear. On the experimental side,
the intrinsic equilibrium or near-equilibrium phenomena
have only recently started to be disentangled from none-
quilibrium effects such as metastability, hysteresis,
remanence, etc.

Unfortunately, the only analytical calculations of dy-
namic quantities in mean-field theory below T, are re-
stricted to equilibrium; for nonequilibrium effects Monte
Carlo simulations and hand-waving arguments have had
to be relied on. Thus, at this stage, it is useful to have a
phenomenological picture of the spin-glass ordered phase
in terms of which the interplay between near-equilibrium
and far-from-equilibrium phenomena can be discussed.

In this paper we elaborate on a phenomenological scal-
ing approach to the static and dynamic properties of
finite-range spin glasses which was briefly introduced in
Ref. 4. Although a considerable amount of earlier work
on scaling in the spin-glass ordered phase exists, only
the seminal work of McMillan had previously attempted
investigation of the dynamics. Here we will concentrate
on equilibrium and near-equilibrium phenomena and at-
tempt to further justify the scaling picture. In a com-

panion paper, extensions of some of the ideas to none-
quilibrium phenomena are discussed.

For most of this paper we consider the Edwards-
Anderson' -model spin glass with Ising spins and
nearest-neighbor interactions on a d-dimensional lattice.
The Hamiltonian is

H = —g J;iS;SJ Hg S;, —
&r'j )

where the first sum runs over all pairs of interacting spins
S, =k 1, the I J; I are quenched random variables, in-

dependently and identically distributed, and H is a uni-
form magnetic field. Some aspects of the general picture
we develop also apply, with some changes, to long-range
interactions with J1

—
~

i —j ~, o )2 l2, and to sys-
tems with vector X-Y or Heisenberg, rather than Ising,
spins, as is discussed at the end of this paper (Secs. IX
and X). The overbar denotes an average over
configurations of the disorder.

We have developed an internally consistent theory of
the spin-glass ordered phase based on a scaling ansatz for
the nature, statistics, energetics, and dynamics of the
low-lying large-scale excitations about an ordered state.
The approach is, in a certain sense, very traditional, be-
ing in the same spirit as a spin-wave theory for a fer-
romagnetic ordered phase or a phonon theory for a crys-
tal. However, unlike the latter two cases the properties
of the low-lying excitations in spin glasses have not been
directly calculated, so at this point an ansatz is required
to develop a theory based on them.

We have attempted to produce what we believe to be
the simplest ansatz that is consistent with known results.
The only limit in which the properties of the low-lying
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excitations above a ground state can be calculated in de-
tail is the one-dimensional Ising spin glass. " Our ansatz
is motivated by the scaling properties found there and in
numerical work by McMillan' and Bray and Moore on
finite-size two- and three-dimensional systems.

The scaling ansatz is discussed in detail in Sec. II of
this paper. We argue that for an Ising spin glass the
lowest energy excitation of length scale L around a par-
ticular point will be a compact droplet of, of order L
spins coherently flipped with an energy cost of order L .
The nontrivial exponent 8 increases with increasing
dimensionality d. For d=1, 8= —1, (Ref. 7) while the
latest estimates (for Ising systems) are 8= —0.25 for d=2
(Ref. 13) and 8=0.2 for d =3. ' An upper bound on 8
of 8& (d —1)/2 is derived in Appendix A. The distribu-

tion of droplet energies at length scale L is broad, with

weight down to zero energy Th.e resulting thermally ac-
tive droplets, with excitations energies less than or of or-

der the temperature T, play a very important role in the

equilibrium properties of the spin-glass ordered phase.
The dynamics of the droplet excitations is governed by
thermal activation over barriers whose height scales as
L~, with 8 & P& (d —1).

In a pioneering paper, McMillan proposed a phenom-
enological renormalization-group theory for the spin
glass. Our ansatz incorporates much of the scaling be-
havior he assumed, although we allow g & 8, while he ap-
pears to have assumed /=8. McMillan did not explore
many of the consequences of his theory for the ordered
phase; for a more recent treatment that does this within a
phenomenological renormalization-group framework, see
Ref. 14. We have instead chosen to work more directly
in terms of the low-lying droplet excitations in the spin-
glass ordered phase, using renormalization-group ideas
only to justify our scaling assumptions. Of course, our
various results can be rederived by suitable generaliza-
tions of McMillan's approach (and some were first ob-
tained through this approach}, ' but we feel they are
generally more readily obtained and understood within
oup droplet picture. Many of our results are in striking
contrast to the behavior found in the infinite-range
Sherrington-Kirkpatrick (SK) model. ' In what sense (if
any) this infinite-range model represents the high-
dimensional limit of finite-range systems is still unclear.

A summary of this paper is as follows. In Sec. II we in-
troduce and discuss our basic ansatz for the nature and
energetics of the low-lying large length scale excitations
available in the spin-glass ordered phase. Through most
of the paper we focus on Ising spin glasses with nearest-
neighbor interactions where these excitations are corn-
pact droplets of coherently flipped spins. We choose a
precise definition for these droplets. The assumption is
that the droplets of size L have excitation energies that
scale as L and we argue that the exponent 8& (d —1)/2.
The ordered phase exists at positive temperature when
8&0. The distribution of excitation energies is broad
with a nonzero density of states at arbitrarily low ener-
gies. The surfaces of the droplets are very rough, having
a nontrivial fractal dimension d & d, & (d —1).

In Sec. III we discuss the consequences of these as-
sumptions for the equilibrium static behavior in the or-

dered phase. Much of the behavior is dominated by the
thermally active droplets, namely those with free energies
less than or of order T. These give average spatial corre-
lations that fall off with distance r as r and a divergent
nonlinear susceptibility throughout the ordered phase.
Because the exponent 8 is so small, the ordered phase is
unstable to a uniform (or random) magnetic field and no
long-range spin-glass ordering occurs in the presence of a
magnetic field.

In Sec. IV we examine the dynamic behavior in the or-
dered phase. Here we introduce another exponent by as-
suming that the free-energy activation barriers that must
be crossed to flip a droplet scale as B—L ~, with
8 & f & (d —1). These divergent barriers give rise to very
slow, thermally activated dynamics. We find that the
spin autocorrelation function decays with time t as
-(lnt} ~ and the ac nonlinear susceptibility diverges
with frequency co~0 as a power of lnco.

Section V addresses the spin-glass critical point, focus-
ing in particular on the approach to the critical point
from within the ordered phase. Although we expect this
critical point to obey conventional static and dynamic
scaling, we do examine other possibilities and their conse-
quences.

In Sec. VI we discuss a schematic coarse-graining pro-
cedure that is necessary to define the droplet excitations
and their free energies at positive temperature. For drop-
let excitations of length scale L, coarse graining to a

d, /(d, —8)
length scale A,L-L ' ' is necessary to determine
their free energies to an accuracy of order T.

This coarse graining to a large length scale is necessary
because the droplet excitations and the spin-glass state it-
self are very sensitive to the entropy of thermal fluctua-
tions. The resulting sensitivity to temperature changes,
which has important experimental consequences, ' is dis-
cussed in Sec. VII. We argue that for Tg 0 the free ener-

gy of a large droplet excitation is a near cancellation of
much larger energy and entropy contributions (via
F=E —TS). Thus a small temperature change will
cause this balance to change and many large droplets will

flip, completely rearranging the ordered state on
suf6ciently large length scales.

Section VIII examines the behavior near the lower
critical dimension, based on phenomenological
renormalization-group equations supported by droplet
arguments. An apparently new result is that the order
parameter exponent P behaves as P-8 '~2 for 8~0+ in
the simplest scenario.

In Sec. IX we discuss systems with long-range random
interactions decaying with distance as r, o & d/2. For
small enough cr these interactions are relevant and cause
the free energy of suitably defined droplet excitations to
scale with exponent 0 =d —o.

In Sec. X we discuss extensions of some of the results
to spin glasses with a continuous X-Y or Heisenberg spin
symmetry. New subtleties occur which we do not go into
in detail. Finally, a brief discussion of the observability
of the equilibrium phenomena discussed herein is includ-
ed in Sec. XI. Arguments for the exponent inequality
8 & (d —1)/2 and counterarguments to criticisms of
Villain's' concerning the destruction of the ordered
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spin-glass phase by a magnetic field are relegated to Ap-
pendices A and B, respectively.

II. SCALING ANSATZ
FOR DROPLET EXCITATIONS

For simplicity we primarily consider Ising systems
with nearest-neighbor interactions I J,.J j. In order to
avoid exact degeneracies, we restrict consideration to a
continuous distribution iti (J) of independent exchanges. '

For most purposes, we further restrict the distribution to
be symmetric under J~. —JJ, i.e., ia (J)=w ( —J), thus
eliminating the possibility of ferromagnetic or other such
behavior; however, we do give some results for asym-
metric distributions.

There are two basic possibilities for the low-
temperature equilibrium behavior of Ising spin glasses.
The simplest possibility, which will certainly occur in low
enough dimensions, is that the system is paramagnetic at
all positive temperatures. More interesting behavior
occurs if there is a phase transition as the temperature T
is decreased to a phase in which the global spin reversal
symmetry is broken. In this case, which is an equilibrium
spin-glass phase, each spin S; will attain a nonzero expec-
tation value (S;) whose sign will depend on the site i,
and thus the Edwards-Anderson' order parameter,

GAEA=
—g &S, )' (2.1)

(with V the volume) will be nonzero. The angular brack-
ets here denote a thermal (or temporal) average within a
given pure state' in the thermodynamic limit V~~.
Throughout this paper the thermodynamic limit V~ ~
is implied in expressions like Eq. (2.1) normalized by V.

More complicated possibilities might occur in princi-
ple, however, the most likely scenario is that there is no
transition for dimensions d less than a lower critical di-
mension d& while for d & d& there exists a positive transi-
tion temperature T, below which qE~ is nonzero.

The philosophy of this paper (as discussed in the Intro-
duction) is to, as far as possible, try to describe the low-
temperature behavior in terms of ground states and their
excitations. If the system has no spin-glass phase, then
this description must fail at long distances. If T, g0, on
the other hand, one might hope (and we will argue) that
such a description will work qualitatively at sufficiently
long length scales and low frequencies for all T & T, .

We thus start by considering the properties of ground
states and their excitations. We will generally focus on a
particular realization (sample) of the disorder in an
infinite system, only averaging over realizations of the
disorder (samples) when necessary. Some quantities of in-
terest are not self-averaging, meaning their values are ei-
ther not well defined or differ from sample to sample in
the thermodynamic limit; these quantities must therefore
be averaged over samples. For most purposes we can re-
place volume averages such as in Eq. (2.1) by
configuration averages denoted by an overbar.

Ground states have the defining property that their en-
ergy cannot be lowered by flipping any Pnite collection of
spins. (Note: The total energy of a configuration of an

infinite system is not well defined; some prescription is
needed for taking the thermodynamic limit and the result
will depend on this procedure. )

There will certainly be at least two configurations of
the infinite system which are ground states, since if some
configuration I is a ground state, then its global spin re-
versal I will also be. An important question concerns
the existence of more than one pair of ground states. We
have argued elsewhere' that scaling arguments strongly
suggest that there exists exactly one pair of ground states,
and we will generally assume this to be the case. Howev-
er, for much of the discussion of this paper it will not
matter whether this is correct since most of the statistical
properties of a single pair of states, which we discuss
here, will hold for any other pair as well.

For definiteness, we focus on a particular ground state
I . Each configuration of the Ising system can be con-
sidered as a collection of walls separating regions in
which the spins are in the same direction as the reference
ground state I from regions in which they are in the op-
posite direction, i.e., just the spin flip of the reference
ground state I . We will particularly be interested in con-
nected excitations which consist of a single wall enclosing
a connected cluster Cz of X spins which are reversed
from the ground state, as in Fig. 1. There will be many
such clusters which include any particular spin, say the
jth, however, because of the random exchange and the
frustration, the energies of the flipped clusters will vary
considerably. We expect that those with the lowest ener-
gies will dominate the physics.

Most of the low-energy excitations will involve only
one or a few spins and will not directly contribute to the
low frequency or long length scale phenomena in which
we are interested. However, there can also be large-scale
coherent fluctuations which involve a large number of
connected spins and thus will contribute to long-distance
correlations. Since such excitations intrinsically involve
some degree of coherent flipping of spins, the characteris-
tic time scales for such excitations are likely to be long
and will hence influence the low-frequency, long-time dy-
namics of interest. We must thus ask: What are the

FIG. 1. Schematic picture of the droplet of length scale L
containing site j. Outside the droplet the spins are aligned as in
the ground state I, while inside the droplet the spins are re-
versed, as in the ground state I, which is just the global spin flip
of I . The surface of the droplet is actually fractal, as vaguely
suggested by this drawing.
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properties of the dominant large-scale coherent excita-
tions in spin glasses? In order to distinguish them from
generic clusters, we will call connected clusters whose en-

ergy (or more generally free energy) is minimal drop/ets
Specifically we define the droplet DL (j ) of length scale L
which encloses site j to be the minimum energy connect-
ed cluster which includes site j and contains between L"
and (2L} spins. The energy of DI (j ) is

FL(j)= min (Ec ),
CN 3)

L &N &(2L)

(2.2)

F,(~)-L', (2.3)

with some exponent 8. This exponent will play a very im-
portant role in what follows. A more general conjecture
which we make is that all appropriate measures of the
stiQness of the ordered phase on length scale L will typi-
cally scale as L, see, for example, the discussion in Ref.
18.

In contrast to ferromagnets, we expect the exponent 8
to be less than d —1 in spin glasses due to the frustration
and the competition between various configurations as
potential ground states. Indeed, we argue that

where the minimum is over all connected clusters C& of
N spins with N between L and (2L) which contain site

j, and E& is the energy cost of Gipping cluster C. At posi-
tive temperature, the free energy will replace the energy
of the droplet, and we thus use F generally. The manner
in which a typical droplet free energy scales with its size
will determine many properties of the system. For exam-
ple, in an Ising ferromagnet, FL scales as L ' for large
L with the coeScient simply the interfacial tension which
is the stiQness modulus of a ferromagnet. In a spin glass,
a generic cluster on scale L with a smooth boundary will
also have an energy which scales as L" ', however, we
expect the minimal clusters, i.e., the droplet excitations,
to have much smaller energy.

The natural scaling ansatz is that the typical (e.g. ,
median) droplet free energy will scale as

where Y is a generalized stiffness modulus which will be
of order the characteristic exchange J—:(J;.)' at zero
temperatures. (Here and throughout this paper we mea-
sure lengths in units of the lattice spacing. ) From the ar-
gument above we expect p(0) to be positive. ' It is con-
venient to choose the normalization of T so that p(0) = 1.
The distribution is normalized so that f dFL pi (FL ) =1.
The expected form of the distribution for large L is
shown schematically in Fig. 2.

d,AL-L ' . (2.6)

This can readily be seen as follows: First note that, for
a given j, the probability that F21 (j ) (FL (j ) is positive.
For some positive fraction of such cases the walls of
DL (j ) and D2I (j ) intersect. In these cases their walls will
coincide over some regions, and over other parts where
they do not coincide, the wall of the larger droplet D2L (j )

will have lower free energy. Thus the scale-L droplet
could (if permitted) lower its free energy by expanding
some section of its wall by a distance of order L. It
should be apparent that this will also occur for smaller
sections of large droplets, i.e., given a (d —2)-
dimensional curve of scale I lying in the wall of a scale-L

A. Shape of droplets

Because of the randomness, the large-droplet excita-
tions can (as suggested by Fig. 1) have complicated
shapes and even nontrivial topologies with overhangs
handles, etc. An important question concerns the typical
area AL of the surface of droplets of size L. In a previ-
ous paper' we have argued that AL jL ~0 for large L
so that the droplets are compact in the sense that reason-
able measures of their diameters scale as L. The broad
distribution of free energies of the droplets and sections
of the droplets, will, however, make their surface fractal
with

8( d —1
(2.4)

Fz.
PL L =

YLeP YLe
(F )= (2.5)

is an upper bound on 8. Arguments supporting (2.4} are
given in Appendix A. Since the total free energy of the
wall of a droplet of scale L grows less rapidly than the
surface area of the wall, small sections of the wall will
have free energies which are almost random in sign. This
suggests that the distribution of droplet free energies will
have a width which is comparable to its median, since the
sums of the free energies of these small sections will vary
considerably, subject to the constraint that their sum be
positive. In particular, due to the presence of
configurations which are almost degenerate with I in the
region of a droplet, the distribution of FL will have
weight down to zero energy. The natural scaling ansatz
is that the distribution pi (FL )dFI of droplet free ener-
gies at scale L will, for large L, assume a scaling form

P, (F)

0
0 T

FIG. 2. Schematic distribution pl (F) of droplet free energies
F at length scale L. The mean droplet free energy is of order
YL . The thermally active droplets are those with free energy
less than or of order T. For T(("fL these represent only a
small fraction of all droplets. Here we show pL(F) having a
finite slope for F~O; this corresponds (3.20) to the case /=1,
which seems likely.
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droplet, the section of the wall spanning the curve will,
with positive probability for large l, minimize its free en-

ergy by deviating by amounts of order I from the
minimum area position. This implies that on all scales
sections of droplet wall will deviate from minimal area by
relative amounts or order unity. Thus the droplet walls
will have nontrivial fractal dimension

d, ~d —1. (2.7)

Bray and Moore have measured the areas of domain
walls in small two-dimensional Ising spin-glass samples
where they find d, =1.3.

pL, ,L,,[FL (ji »FL, ,(j2 )]

l (2)
g2L 8L HP

2

FL, FL,, frj [ /r~ /

~L 8 ' ~L (9 ' (2 8)

for L, and L2 both large. The scaled distribution ap-
proaches a 5 function in the difference between its first
two arguments for L, ~L2 and (

~
r~ ~

/L i )~0, and fac-
torizes as P' '(a, b;c,d)=p(a)p(b) for Li/Lz~0 or oo or

~ r~ ~
/min(L„L2)~ ~. Homogeneous forms of proba-

bility distributions as a function of length scale, such as
Eqs. (2.5) and (2.8), are consequences of a zero-
temperature fixed point which controls the spin-glass or-
dered phase. This will be discussed further in Sec. VI
below.

In order to assure that the excitations at a given scale
will be dominated by the droplets, we need to be sure that
there are not too many clusters which cost almost the
same free energy to flip as the minimal cluster of the
same scale in the same region, i.e., the droplet. From the
general scaling properties of the excitations and their
correlations, we expect that the only such clusters which
differ significantly (diff'er in a volume of order L ) from

B. Correlations between droplet free energies

The scaled distribution p clearly depends on the
specific choice for the definition of Fz which we made in

EII. (2.2}, in particular, on the choice of the allowed range
L & N & (2L) . We have chosen a definition of this gen-
eral form, with a coarse graining at each length scale, in
order that the correlations between the FL (j ) also exhibit
simple scaling forms. If we consider droplets of different
sizes which include the same site, DL (j) and Dz (j), then

1 2

there will be correlations between FL (j) and FL (j)
1 2

which are large for L, -L2, but small if L
& ~&L2 since in

that case the free energy of the larger droplet will only
depend weakly on the region within distance of order L2
of the site j. Similarly, if we take two different sites i and

j a distance r, apart, t"hen FL (i) and FL (j ) will be almost
perfectly correlated for

~
r;

~
&&L, since the same drop-

let will usually contain both sites. For
~
r;

~
&&L, on the

other hand, we expect approximate independence. These
expectations are all consistent with the simple scaling
form for the joint distribution of FL (j, ) and FL (j2 ):

1 2

the droplets will also typically differ in energy by of order
L . Thus for 8&0 and large L, they are much higher in

energy than the droplets, and restricting our attention to
the droplets is appropriate.

The complicated correlations between the droplet free
energies make calculations rather cumbersome. It is thus
useful to consider a toy model of independent droplets
which will reproduce the essential features of the real sys-
tern. We consider only length scales Lk =—2 Lo, with k an
integer and Lo a microscopic length. At each of these
length scales, we consider a cubic array of points with lat-
tice spacing Lk and coordinates nLk with n an integer
vector. We then define a droplet of scale Lk enclosing
each of the points on this lattice as in Eq. (2.2). We do
not define droplets about other points, although of course
other points will be included in the selected droplets.
With all these selected droplets assumed independent, the
only additional information we need is the distribution of
their shapes which determines the probability
Pr [DL (j)D i] that a droplet around site j contains site i

k

This will approach unity for
~

i —j ~
&&L„and fall off

for
~

i —j ~
& Lk. The normalization is such that

Lk & QPr[DL (j)&i]&(2L„) (2.9)

In this toy model, correlations between the droplet free
energies do not have the full translational invariance;
however, they are simple and have the correct scaling
form since the joint distribution trivially satisfies Eq.
(2.8}. Thus this toy model should produce the correct
scaling forms and exponents for the properties of the
spin-glass phase; a more realistic model is necessary only
to obtain details about the scaling functions and subtle
effects such as temperature dependence (see Sec. VII).

It should be clear that the behavior of the systein at
small positive temperature and long length scales will
radically depend on the sign of 8. If 8 is negative then
large low-energy excitations will be so common that at
any low-temperature T, there will be a scale
g+-(T/T)'~' ~ at which there is a high density of
roughly independent excitations with energies T.
Above this length scale the entropy will clearly dominate
and the droplet picture breaks down. The natural con-
clusion is that the system will be paramagnetic for all
positive T since each spin can be flipped with arbitrarily
small free-energy cost. The scale g+ is simply the
paramagnetic correlation length and l/

~

8
~

is the corre-
lation length exponent v for the zero-temperature transi-
tion. Thus 0&0 implies d &dI. (We note that an
analogous mechanism disorders nonrandom Heisenberg
ferromagnets for d &2. )

If 0 is positive, on the other hand, then very few of the
large scale droplets will be thermally activated since their
free energy is typically much larger than T. However be-
cause pL (FI } has weight near zero, a certain fraction of
the droplets will be thermally excited at any positive tern-
perature. These droplets with FL less than or of order T,
which we call the active droplets, will dominate most of
the equilibrium physics. We will henceforth consider
only the case 0 & 0 unless otherwise specified.
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~
(Si)r

~

= mintanh[Ft (j)/2T],
L

(3.1)

since, to leading order in T, the possibility that two
different sized droplets enclosing j both have free energy
of order T (are active) is negligible. From the approxi-
mate independence of droplets of scales differing by
factors of 2, the probability distribution of F (j ):—minL FL (j ) is roughly

Pr[F (j) &f]-1—0 Pr[Ft(j) &f]
L

=1—n 1 — p(0)YL'

III. STATIC BEHAVIOR FOR T & T,

We are now in a position to deduce from our ansatz
the behavior of equilibrium correlation functions at low
temperatures for 8&0. The simplest correlation func-
tions are just the single-site expectation values (SJ ). If
we ignore the effects of droplets within droplets, which
naively appears valid for T « J, then for a given spin,

~ C;1 ~

= I 1 —tanh [F (ij)/2T] j, (3.6)

where F (ij) is the free energy of the minimum-free-
energy cluster which contains both i and j. The typical
value of F (ij ) will be of order Yr, Th"u. s for a typical
pair of spins, the logarithm of the truncated correlations
will satisfy —ln

~
C;

~

-r,j. Let us define the Edwards-
Anderson correlation function C (r) as the average of C;.
over all pairs of spins with a given separation r;.=r. This
average will be dominated by those pairs with F (ij } T,
namely those pairs in active droplets. For fixed f we
have

dominated by large-scale excitations.
We consider the truncated correlations between two

spins i and j a large distance r;. apart:

c„=(s,s, &
—(s, ) &s, & . (3.5)

As for Ising ferromagnets in d =2, this will be dom-
inated at low Tby large-droplet excitations which include
both i and j, since these will cause both spins to fluctuate
together. Ignoring other droplets, we have, for low T,

1 c (3.2} Pr[F ('j)&f]- cf cf
Lp if i

YL YrlJ
(3.7)

where the second line holds for small f and Lo is a
short-distance cutoff on the sums and products. We have
introduced the notation

Thus

C (r)-2 T
Yr' (3.8)

(3.3) The Edwards-Anderson (EA) "susceptibility, "

L=2 Lo

and likewise ff, and c which will be used throughout to
denote any positive finite dimensionless constant. Note
that the minimum-free-energy droplet enclosing j is likely
to be small since 8 & 0.

The Edwards-Anderson order parameter qE~ in Eq.
(2.1) is the average over sites (or configurations) of (S; ) .
For small T the deviation of qEA from unity is thus

cT
qEA YL g

0
(3.4)

which is dominated by the active droplets with F (j) less
than or of order T. Thus, with 8p0, it appears that the
broken spin symmetry is stable at low T, and we hence
expect a positive transition temperature T, below which
the global spin symmetry is broken. Thus 8&0 implies
d &di and the lower critical dimension di is where 8
passes through zero. A similar argument yields a specific
heat at low temperatures which is linear in T. This arises
from the density of excitations with energies near zero, ,

which again are primarily of small length scale. The
linear behavior at low temperatures is in contrast to the
T dependence of the specific heat found in the infinite-
range SK model.

As far conventional Ising systems, the low-temperature
behavior of the order parameter and energy density are
dominated by small scale fluctuations. Long-distance
correlation functions, an the other hand, are necessarily

GAEA=—
—g Ct- J d r C (r)

I,J

(3.9)

is a nonlinear susceptibilitylike quantity associated with
the spin-glass order parameter qE~. Because 8&d, the
sum in Eq. (3.9) diverges yielding

+EA (3.10)

in the entire ordered phase T & T, . This is analogous to
the divergence of the order parameter susceptibility in
nonrandom Heisenberg ferromagnets below T, due to
spin-wave excitations.

The ferromagnetic susceptibility

(3.11)

is for symmetric disorder [w(J}=w( —J}]simply given
by

X=(1—qEA)/T, (3.12)

(3.13}

with Af the total magnetization.

since the sum of the terms in Eq. (3.11) with i ~j vanishes
in the thermodynamic limit V~ (x&. For an asymmetric
distribution of couplings, Eq. (3.12) is not valid. It is
then convenient to introduce for later use a related order
parameter:
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We then have generally

r= —&M &
—q

1

V
(3.14)

2

X3 3 g L f dF[pL(0) p—z(F)]
T

X [3sech (F/2T) —2 sech (F/2T) ] .
For a symmetric distribution of exchanges, q ——qEA.,
however, if the system has some ferromagnetic tenden-
cies, then q~ & qEA, while antiferromagnetic tendencies
give q~ &qEA. Droplets whose size is larger than the
(anti-} ferromagnetic correlation length will have rms
magnetic moinents of size (qsrL )' . In either case the
susceptibility will go to a constant for T~O; its value is
dominated by small-scale excitations. Note that we have
defined 7 in terms of the normalized second moment of
the magnetization fluctuations, not as drn/dH, where
m =M/V. Since it is dominated by small excitations, we
expect X is self-averaging and

dry

dH
(3.15)

In general, the fluctuation-dissipation theorem implies
that equations like (3.14) for X will yield the zero-
frequency limit of response functions; these may however
not be simply related to thermodynamic derivatives.

The nonlinear susceptibility X3 we define as

(3.16)

In the absence of symmetry breaking 73 is simply related
to the EA susceptibility and d m/dH; however, for
T & T, this is no longer so. Note that in zero field X3 is
generally negative. For a symmetric distribution of ex-
changes

X = g (3(5S;5S &
—3(5S; &(5S, &

—6C; )
VT

+, g((5$; &
—3(5S &'), (3.17)

where 5S;—:S;—(S, &. The last term in (3.17) is non-
singular and the largest contributions of the first, second,
and third terms, which behave (after averaging) as r;,
cancel. Thus the average contribution to X3 from large
thermally active droplets is due to corrections to the lead-
ing behavior of these correlation functions.

To see where this cancellation comes from let us exam-
ine the contribution to X3 from a given active droplet DL
with excitation free energy I'I. The total magnetic mo-
ment of DL is of order (q~L )' so its contribution to X3
is of order

2L2d

T3 [2 sech (FL /2T) —3 sech (FL /2T)] . (3.18)

This contribution can be either positive or negative, and
if the distribution of energies pz(FI ) were uniform then
the average contribution would actually vanish. Thus X3
arises from the variation of pL (FI } for Fr less than or of
order T:

1 —p(x)-x~

for x ~0, then we obtain

(3.20)

(3.21)

This results in a nonlinear susceptibility that is infinite
when d &(1+/)8. A perfectly smooth p has /&2 (un-
less both its first and second derivatives happen to vanish)
so it seems we can safely assume P & 2. (Probably P & 1.)
This means that near the lower critical dimension where
8 is small, and for d=3 in particular, Xi should be
infinite. We note that there is a possibility that due to
corrections to scaling pL(F) pL(0} d—oes not scale as
naively implied by Eq. (2.5) for large L and F of order T.
For most reasonable forms of pL (F), however, one will
still roughly have

2

X3-, gL [pL(3T) pL(T)] . — (3.22)
T

This is because the droplets with F near 3T contribute
positively to X3, while those near T contribute negatively.
In order to obtain a finite nonlinear susceptibility for
d =3 one would need an extremely slow variation of
pL(F). Thus we conclude that I3 is almost certainly
infinite for T& T, in d=3, and indeed is likely to be
infinite for all dimensionalities.

We now extend the results away from the temperature
regime T«J to any temperature less than the presumed

C'

At positive temperatures the droplets must be defined
far more carefully to take into account the entropic
effects, and the ground state must be replaced in the dis-
cussion by the configuration S;0——sgn(S; &, which as we
argue below will not be simply related to the zero-
temperature ground state. These important and subtle
features will be discussed in detail later in Secs. VI and
VII; however, for the present purposes it is sufFicient to
consider that the large-scale droplets behave statistically
the same as those at zer'o temperature but with the
overall scale of the free energy Y and the order parame-
ters qEA, q~ dependent on temperature. Each large
droplet will now flip effective spin magnitudes whose
values are reduced on average from unity to QqEA by
the small-scale fluctuations. The mean-square correlation
function will then have the asymptotic form

q EAT
C (r)=K2

Yr
(3.23)

(3.19)

IfpL (F)—pL (0) scales as in (2.5) and the scaling function
is of the form
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where K2 is a universal constant which will depend oh
the distribution of the droplets which enclose two far
away sites. The EA susceptibility and X3 will be infinite
for all T & T, by the same arguments given earlier.

A. Effects of a magnetic Seld

kH H=K (3.24)

the field will flip half the spins and the zero-field states
will be destroyed. We have argued elsewhere' that there
are only two pure states in H=O, and thus that the spin-
glass transition will be destroyed by the magnetic field, as
is the case for random-field Ising ferromagnets in d &2.
The phase diagram of an Ising spin glass is illustrated in

Fig. 3. For H & 0, the system is hence a paramagnet and

gH is the correlation length. With this definition of gH,
the coefficient KH should be universal. Villain' has re-

cently criticized the above conclusion; we rebut his argu-
ments in Appendix B.

We now consider the singular effects of applying a
small uniform magnetic field, which are suggested by the
divergent nonlinear susceptibility. Since the spins are
(spatially) randomly oriented in equilibrium, a uniform
field breaks the global spin symmetry like a random field.
Following McMillan we may analyze its effects by use of
a variant of the argument Imry and Ma used to deter-
mine the stability of Ising ferromagnets to random fields.

Flipping a droplet of scale L will change the magneti-
zation by a random amount of order L, whose mean-
square value for large droplets is proportional to qML .
For half the droplets this will result in a decrease in mag-
netic free energy of order H(q3dL )'~ when they are
flipped in the presence of a small uniform field H. The
exchange energy increase is of order fL, which for large
L is smaller than the magnetic energy decrease since
8&(d —1)/2&d/2. Thus at a scale

' 2/(d —28)

The magnetization has a singularity as a function of
magnetic field because most droplets of size of order gH
are fully aligned with the field. This results in

1/2
VM

XH —m =KM
kH

H d/(d —29)
7 (3.25)

where KM is universal and 7 is the zero-field linear sus-
ceptibility. Note that XH exceeds m by this amount be-
cause the low-field linear response. of. the droplets with
L ~

gH has saturated. The third derivative of m therefore
diverges as

A3 -H 2(d 3—8) l(d—28) —gd 38—
dH

(3.26)

for H~O. This diverges only for 8&1/3, while X3 (3.21)
is, for P &2, divergent for larger 8. The difference arises
from noncommutability of the H ~0 and thermodynam-
ic limits due to the phase transition at H=0.

B. Zero-temperature Sxed point

The scaling behavior and universality in the spin-glass
phase are due to a zero-temperature fixed-point ensemble
of random Hamiltonians which control the whole phase,
as discussed by various authors. In contrast to conven-
tional ordered systems, this fixed point is highly nontrivi-
al, yielding the novel features discussed in this paper.
The exponent 8 is just minus the renormalization-group
eigenvalue of the temperature, and

&a= ——
H (3.27)

is the eigenvalue of the magnetic field. Unfortunately,
due to the dangerous irrelevancy of temperature, most of
the interesting properties of the spin-glass phase are
difficult to obtain from simple scaling arguments without
the input of additional physics such as the droplet picture
(see Ref. 26 for modified scaling arguments). For exam-
ple, truncated correlation functions such as C;~ are zero
at the fixed point (since there are no thermal fiuctuations)
and their leading behavior is determined by corrections
to scaling. In order to obtain physical results, it is thus
easier to work directly in the droplet picture. However,
justification of the results, the universality of various
quantities, and considerations of the definitions of drop-
lets at positive temperatures require rather careful renor-
malization group arguments which will be given in Sec.
VI. Before doing this, we continue with the physical pic-
ture and discuss the dynamics of the spin-glass phase.

Tc IV. DYNAMIC BEHAVIOR FOR T (T,

FIG. 3. Schematic phase diagram for the Ising spin glass
with dimensionality d &di. Long-range order at equilibrium
only occurs for zero magnetic 6eld H=O and temperature T less
than the critical temperature T, . The system falls out of equi-
librium on accessible laboratory time scales for temperatures
less than Tf(H), dashed line. The position of this freezing line
is weakly dependent on the time allowed for equilibration (5.25).

In the previous section, we have shown how the long-
distance correlations of the Ising spin-glass phase are
determined by droplet excitations, especially the active
droplets. In this section we argue that these will similarly
determine the equilibrium 1ow-frequency dynamics.

Small droplets with scale of order one will, if active,
appear and disappear with a characteristic microscopic
time scale 7p which will depend on the detailed dynamics
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of the system. We assume, for simplicity, that there are
no conservation laws which constrain the dynamics, al-

though local conservation laws would not in fact affect
most of what follows. Large-scale coherent excitations
have relaxation times much longer than ro due to their
collective nature. This is already true for droplet excita-
tions in pure Ising ferromagnets for which droplets of
scale L last (in the absence of conservation laws) for a
time ~E-L . For spin glasses and other random sys-

tems, the time scales can be much longer due to the pres-
ence of large free-energy barriers. These barriers exist
because the configurations of the droplet excitations are
locally optimal so that small changes in them will gen-
erally increase their free energy. This is especially true
for large active droplets, which by definition have anoma-
lously low free energy FE —T « fL .

In order to form (fiip) a large active droplet with
volume ~L, the system will have to pass through
configurations in which there is a droplet (or higher-
energy cluster) of scale L/2 in the same region. The free
energy of these intermediate configurations will typically
be at least of order Y(L/2) which is thus a minimum
size for the typical free-energy barrier for creation of the
larger active droplet. In fact, the barrier is likely to be
considerably larger since configurations which are far
from locally optimal droplets must be passed through. In
addition, more generic droplets with FL -L e (rather than
—T) will also typically have barriers for their formation
and annihilation. Whether the complicated optimization
procedure needed to obtain the optimum path in
configuration space for flipping a droplet will yield a bar-
rier which grows as L or one which grows more rapidly
is not at all clear. In the absence of any solid arguments
one way or the other, we make the natural scaling ansatz
that the typical free-energy barriers BL (j ) for annihi!a
tion of a droplet grow as a power of L,

iL(j) that a droplet of scale L will last for is exponential-
ly activated:

B&(j )/T
(j)-&oe ' (4.4)

Because the BL are broadly distributed, the distribution
of ~E has an extremely long tail and thus does not have a
scaling limit for large L. The quantity which has a well-
defined scaling distribution should rather be ln(rL /ro)
since

ln(rL /ro)-L~/T . (4.5)

is dominated at long times by those spins Sj in such large
active droplets. For a given spin at a given time, the au-
tocorrelation function will be dominated by a droplet of
some length scale L which depends on the time t Includ-.
ing the effects of all droplets containing spin j, we have

—~/r (j)

We will often be interested in times t which are ex-
tremely long compared to microscopic time scales. Be-
cause of the extremely broad distribution of relaxation
times, it is important to distinguish between excitations
or other processes whose time scale ~ is really the same
order as t, i.e., t -v, from those whose logarithmic time
scale lnv is of the same order as lnt. To avoid confusion,
we will use time scale to mean t-~ and epoch to mean
ln(t/ro)-1n(r/ro) which, for very large t, includes times
for which t «~ or t &~~. Epochs correspond to length
scales, since a factor of 2 in length scale corresponds, by
(4.5), to a factor of 2~ in inwL. We will often measure
times in units of Tp and leave To out of expressions.

The spins which are in large active droplets with large
barriers have very long-time autocorrelations. Indeed,
the spatial average C(t) of the autocorrelation function

(4.6)

B,-L~,
with an independent exponent g satisfying

8&g&d —1.

(4.1)

(4.2)

C, (r)=(S, )' n 1+
»nh'[-, 'FL (j)/T]

where

~

(S )
~

= 0 tanh[ —,'FL(j)/T] .

(4.7)

(4.g)

The barrier for the creation of the droplet Dz(j ) is just
BL (j )+F1 (j ).

The upper bound on the exponent p [which will hold at
least provided the large J; tail of the exchange distribu-
tion w (J) is not too long] arises from the observation that
any compact connected cluster of scale L whose free en-
ergy is not larger than L" ' can be created with a max-
imum barrier of size L ' by moving the wall without
worrying about any local optimization along the way.
Droplet barriers will, like the droplet free energies, have
a broad distribution, @L(BL ) with a width the same or-
der as the median. For large L we likewise expect 4 to
have a scaling form

Since most spins are in no large thermally active droplets,
for a typical spin at long times the product in Eq. (4.7)
can be expanded and the reduction of

~

(S.)
~

from one
will be primarily due to small-scale excitations. This
yields

E
(4.9)

whereupon with, for a typical spin, 1n(~z/~0)-hL /T
and FE -YL, the sum on L is dominated by the scale L,
for which ~E -t, yielding

BE
Nl(BL)= 4 (4.3)

T 1n(t /~0)
' 8/f

—lnC. (t)-— (4.10)

where 6 sets the overall free-energy scale of the barriers;
for T « T„Awill be of order J. The characteristic time

For a given spin the fluctuations around this result will be
large due to the discrete set of droplets with variable FE
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and Bt which contribute. Note that, since 8/Q& 1, the
autocorrelation of a typical spin decays as a power law of
time (if /=8) or even more slowly (if 8 & g).

Although the autocorrelations of a typical spin are
dominated by typical droplets which are inactive, the
spatially averaged autocorrelation function C(t) will be
dominated by those spins which lie in active droplets.
This can easily be seen by examining Eq. (4.7): If a spin is
in an active droplet with lifetime rL(j), then at times
t rt (j ) the autocorrelations of that spin will be of order

I

unity, i.e., much larger than the exp[ —c(lnt) ~~] of a
typical spin. In a given factor of 2 range of length scale,
corresponding to a given epoch, a fraction of order L
of the droplets will be active. These active droplets dom-
inate the spatial average at long times.

At a fixed long time, almost all droplets will either
have v I && t or vL && t. Thus to a good approximation ei-

—t/7L
ther e is very near one, or else it is extremely small.
We can therefore approximate the relaxation of a given
droplet in Eq. (4.7) by a step function, yielding

T

C, (t)= n tanh [—,'Ft (j)/T] 1 — n tanh2[ —,'FL(j)/T]
L L

'L(j 7L(j)) t

(4.11)

In the approximation that droplets with scales difFering

by factors of 2 are independent, we can factorize the
averages over j. The first factor in Eq. (4.11) averages to
qEA for large L, and the average of all the terms in the
second product will be close to one and can thus be ex-
panded, yielding

and

C(to)=
~

C(t) ~,to lnt

X"(to)= X'(to),
8 into

(4.16)

(4.17)

(4.12) y~~ld~~g00

C;(t)-qEA g e 4 L(BL )dBL .
L

Using the scaling form Eq. (4.3) for the distribution 4 of
barriers of large scale droplets, we obtain

8/Itt

(4.13)

X'(co) =X(to=0)— CM—(t = I /co)M

' 8/K qM
0 T

/
into/

(4.18a)

C (t)=—g[(S;(t)&,(O)) —(S;)(S,)],
I,J

(4.14)

will be identical to Eq. (4.13) if the distribution of the J,j s
is symmetric, and generally differ by a factor

Cxt(t) = C;(t)
qM

qEA
(4.1S)

for long times if w (I, )is asymmetric. The mag. netic sus-
ceptibility can be obtained from C~(t) by Fourier trans-
forming and use of the Auctuation-dissipation theorem:
g"(co)=(to/2T)C~(co) The real part of X. (to) can then be
obtained from the Kramers-Kronig relations. As dis-
cussed in Refs. 26 and 28, these transforms of slowly
varying functions of lnt can be simply obtained for small
co via

an extremely slow logarithmic decay of the autocorrela-
tions. [Note: If the scaled barrier distribution 4(x) has a
long tail which decays more slowly than 1/x'+ ~o for
large x, then the averaged autocorrelation function at
time t will not be dominated by droplets with size
L, -(l t)n' & but rather by those rare smaller droplets
which have anomalously large barriers. In this case,
which seems unlikely, except perhaps for distributions of
Jwith long tails for which the barrier scaling could break
down, Eq. (4.13) represents a lower bound for C;(t). ]

The autocorrelations of the magnetization density,

m8qwb,
2 g T T]into/

' 1+8/f
(4.18b)

and

T n8qM.
co @ Y T ]into/

' 1+8/Itt

(4.19)

with K a constant which is universal, given some con-
vention to define 5, such that hL ~ is the median barrier
height at scale L.

Note that the real part of the susceptibility, Eq. (4.18a)
could have been obtained directly by observing that any
processes with r & I/to do not contribute to X(to), i.e., ex-
actly the opposite of C(t) which is determined by pro-
cesses with r& t From Eq. (4..19), we see that the spin-
glass ordered phase should exhibit equilibrium 1/f noise
with weak logarithmic corrections, which is consistent
with recent experiments.

In addition to the linear susceptibility, we are interest-
ed in the nonlinear ac susceptibility since it should more
closely couple to the spin-glass order. From the previous
section we expect that the static cubic nonlinear suscepti-
bility will be infinite, but at any finite frequency we expect
only a finite result. We define the real part of cubic non-
linear susceptibility as the in-phase 3' magnetization
response M(3'), to a small time-dependent applied field
h(t)=h costot,
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X3(3';co)=— lim
24M(3')

I -O
(4.20)

(4.21)

which diverges as a power of inca. If, on the other hand,
the temperature dependence of the distribution of active
droplets does not scale in this precise way, then the diver-
gence is modified as discussed in Sec. III.

The scaling of the various out-of-phase parts of the cu-
bic nonlinear magnetic response will be subtle and there
are no simple general laws (such as Kramers-Kronig and
the fluctuation-dissipation theorem) which determine
them. One expects, however, that, as for the linear sus-
ceptibility, the in-phase response will be larger than the
out-of-phase response by powers of lnco.

A. Dynamics in a field

We now turn to consideration of the dynamics in a
small field which, as discussed above, we expect destroys
the equilibrium spin-glass phase. On a length scale of or-
der the correlation length g~ (3.24), the characteristic re-
laxation time, r&, will (4.5) be given by

H

which reduces to X3 as ~~0.
From similar arguments to those for 7, it is clear that

X3(~) will be dominated by the active droplets with life-
times ~L ~ 1/co. For each of these droplets, the contribu-
tion to X3 is virtually the same as to the static 73 dis-
cussed in Sec. III. Thus we have the same cancellation of
the naive divergence as in Eq. (3.19}and obtain, assuming
scaling of pi (0) pl —(F) for F of order T

2
' &+4 ' [d —(1+4)e]/lit

X 3 ( 3'; co ) ——
T3 Y

V. CRITICAL BEHAVIOR

So far, we have concentrated on behavior relatively far
below T„where the Edwards-Anderson order parameter

qE~ is near unity and the free-energy scales Y and 6 are
both of order J. The dominant temperature dependences
in this regime are due to the fraction of thermally active
droplets, which is proportional to T, and to the Ar-
rhenius form of the dynamics. Near to a second-order
spin-glass transition, however, there will be strong tem-
perature dependence due to the critical phenomena.

A. Statics

We first consider the static critical behavior. We define
the reduced temperature

Tc

Tc
(5.1)

(to avoid confusion with times). As T~T, , the order
parameter goes to zero as

have argued that the very long-time correlations in

strongly disordered paramagnets decay as exp[ —(lnt) ]
with y =d/(d —1) due to exponentially rare (in lnt} low
free-energy excitations which have large barriers. This
should apply in the present case of a small field and tem-
peratures T & T, . However since y& 1, these long-time
correlations decay faster than any power of t so that at
asymptotically low frequencies outside the scaling regime

l
lncoro

l
» ln(rz/ro), we expect Csr(co, H) will saturate

to a finite constant.
The activated scaling behavior in Eq. (4.24) might be

more readily seen in X"(co)cc coC~(co) since the rapid 1/co

dependence on frequency is then absent.

ln(~t /ro)- —g, (4.22} &EA

The spin-glass stiffness modulus will also go to zero as

(5 2)

and thus will diverge extremely rapidly for H ~0. As for
the droplet relaxation times ~1,~& will have an extreme-

H

ly broad distribution due to the distribution of barriers.
Therefore, an overall characteristic time scale, vz, cannot
be uniquely defined, but only the characteristic epoch,
i.e.,

(5.3)

definin Ju. A correlation length below T„g,can be
defined as the length scale at which the mean-square
correlation function C (r) crosses over from its critical
power-law form at T„

1n( r~ /ro) -—g . (4.23) C'(r)-
T

(5.4)

C~(co, H)- 1 l
lnC01Q

l

i+e/ (4.24}
»(&a/&o)

Dynamic correlation functions will assume activated dy-
namic scaling forms for small H with lnt/ln~& the scal-
ing variable rather than the usual r/~ For example, . the
singular part of the magnetization noise in a small field
should scale as

to the noncritical power-law form below T„Eq.(3.8).
This correlation length diverges as

(5.5)

We expect v'=v, where v is the correlation length ex-
ponent defined from above T, .

We could also define a correlation length from the typi-
cal decay of the correlation function

where 1 M(u) is a scaling function which approaches uni-

ty for small u. For very large times, lnt » ln~&, the
correlations will be those of a strongly disordered
paramagnet. Randeria et al. and the present authors

—1 nlC, , -l( il—j l/( ) (5.6)

which should be valid for 0&1. However, if 8& 1, then
ln

l
C

l
will decrease linearly with distance and not be
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which should be nondivergent (see below). Simple scaling
laws relate the various exponents. Hyperscaling yields

(5.8)

which is a consequence of the singular part of the free en-

ergy in a correlation volume being of order T, . Similarly,
the stiffness free energy in a correlation volume Yg
should also be of order T„yielding

(5.9)

analogous to the Josephson ' and Widom scaling laws
for X-Y and Ising ferromagnets, respectively. A general
inequality for disordered systems has been proven
which yields

dv) 2, (5.10)

dominated by isotropic droplets. In this case it is possi-
ble that a different correlation length (larger than g }

could enter in (5.6) due to dangerous irrelevant operators
(see below).

The singular part of the specific heat will behave as

(5.7)

and v= —,
' and hence dv&2 —a. The critical behavior

below T, is more problematical. Fisher and Sompolin-
sky have shown that if the Parisi picture for the ordered
phase is assumed to naively apply in high dimensions,
then the presence of two dangerous irrelevant operators
at the critical Gaussian fixed point will modify the mean-
field exponents (such as the scaling of the de
Almeida —Thouless line) for 8 )d ) 6 and the simple scal-
ing will work only for d(6. Unfortunately, since we
have argued that the Parisi picture of the ordered-phase
picture does not apply in any finite dimension, ' these re-
sults cannot be used. However, it is very likely that the
dangerous irrelevant operators will in any case affect the
critical behavior below T, for d) 6 so that some of the
scaling laws break down. In particular it should be possi-
ble to define several correlation lengths which diverge
differently: The smallest of these is the true correlation
length g whose exponent should still be equal to that of
g+ above T, .

A better understanding of the high-dimensional limit is
needed to find the regime of the validity of the scaling
laws in spin glasses. The most likely result is that they all

apply for di & d (6.

implying, from Eq. (5.8) that a &0.
Scaling with magnetic field yields the usual

P= —,'(d —2+ ri)v

and

2 —a=2P+y,

(5.11)

(5.12)

C. Dynamic scaling

Conventional dynamic scaling predicts that the charac-
teristic critical relaxation time r, will diverge near the
critical point as

(5.14)

where y is the exponent of the diverging nonlinear sus-
ceptibility X3 for T~ T, . The characteristic crossover
field scales as

(5.13)

consistent with the scaling relations. At H'(T) for
T & T„the magnetic correlation length gH from Eq.
(3.24) is of the same magnitude as g . From Eq. (3.23}
and the scaling laws above, we see that the mean-square
correlation function for r ))g scales as g

' +"'r
which is of the same order as the critical correlation
function Eq. (5.4) for r -g, as expected.

B. Breakdown of scaling

For conventional systems, some of the scaling laws
break down in high dimensions d due to the presence of a
dangerous irrelevant operator. In particular, for Ising
ferrornagnets in d) 4,

d v&2 —a, p&(d —1)v,

and

defining the dynamic exponent z. Frequency-dependent
correlation functions then scale as functions of co~, . Be-
cause the critical point in spin glasses appears to be rela-
tively conventional, it is natural to expect that conven-
tional dynamic scaling will apply. We thus first assume
this is the case and then afterwards examine the possible
failure of conventional dynamic scaling.

The ac nonlinear susceptibility in spin glasses is expect-
ed to scale for T~T, as

(5.15)

Experimental support for this scaling form as T~T,+
has been found recently by Levy and Ogielski. For
T ) T„X3+(y~0) is a constant while at T„X3diverges
with frequency as

(5.16)

As found in Sec. IV the contribution of large droplets
makes the co~0 nonlinear susceptibility remain infinite
below T, . We thus expect that for T (T,

X3 (y)-(lny} "+~' ~ for cur, &&1,

i.e., y ~0. In this limit, we thus have

P&v(d —2+g)/2 . X3(3~;~)-
i
s

i
r[ln(cur )]( "+~'s) @ (5.17)

For spin glasses, the critical behavior above T, will cer-
tainly be modified for d) 6 due to the presence of a
dangerous irrelevant operator. For example, in this re-
girne the behavior should be mean field so that a= —1

The prefactor of Eq. (5.17) has the same form as Eq.
(4.21) provided that

(5.18)
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with

(y) -y8 '"/(»y) (5.20)

for T & T, and y »1 in order to match (4.13). The
asymptotic behavior of I +(y ) for T & T, is not known.
Ogielski, based on Monte Carlo simulations, has sug-
gested it is of a stretched exponential or Kohlrausch form
I +(y)-e )' with n =1/3. The asymptotic form of C(t)
for T gT, is

C(t)-exp[ —A (Int/tp)"/'" "], (5.21)

due to rare unfrustrated regions, ' but it appears that
the coefficient A and microscopic time to remain finite
and nonsingular for T~ T,+ so that this part of C(t) does
not contribute to the scaling functions

I (y) —= lim [(yr, )~ '"C(y r, )] .
T~ T

(5.22)

In the presence of a magnetic field, the relaxation time
will not diverge except below T, as H ~0. However, for
H small the relaxation time will diverge very rapidly as T
is decreased. At T=T„the relaxation time ~H will
diverge as

( T ) H —2zv/(P+ y)
C (5.23)

and below T, when gH(T) —g (T), rH will be of order
r, For H less . than the crossover field H'(T), Eq. (5.13),

and the dynamics will be activated. In this re-
gime

ln[rH/(rp I
s

I
'")]-

~

s [
(r+P)gl(d 28)H2$/(d 2—8)—

(5.24)

For a given experimental measuring time t, the system
will not be able to equilibrate when T & Tf(t,H}, where
the freezing temperature Tf is given by

This is, ho~ever, just what we expect: At a length scale
of order g, the barriers should start developing so that
B& -6/8 —T, yielding Eq. (5.18).

To obtain the critical behavior of the singular part of
other dynamic correlation functions in the limit cov, &&1
we can similarly use the critical behavior of the
coefficients Y, b„and qEA and then replace the micro-
scopic time ~0 with the diverging correlation time v, in
the arguments of the logarithms. Thus, for example, the
average spin autocorrelation function should scale as

(5.19)

dependent temperature ~hose shift from T, scales with H
in the same way as the de Almeida —Thouless line would
have been expected to.

D. Nonconventional scaling

r/4, ~
X3(3';to)—(incor p) (5.27)

Unfortunately, this behavior is rather hard to distinguish
from the power-law behavior in Eq. (5.16) with a large ex-
ponent z. Similarly, a particular measure of the relaxa-
tion time ~, would diverge in the activated scenario as

The scenario outlined above is the simplest and most
conventional kind of dynamic critical scaling. The basic
justification is that the critical point, in contrast to the
ordered phase, results from a competition between ex-
change energy and entropy. Since the entropic contribu-
tion to the free energy is of order T„it is natural to ex-
pect that the singular parts of the free energy in a corre-
lation volume —including the random parts —will be of
order T„i.e., the transition is controlled by a finite-
temperature fixed point. This yields the hyperscaling re-
lation Eq. (5.8). In addition, it suggests that the scale of
the free-energy barriers, to the extent that they exist, will
also be of order T, so that no appreciable activation is
needed to surmount them. However, it is by no means
clear that this simple scenario is correct.

For random-field Ising ferromagnetic critical points
Villain and Fisher have argued that conventional dy-
namic scaling fails since in that system the characteristic
scales of the free energy in a correlation volume and the
barriers both grow with length scale leading to activated
dynamic scaling in the critical region. This is because the
dominant competition which causes the transition is be-
tween the exchange and random-field energies. In this
case, the critical point itself, like the spin-glass ordered
phase, is controlled by a zero-temperature fixed point.

In spin glasses, there is no compelling reason to expect
this sort of behavior. However it is possible that, al-
though the static behavior is controlled by a finite-
temperature fixed point at which hyperscaling is satisfied,
there might still be divergent barriers at the critical point
whose magnitude grows with length scale as

81.—TcL ' . (5.26)

In this case the critical dynamics would be activated and,
assuming a broad distribution of barriers, the ac correla-
tion functions would scale as functions of (1ntorp)/g '.
The cubic nonlinear susceptibility would then diverge at
T as

T, T(t,H)—
H2/(y+t))rl ( t / ) q(d —28)/(y+t))8&nt 7

C

(5.25}

~, -exp (5.28}

where we have neglected ln ln corrections. This freezing
temperature is shown schematically in the phase diagram
in Fig. 3. Thus, even though there is no true de
Alrneida —Thouless line, as discussed in Sec. III, the sys-
tem will fall out of equilibrium at a weakly tirne-

which again is hard to distinguish from the conventional
Eq. (5.14) for large z. It is important to note, however,
that if a different measure of the characteristic time is
chosen, then activated scaling implies that a different
value of b in (5.28) will generally be needed.

Several authors have shown that data for T~T,+
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can be fitted to an activated form for the dynamics.
However, a crucial test which, to our knowledge, has not
been performed is to check, over as wide as possible a
range of frequencies, whether the scaling is as a function
of (in'/lnr, ) as in activated scaling or as a function of
(rim, ) as in the conventional scaling form. This test is
rather more sensitive than attempts to fit a characteristic
time with either Eq. (5.14) or (5.28); see, for example, the
behavior found in Ref. 41. It is important to note that in
addition to these two critical scaling scenarios, there are
other possibilities.

(i) Conventional with v= 00. In this case, which occurs
at the 2D X-Y Kosterlitz-Thouless transition, the suscep-
tibility X-exp(k/~ e

~

") and r, -e~~~'~". The scaling
variable is co~, . All measures of characteristic times ~,
wi11 yield the same b in contrast to the activated dynamic
scaling. This possibility appears unlikely in spin glasses
except perhaps if T, remains positive at the lower critical
dimension.

(ii) Conventional with z = 00. If there are divergent
barriers without a broad distribution and g diverges as

/
e

f
"then

—f v

,r-exp(g ')-exp(
~

e
~

'
) .

This can probably occur for certain pure systems with
zero-temperature critical points. As for (i), however, the
scaling variable is still ~~, .

Both the special cases will look rather similar to the
large-z limit of conventional scaling. In particular, the
function&1 form of dynamic scaling functions will not be
like those for activated scaling. A very large range of co,

preferably going up to close to microscopic frequencies, is
needed to distinguish the various possible forms of criti-
cal dynamic scaling.

VI. POSITIVE TEMPERATURE
AND COARSE GRAINING

In the preceding sections we have taken into account
the effect of thermal fluctuations on large-scale droplet
excitations by simply discussing droplet free energies in-
stead of energies and renormalizing the various
coeNcients. Although this procedure works in conven-
tional systems, it is by no means c1ear that it is a con-
sistent procedure in spin glasses. In particular, the pres-
ence of low-energy excitations on all length scales will
certainly complicate matters considerably. In this section
we sketch a renormalization-group procedure to take into
account thermal fluctuations in a consistent manner. In
the course of the analysis, several subtle and novel
features of the spin-glass phase will emerge.

In order to establish the general procedure and to draw
the crucial contrasts, we first go back to an ordered Ising
ferromagnet. The aim is to produce an effective Hamil-
tonian to describe the large-scale properties which in-
cludes the effects of small-scale thermal fluctuations and
entropy. Since we are especially interested in droplet
fluctuations, we focus on an interface between up and
down regions which will be flat at zero temperature.

Thermal fluctuations in the local position of the interface
and the effect of the interface on nearby droplet excita-
tions will change the free energy of the system with the
interface by a different amount than the free energy in the
absence of the interface. Thus the free energy of the in-
terface will be modified at positive temperatures by some
amount per unit area, i.e., a renormalization of the inter-
facial tension. If a coarse-grained free energy is defined
on a scale somewhat larger than the correlation length

, then the longer length fluctuations and droplets of
size much larger than g will be determined by this re-
normalized interfacial tension and the intermediate-scale
fluctuations will not significantly alter the large-scale
properties. This will be true even for rough interfaces,
such as in two dimensions, although in this case the
long-length-scale fluctuations cause divergent fluctua-
tions in the position of the interface. This is because
there is very little free energy in the large-scale fluctua-
tions. We conclude that on scales much larger than g
the properties of ordered ferromagnets are described in
terms of the fluctuations about a renormalized zero-
temperature state described by an effective Hamiltonian
which is similar to )he original 0 but with a renormalized
magnetization and interfacial tension. The work of Abra-
ham and others ' ' ' demonstrates this conclusively
for the two-dimensional (2D) Ising model. We have ar-
gued elsewhere that the dynamics of ordered ferromag-
nets can also be analyzed in terms of renormalized drop-
let excitations.

The natural guess for spin glasses, made in Sec. II, is
that the large-scale properties of a spin glass at tempera-
tures 0 & T & T, can be described as droplet fluctuations
about a "ground state" of an effective renormalized Ham-
iltonian which is similar to the zero-temperature Hamil-
tonian but with renormalized qE~, Y, etc. Since the
fixed-point Hamiltonians are intrinsically random there
is, however, no reason to believe that, for a specific reali-
zation of the microscopic Hamiltonian, the renormalized
Hamiltonian at one temperature is simply related to that
at another temperature. Indeed, as we will see, it will in
general be quite different in some important respects.

We start by estimating the contribution of smaller-
scale fluctuations to the free energy of a putative droplet
of scale L. Since 8&0 implies that the large-scale drop-
lets will all be active and destroy the ordered phase and
the droplet picture, we restrict consideration to 8 p 0.

We need to consider the difference SL between the en-
tropy in the vicinity of the droplet wall with and without
a particular droplet excited. Note that since 0 & d —1, lo-
cally there is no average energy associated with the wall
of a large droplet. The entropy of the droplet arises from
deformations of the wall and small-scale droplets near the
wall whose properties depend on the presence or absence
of the large-scale droplet. Indeed, deformations of the
large droplet are just such small-scale droplets. Due to
the absence of a wall energy per unit area, small sections
of the wall of size I «L are almost statistically similar to
the ground state. We thus expect that the local entropy
differences of the small sections will be random in sign
with variance much larger than their mean. The loca1-
entropy differences of small sections of the wall which are
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far apart are only weakly correlated so that the total-
entropy difference SL will have contributions from small

d
scales I which is a sum of (L /I) * random terms. There-
fore the deformations at scales of order one will contrib-

d /2
ute to SL an amount of order L ' with a random sign
(as well as an amount -L which is more likely to bed/2.
positive). Since, for large L, L * is larger than the free
energy L, it appears that there is a problem with
defining large droplets for T&0. However, as we shall
see, this can be resolved by appropriate renormalization
of the effective exchanges.

For simplicity, we consider T &&J, where all the
subtleties already occur and then argue by continuation
that the results can be extended to all T g T, . We first
consider droplets of scale L=2 about a ground state I .
A fraction of order T of these droplets will have contribu-
tions to their entropy of random sign from deformations
of scale 1 or droplets of scale 1 whose walls overlap the
walls of the scale-2 droplets. These will alter the scale-2
droplet free energies F2(j) by an amount of order T (by
both entropic and energetic contributions). In some
small fraction of droplets this will change the sign of the
droplet free energy causing a change in the renormalized
"ground state, " to I 2 and hence in the sign of the
effective couplings on scale 2 which determine the renor-
malized ground state and the droplet free energies. We
now go to scale 4 and consider the effects of the renor-
malized scale-2 deformations and droplets on scale-4
droplets about the renormalized ground state I 2. These
will be active with probability T/Yz2, where Y2(T) is
the renormalized stiffness at scale 2. The active scale-2
droplets will contribute to the F4(j ) of droplets they
affect an amount of order T. This again changes the
effective ground state to I 4 and changes some (but a
smaller fraction than before) of the effective couplings.

We continue this procedure to larger and larger scales
defining a renormalized "ground state" I L, a renormal-
ized stiffness fL, and renormalized droplet free energies
at each scale. (Note that it is by no means clear how this
can be done in practice; the arguments given here are
purely schematic. ) All the features at scale L will be
given by a renormalized Hamiltonian which will in gen-
eral be more complicated than the original bare Hamil-
tonian. In going from scale L to scale 2L, the fraction of
scale 2L droplets which have active sections of scale L is
T/YLL which is very small for large L. Thus we see
that with probability which approaches unity, we do not
have to consider the effects of entropy on scales close to
the size of a particular large droplet of interest. This im-
plies that on some scale A,z g&L, the large-scale L drop-
lets will usually consist of a well-defined flipped cluster
which optimizes the free energy coarse grained to scale
ArL ~

The scale A,L can be determined by considering the
contribution due to scales & A, L to the entropy SL (j) of a
large droplet. This will be dominated by the scale A, L it-
self. The entropy can easily be estimated as the sum of
the entropy of the active pieces which will be a fraction
T/YA. L of (L/A, L )

' total sections of size A.L. For scales
greater than

1/(d, +0)
T

L
d, /(d, +8)

(6.1)

there will typically be no active sections of the large
droplet. The droplet free energy FL (j ) will then have no
contributions of order T from these scales. An accuracy
of this order is what is needed in order to determine
which droplets are active; for greater accuracy a scale
greater than A,L is needed.

The free energies of typical droplets of scale L are of
order fL . In order to get a rough estimate of a given
droplet's free energy, the total free energy of the neglect-
ed smaller-scale deformations must be less than this. If
we coarse grain as discussed to scale A, , the free energies
of the remaining active deformations of larger scales will
be each of order T and add randomly to the total free en-

ergy of the droplet. In order to have the total free energy
of the remaining active modes typically less than fL we
need

1/2
T L

~g8
(62)

or
3/(d, +8)

T (d, —28)/(d, +8)
A, )) L (6.3)

Thus even for a rough estimate of the droplet's free ener-
gy the required length scale XL still diverges as a power
of L since 20gd, .

The behavior we find is in striking contrast to conven-
tional pure systems. In order to get even a rough esti-
mate of the droplet free energies at scale L, we need to re-
normalize to a scale A,L which grows as a power of L,
while in the pure systems just renormalizing to the fixed
scale g suffices.

VII. SENSITIVITY TO TEMPERATURE CHANGES

If we go back and examine the renormalization pro-
cedure carefully, it becomes evident that the large-scale
droplets are local minima of an effective Hamiltonian
which is very different from the original Hamiltonian.
Indeed, the effective ground state I L about which the
droplets are excitations is itself quite different from the
ground state of the original Hamiltonian. (Note that the
infinite-scale effective ground state I „will have each
spin SJ pointing in the direction of (SJ ) r. ) The large-
scale active droplets will thus have different positions at
temperature T from zero temperature. It follows that
they will also differ from any one temperature to another.
This is due to the mechanism which we noted earlier. Al-
though the free energy of large-scale droplets is obtained
by optimizing an effective Hamiltonian, neither the ener-
gy nor the entropy are optimized separately and both will

d /2
hence be of order L ' . If we take equilibrium states of
the same microscopic Hamiltonian at different nearby
temperatures T, and T2, then these states will differ (by
other than a global spin flip) at length scales larger than
the scale Lzz at which droplet orientations at T,
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significantly differ from those at T2. At this length scale,
a finite fraction of regions will flip in going at equilibrium
from T, to T2, causing large changes in the state. For
this discussion we assume the result argued for in Ref. 18,
i.e., that only two pure states exist at a jtxed temperature.

The scale Lzz. can be easily estimated by noting that
the derivative of FL(j ) with respect to T is just St (j) so
that, for small hT

dependence on proximity to a droplet wall will be of the
same order. Thus we expect

1 L
'"

so that for T(T,
—2/( d —28)

FL (g, T, )-Ft (j, T, ) ET—SL (J, T, ),
~here

ET=T2 —T, .

(7.1)

(7.2)

&I ~ 14
'

—2/(d —28)

(7.8)

T d,St (j,T)- L*— (7.3)

Outside the critical region, i.e., for T T, /2, the entropy
is dominated by deformations at scale unity. A fraction
T/J- T/"f of these will be active so that the sum over
the random terms gives

' 1/2

for (hT/T, ) & 1c, 1. As might be expected on general
scaling grounds, for (bT/T, )-1E1,Ltr-g

We can invert Eqs. (7.4) and (7.8) and, for a given pair
of spins a distance r apart, ask how often will the sign of
their correlations change as the temperature is lowered?
The flips will start when g ra-nd initially occur with a
spacing of order hT„—T, r ' ". At low temperatures,

~3/2

Tit21~T
1

(7.4)

This length scale will determine the decay of the average
ouerlap correlation function which we define by

:-(i,j,d T)= (S;S ) r(,S;SJ ) r+t, r . (7.5)

This overlap correlation function is invariant under a glo-
bal spin flip at each temperature, so it does not distin-
guish between the two states at a fixed temperature. For
conventional ferromagnets,

:"~m (T)m (T+LLT)

as
1 r;t 1

~~, where m ( T) is the spontaneous magnetiza-
tion density.

For "toy" spin glasses (such as the Mattis~ model)
in which the spin correlations below T, have the same
sign as in the ground state, " would approach
qEA(T)qE&(T+4T) for large 1r,"1. However, because
of the sensitivity to temperature discussed above, in real
spin glasses it will in fact decay to zero for any nonzero
hT. A natural guess is that for large distances

:"(ij,hT)-exp[ —(1r,, 1/Lt, r) ),
with some exponent 0.. In the companion paper, we

show that this dramatic sensitivity to temperature
changes has important experimental consequences.

In the critical region near T„the estimate Eq. (7.3) for
the entropy must be modified due to critical fluctuations
which dominate at scales up to the correlation length g
On the scale g, the singular part of the entropy will be
of order 1/1m

1
and, because the spin-glass critical point

is intrinsically random, the spatial variations and the

Note that as mentioned above there will also be a nonran-
dom component which scales as L and causes the tern-
perature dependence of Y. We see that the second term
on the right-hand side of Eq. (7.1) is the same magnitude
as the first when L -Lzz- with

' 2/(d, —28)

~3/2
r (d /2) 8T1/2

(7.9)

A. Energy fluctuations

One of the consequences of the extreme sensitivity to
temperature is that the usual relationships between fluc-
tuations and thermodynamic derivatives can break down,
as we have seen already for the nonlinear susceptibility
X3 This is because, in a certain sense, the spin-glass or-
dered phase as a function of temperature is the limit of an
infinite sequence of infinitesimal first-order transitions.
As such, it is hardly surprising that thermodynamic
derivatives do not commute straightforwardly with the
infinite volume limit.

(d, /2) -8
The total number of flips wi11 be of order r

We have found that the sensitivity of the state of the
system to temperature, which is caused by the inequality
8&d, l2, implies that it is not possible to simply con-
struct a low-temperature state out of a ground state and
its excitations. Thus this procedure, which Bovier and
Frohlich' (BF) suggest, cannot work at long length
scales. However, as we have seen, this does not imply
that low-temperature states which are statistically similar
to ground states and excitations cannot be constructed.
Indeed we have argued that they can, provided 8& 0.

BF (Ref. 16) defined an exponent which should be
equal to 8 provided it is positive. They argue that entro-
pic contributions to the wall free energy will scale as
L ' (which would be valid if H=d —1), and therefore
that 8=d —1 is necessary for stability of the ordered
state. We believe that this argument, which is the root of
the disagreements between BF (Ref. 16) and ourselves'
about the existence of many states in high dimensions, is
not valid. What is essential is that since 0 & d —1, the en-
tropy no longer scales as L '. Furthermore, even if the
entropy always dominates as we have argued, an ordered
state should still exist provided 0 ~ 0.
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Let us consider rnornents of the energy fluctuations in a
volume V. These will be dominated by the active drop-
lets. Thus for considering the effects of the large-scale
droplets we can assume they are independent. From the
above discussion, we expect the energy Er (j) of a droplet

8, /2
of scale L to have a random component of order L '

Thus the second moment of the energy fluctuations will

I

be given by the sum over scales of L ' times the number
of active droplets of scale L, so that

V
—((E—(E)) ) —Y TL ' (7.10)

which is finite and equal to T Cv. The fourth moment of
Eis

2d,—((E —(E)) ) —3((E —(E)) ) —g d f [4sech ( —,'PFr ) —6sech ( —,'PFz ))p(Ft )de .
L

(7.11)

Because of cancellations similar to those in the nonlinear
susceptibility (see Sec. III), for large L the leading term in

Eq. (7.11) cancels but, assumt'na scaling, there is a correc-
2d, —d —lT+yie

tion of the form gt L ' which does not van-
ish. Thus the fourth cumulant of the energy will be
infinite provided

T(L)= T
F

(8.2)

(Note that the effect of the fluctuations on scale I «L
will be to renormalize F2& hence F4&, etc.) Defining the
renormalized temperature by

2d, —d —(1+$}8)0, (7 12} we have

which is likely to be the case, at least in 3D. By contrast
(8 F/BP ), which is usually related to the fourth energy
cumulant, will be finite.

VIII. AN EXPANSION ABOUT
THE LOWER CRITICAL DIMENSION

There should be some lower critical dimension d&

where 8(d } goes through zero; here we briefly analyze the
limit d ~d&+, where 8 is small and positive. The behav-
ior for d & d& and the crossover from d & d& behavior to
d & d& behavior in finite-size samples (films) is discussed
in a separate publication.

In the spirit of spin-wave expansions about the lower
critical dimension of Heisenberg ferromagnets, we at-
tempt an expansion of the critical behavior about d&. We
can choose to renormalize so that as a function of length
scale the characteristic free energy remains fixed: The re-
normalized temperature must then change. From the
definition of 0, it is clear that the leading term for low T
is just dT/d(lnL) = 8T; however, w—e need the form of
the first correction.

We are thus interested in the renormalization of, for
example, the average droplet free energy Fz on scale L
due to smaller-scale thermal fluctuations. The fluctua-
tions with scale I &&L are weakly correlated with Fz so
do not renormalize it directly. On the other hand, fluc-
tuations on scales of order L, say L /2, will be correlated
with Fz. With probability of order T/L, there will be
active fluctuations of scale-L droplets at scale -L/2.
These will contribute to Fz amounts of order T. Thus
the mean Fz can be renormalized by amounts of order
T /Fz &2. The sign of this systematic effect is not obvi-
ous, however it is natural to guess, as discussed below,
that it will decrease Fz on average. We thus can write

61 CT2

F~ ——F~]22 — +
Fs. /z

dT = 3

d (1 L)
8T+cT—+ (8.3)

v8~ —,
' . (g.4)

If we make the natural assumption that 8(d) goes
through zero linearly, then T,(d)-+d —d&. If the
coefficient of the T term in Eq. (8.3) were negative, this
would imply a stable fixed point at a low positive temper-
ature for d & d& which would imply a quasiordered spin-
glass phase in this regime; this seems rather unlikely and
suggests that the coefficient of T is indeed positive.
Indeed, one expects that due to the excess free-energy
density near the droplet, active excitations which affect
the droplet free energy are more likely to occur when the
droplet is present thus yielding a decrease in Fz as in Eq.
(8.1). Of course, there remains the possibility that the
coefficient of T vanishes and something less generic hap-
pens, but since we are unaware of any reason to expect
this, we will not examine this possibility here.

In order to obtain the renormalization of a uniform
magnetic field, let us consider the effect of smaller-scale
fluctuations on the total magnetic moment Mz of a drop-
let of size L. At zero temperature, the typical magnetic
moment of a droplet is simply proportional to the square
root of its volume. For T& 0 the probability of a droplet
of size L/2 being thermally active and thus having a. re-
duced moment when its fluctuations are integrated over
is of order T/L —T(L). Droplets at size L consist of 2"
droplets of size L/2, with moments added together with

(Note that this is the same as found by McMillan in the
Migdal-Kadanoff approximation. )

From Eq. (8.3) we see that for 8 small and positive, i.e.,
d ) d&, there is an unstable fixed point at T' -v'8 which
is natural to identify as the critical fixed point separating
the spin glass from the paramagnetic phase. The eigen-
value at the critical fixed point is 1/v=28, so that we
have for d ~d&+,



38 EQUILIBRIUM BEHAVIOR OF THE SPIN-GLASS ORDERED PHASE 403

random signs and reduced by thermal fluctuations. We
can thus write

d
0 )

2
' (9.2)

MI M——l (2[2"~ cT—(L)+ . . . ], (8.5)

to lowest order in temperature. Defining the renormal-
ized field as

h (L)=HMI /Fl,
we have

(8.6)

dh d
d (lnL} 2

(8.7)

Note that here the leading correction is at relative order
T, unlike (8.3) where the leading correction is at relative
order T .

Now the critical fixed point is at h'=0, T'-v'8, at
which the renormalization-group eigenvalue of field is

yl,
————cv 8+O(8) .

2
(8.8)

This eigenvalue is related to the critica1 exponent g via

4y„=d+2—g,
so we have

(8.9)

P= —,'(d —2+g)v-8 (8.10)

a divergence of the order parameter exponent for
d ~dI+. This is consistent with the low-temperature be-
havior of the order parameter, which from the discussion
preceding (3.4), varies as 3LFn ——2 g J~(S;S)), (9.3}

For long-range interactions it is not appropriate to use
the definition of droplets in terms of connected clusters as
was done for the short-range case in Sec. II. Various al-
ternative definitions of droplets at scale L are possible.
Here we choose to modify the definition preceding Eq.
(2.2) to allow disconnected clusters of flipped spins, but to
forbid spins at distances larger than, say, 2L from the
central site j. The restriction on the total number of
flipped spins L & N & (2L) is kept. Droplets which are
far apart compared to their scales will be approximately
independent, but now interact weakly via the long-ranged
interactions. These interactions induce certain correla-
tions and various subtle effects analogous to those studied
in the "Coulomb glass, " ' which we will not delve into
here. For the purposes of this paper, we will confine our-
selves to the question as to when long-range interactions
are relevant and, if so, what is the resulting 8 which de-
scribes the growth of the characteristic free energy with
length scale. This question has been addressed from a
somewhat different perspective by Bray, Moore, and
Young.

We first consider the relevance of added long-range in-
teractions to a system with short-range interactions and
stiffness exponent 8, . To do this, we simply consider the
contribution of an additional long-range part of the in-
teractions to the energy of a droplet D of scale L. The
change in energy due to the added long-range interac-
tions J,J is

L T
1 —qEA-T 1., Li+e g

(8.11)
I,J

iED
j&D

for 0~0+. Thus qEA drops rapidly at lowest order in
T, a naive linear extrapolation suggesting it vanishes at a
temperature of order 8. However, the order parameter
exponent P is very large and qEA actually does not vanish
until the critical temperature, which is of order v'8.
Qualitatively, we expect

so that

(QF )2 g L 2(d —u)
2'

l,J ij
iGD
jKD

(9.4)

qEA— (8.12}
J

with T, -v'8 and p-8 ', which is perfectly consistent
with (8.11).

for o &d. The absence of cross terms in Eq. (9.4) is be-
cause the additional random exchanges are uncorrelated
with the original ground-state configuration. We expect
the added long-range interactions to be irrelevant when

8,
AFD &gL ', i.e., for

IX. LONG-RANGED INTERACTIONS

cr &o,(d)=d —8,(d) . (9.5}

So far, we have discussed only Ising spin glasses with
nearest-neighbor interactions. However, many experi-
mental systems have further neighbor interactions or in
some cases long-range power-law interactions with

1
'J 20.

IJ

(9.1)

In this section we discuss the extension of some of our re-
sults to systems with such power-law interactions. In or-
der for the total energy per spin to be finite, we require

(This is analogous to the result for critical points of pure
systems for which added long-range interactions are ir-
relevant for o & d +2 —r). ) It might be expected that the
result Eq. (9.5) is too naive, for the effect of the short-
range parts of J,-'. will modify the ground state and drop-
let configuration and thus invalidate the simplest estimate
based on assuming independence. However, since the
long-range parts of J,-' are independent of the short-range
parts, this effect can be taken into account iteratively by
including first the new interactions of scale 1, finding a
new ground state and droplet excitations, then repeating
successively at scales I =2 until scale L is reached.
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The contribution from the scale L will still be of order
L" which, if 0 & O.„willbe small compared to L, im-

plying that, indeed, the long-range part of J is ir-
relevant. We note that this irrelevance at the zero-
temperature ordered fixed point does not necessarily im-
ply that all the finite-temperature properties are
unaffected. This is because, as noted in Sec. III, the
finite-temperature behavior for T (T, is controlled by
the dangerous irrelevant temperature, so that interplay
between irrelevant long-range interactions and tempera-
ture can affect the positive temperature behavior. We
will not investigate this possibility further here.

A. Relevant long-range interactions

We now consider the case 0. (o, In this case, 0 will
increase due to the long-range interactions. To find 0
we use a similar argument to that of Weinrib and Halpe-
rin ' for long-range correlated disorder in ferromagnets.
Specifically, we consider a small interaction J,'. -r,
added to the already present long-range interaction
J; -r, , where J; and J are independent. The change
in energy of a droplet at zero temperature can again be
estimated as above, yielding

5F~ -L" (9.6)

If 0' & o., we expect that the addition of the more rapidly
decaying long-range interaction J should be irrelevant,
implying d —o'(0 . Conversely, a longer-ranged in-
teraction should be relevant, so that for o' & 0.,
d —0' & 0 . These inequalities imply that

0 =d —0 (9.7}

for all

d0' )0)C
(9.&)

d
0 (9.9)

Some care must be taken in deriving the estimate Eq.
(9.6), since the droplet excitations will not be connected
in this case. However, as discussed above we can consid-
er just the part of J with say, r; & L. Each spin S, in the
droplet interacts with of order L spins [S ) outside of
the droplet which are at distances between L and 2L
from site i, this is true even if the spin S; is well separated
from the rest of the droplet. Therefore, since the long-
distance part of the sum over j in Eq. (9.4) is convergent
for o )d/2, the estimate Eq. (9.6) is correct.

We note that in one dimension, the critical value of o.

below which a phase transition is possible is given by
0 = 1 —0 =0, which agrees with rigorous results on the
absence of a transition for o. ) 1.

Since cr &d/2, we have for long-range interactions a
slightly weaker inequality for 8 than Eq. (2.4) for 8, :

effectively infinite ranged. This would be greatly pecu-
liar.

Qualitatively, we expect much of the behavior for
long-range interactions with 0 &0 to be similar to the
short-range case: low-lying droplet excitations, barriers,
etc. However, as mentioned above, the interactions be-
tween the droplets can give rise to quantitative
differences. For example, because of the restrictive
definition of droplets given above, the lowest-energy exci-
tations in a given region may involve collections of drop-
lets rather than individual droplets. In addition, it is by
no means clear what quantity plays the role of d„or,for
example, how the energy and entropy of a droplet for
T&0 scale with L. We leave these questions for future
investigations.

X. X-Y AND HEISENBERG SPIN GLASSES

( [X (L)]2)1/2 ~L 8 (10.1)

For X-Y and the Heisenberg systems we would like to
define the stiffness in terms of altered boundary condi-
tions, as in (10.1). The simplest choice is just the same as
for the Ising case. In a cube with periodic boundary con-
ditions, change the sign of the J, .'s along one (d-1)-
dimensional surface across the cube, and measure the
free-energy change X (L}. For an X-Y system, this
forces in a proper rotation of m. across the cube, while for
Heisenberg systems, it forces an improper rotation. In
general, it might be possible that proper and improper ro-
tations will have different stiffnesses associated with
them, and one would like to be able to probe each of
them, defining proper and improper stiffness exponents
0 and 0;. For the X-Y system

In this section we discuss possible extensions of some
of the results to spin glasses with continuous spin symme-

try, in particular to X-Y and Heisenberg systems.
For Ising systems, our basic ansatz is that all appropri-

ate measures of the stiffness free energy of the ordered
phase at scale L scale as L . For example, one can define
the stiffness as the typical free energy of droplet excita-
tions as in Sec. II. Alternatively, following McMillan '
and others, we may define the stiffness X(L ) as the
difference in free energy between a system of size L with
periodic boundary conditions and the same system with
antiperiodic boundary conditions in one of the directions.
This forces in a single domain wall across the system.
However, since antiperiodic boundary conditions are just
another realization of the same ensemble (change the sign
of the J, 's on the boundary) X(L) can be either positive
or negative with equal probability and has average zero.
The stiffness can be defined as the typical magnitude of
X(L) or (provided long tails are not important, which ap-
pears to be the case), as the root-mean-square value of
X(L) for different realizations of the t J, ):

Indeed, the result Eq. (9.5) for O„provides additional
support for such an inequality for 0„since, if 0, &d/2
then all long-range interactions would be irrelevant up to
the limit o. =d /2 at which the interaction becomes

X (L)-L ',
while for the Heisenberg system

X (L)-L ' .

(10.2)

(10.3)
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It is not so obvious how to define the other exponents.
One possibility is to couple the spins across the boundary
by a coupling JJS; -R.S with R a rotation matrix.
When R is the inversion matrix, this just yields X as
above. For

1 0
R=O-1

in the X-Y case or

8
XL(L}-g (R )L», (10.4}

and if R is improper

8,.XLt(L)-g;(R )L ', (10.5)

where g and g; depend on the magnitude of the rotation.
We expect that 8; )8, since improper rotations of the
boundary conditions can also have proper components
and will generally couple to proper rotations as well. The
simplest possibility is that 8; =8 .

Certain frustrated magnets with no randomness have
ground states in which spins are noncollinear and exhibit
different stiffnesses for proper and improper rotations
the proper rotations cause a slowly varying spin-
wave —like excitation while improper rotations of the
boundary conditions cause a domain wall with much
higher free-energy cost. In general, we expect stiffness
exponents to be no larger than the corresponding Ising
exponent, so that

8;,Op &
d —1 (10.6)

although a stronger bound may obtain.
We note that if 8, & 8, then g,.(R ) in Eq. (10.5) should

be independent of R for all improper rotations, since
different R will only differ by the smaller proper stiffness.

1 0 0
R= 0 —1 0

0 0 —1

in the Heisenberg case, different kinds of stiffness will be
probed. Unfortunately, the new Hamiltonians with al-
tered boundary conditions are not realizations of the
same random ensemble (although this cannot be detected
locally since the rotation can equivalently be performed
on any surface} so that the average of the free-energy
difference Xa (L) will not in general be zero. (This can be
readily seen in the one-dimensional case, when R is a ro-
tation of angle &n. ) However, we still expect that
X„(L)will typically scale with L in the same way as X
if R has the same signature as the inversion matrix. (It is
plausible that XR «[(Xa }]' for large L so that the sys-
tem with the rotated sheet is essentially equivalent to a
member of the same random ensemble for large L. )

We now make the natural conjecture that if R is a
proper rotation,

(10.7)

The simplest possibility is that both the proper and im-

proper rotational symmetries break at the same transition
temperature, although it might be possib1e that the im-

proper rotational symmetry breaks first so that there is
an intermediate phase like that described below. The
phase with both broken symmetries is unstable to the ad-
dition of a magnetic field in the x direction since
8;, 8& &d/2. The magnetic field will hence destroy the
broken improper rotation symmetry of S ~—S, . How-
ever, the rotational symmetry about the field can still be
broken so that a phase transition breaking the transverse
symmetries will still occur. This occurs also in the
infinite-range models; the transition line T, (H) is called a
Gabay- Toulouse line.

By analogy with the existence of only two pure states
in the Ising spin glass, we expect that the only pure states
in X-Y or Heisenberg systems will be simply related by
global proper or improper spin rotations. As for the Is-
ing case, addition of a random field with components in
all directions will destroy the transition entirely.

(iii) 8,. &0&8». This rather interesting possibility im-

plies that proper rotational symmetry will not be broken
at any positive temperature but that improper rotational
symmetry will. The spin expectations

(10.8)

so that qEA
——0. However, if we form scalar products of

nearby spins these can attain expectation values. In the
X-Y case we would have

&s, xs, &wo (10.9)

for nearby spins so that the global reflection symmetries,
e.g. , S»~ —S», are broken. (We note that such an X-Y
state occurs in some 2D frustrated but nonrandom mod-
els. ) In the Heisenberg case,

(10.10)

for i,j,k near each other.
As a transition to such phases is approached from

above, the normal Edwards-Anderson susceptibility will
not diverge. However it is straightforward to show that
the high-order nonlinear susceptibilities (8 M/Bh ), and
(8"M/i}h") will diverge for the X-Y and Heisenberg
cases, respectively. A phase with stiffness only to im-

proper rotations also could occur as an intermediate
phase between a paramagnetic phase and a true spin-glass
phase which has both 0; and 0 positive.

In the presence of a uniform magnetic fie1d, it should
sti11 be possible to break the improper rotation symmetry
about the field and an intermediate type-(iii) phase can

A. Phase diagram

We now consider the phase diagram in various cases.
(i) 8z &8, &0. In this case, as for the Ising system,

there will be no long-range order at positive temperature.
(ii) 8, &8~ &0. In this case the rotational symmetries

will be broken in a positive-temperature ordered phase
with



DANIEL S. FISHER AND DAVID A. HUSE 38

still occur. Investigation of the interesting properties of
such a pseudo-spin-glass phase are left for future work.

B. Properties of the ordered phase

We now assume that both 0, and 0 are positive, and

discuss some of the properties of the resulting ordered
phase. One would like to be able to describe the ordered
phase in terms of large-scale excitations analogous to the
picture developed in earlier sections for Ising systems.
Because of the continuous degrees of freedom, however,
things are rather more complicated, and we will restrict
ourselves here to a few general remarks.

In Heisenberg and X-Y spin glasses, there will be two
kinds of excitations: smooth excitations analogous to spin
waves in which the spins are rotated continuously from
the ground state without crossing any free-energy bar-
riers, and activated excitations analogous to droplets in
the Ising case which will involve overcoming barriers to
their formation. Henley has studied various types of
excitations in the Heisenberg case and finds activated ex-
citations of various kinds, including (1) improperly rotat-
ed droplets which consist of a large region which is im-

properly rotated from the ground state with a relatively
sharp wall separating it from the exterior and with some
relaxation by proper rotations; and (2) dislocations or
other textures involving purely proper rotations. One ex-
pects, by analogy with the Ising case, that excitations of
these types will occur down to arbitrarily low energies
even on long length scales. As for the Ising case, these
will give rise to logarithmic decay of the temporal corre-
lations due to the barriers. By contrast, the smooth exci-
tations will yield power-law decay of temporal correla-
tions and thus not affect the very long time dynamics. It
is tempting to believe that the stiffness to proper rotations
X„(L)will probe the energy of smooth excitations. It is
quite likely, however, that this is not the case. It may be
that even a small rotation of the boundary condition
yields nonsmooth changes in the ground state of a large
system associated with the interchange of stability of two
configurations differing by large angle rotations in some
region. We leave this and other subtle questions concern-
ing the different types of stiffnesses in Heisenberg spin
glasses for future investigation.

C. Anisotropy

In the presence of random-axis dipolar or
Dzyaloshinskii-Moriya anisotropy, there will no longer
be arbitrarily low-energy excitations involving small rota-
tions. The system will crossover on long length scales to
an anisotropic spin-glass fixed point. However, because
of the statistical rotational symmetry, this fixed point
may not be the same as the Ising fixed point, although
many of its features should be qualitatively similar.

XI. CONCLUSIONS AND OBSKRYABILITY OF
EQUILIIIRIUM PHENOMENA

In this paper we have analyzed the equilibrium behav-
ior of the ordered phase of short-range spin glasses.
Based upon what we believe to be the simplest possible

ansatz, consistent with what is known, we predict
power-law decay of spatial correlations, and logarithmic
decay of temporal correlations, both caused by the pres-
ence of large, low free-energy, active droplet excitations.
Although, as argued in a previous paper, ' this picture
naturally leads to a spin-glass phase with only two pure
states for the Ising system which are related by the global

spin-flip symmetry, these states are extremely sensitive to
temperature changes. We find that the presence of a
magnetic field destroys the Ising spin-glass phase and

gives rise to a divergent nonlinear susceptibility for all

T & T, . We have argued that the characteristic equilibra-

tion times for the system will diverge as the ordered

phase is approached either by decreasing temperature or
decreasing the magnetic Geld to zero below T, . Thus, in

the ordered phase true equilibrium will never be reached,
so we must question the observability of the predicted
equilibrium phenomena. In the companion paper, we dis-

cuss in detail the approach to equilibrium and various

nonequilibrium effects. Here we briefly note under what

conditions the response and fluctuations of the system
will mimic equilibrium. An important feature of spin

glasses is that the local order cannot be readily measured

experimentally —we are generally restricted to measuring

quantities averaged over relatively large regions of space.
Thus if the correlation functions are statistically similar

to those in equilibrium, it will be exceedingly difficult to
distinguish the system from one in true equilibrium.

In order to attempt to reach equilibrium, the natural
procedure is to wait at the desired temperature T & T,
for as long as possible, say a time t, and then make mea-

surements at frequency co. After waiting time t„,the sys-

tem will be in equilibrium on a scale
1/f

T ln(t„/rp)
R (11.1)

i.e., the characteristic scale of the frozen-in domain walls
will be R . Smaller-scale fluctuations will then be similar
to equilibrium since, statistically, the presence or absence
of large-scale domain walls will have only a small affect
on the distribution of small-scale droplets. If

ncoro
I

&&ln(t /rp), (11.2)

then the scale of droplets probed at frequency co will be
much less than the equilibrium scale and the response
should mimic equilibrium. In the companion paper we
discuss in detail the corrections to equilibrium behavior
and various far-from-equilibrium phenomena. Unfor-
tunately, the condition Eq. (11.2) is almost impossible to
satisfy, we therefore must consider in detail how the
response functions approach equilibrium.

If we were able to know the equilibrium state and use
microprobes to measure the local spin orientations (aver-
aged over some time) then the presence of the domain
walls could be observed. However, in the absence of such
a possibility, direct measurements of the length scale of
the deviations from equilibrium cannot be done.

Microprobes could also be used, in principle, to ad-
dress (with some accuracy) questions of the number of
pure states by cycling the system to above T, and back



38 EQUILIBRIUM BEHAVIOR OF THE SPIN-GLASS ORDERED PHASE

down and then carefully trying to extract long time aver-
ages of correlation functions. Probably the subtlest open
questions concern whether or not a more complicated
consistent picture of short-range spin glasses can be con-
structed which exhibits many pure states such as exist in
the standard interpretation of the Parisi solution of the
SK model. ' At this stage, we feel it is incumbent upon
those who believe that realistic spin glasses exhibit such
features to make arguments which go beyond the path-
ologies of the SK model, since, as we have argued else-
where, ' the approaches used for the SK model are not
useful for short-range systems.

A related question concerns the high-dimensional limit
of our picture of a spin glass: Does it, in some sense, ap-
proach the SK model as d ~ 00? A plausible scenario is
that the de Almeida-Thouless transition, which we have
argued does not exist for finite d, becomes a sharper and
sharper crossover as d~~. Work on this question
would certainly be instructive.

APPENDIX A: ARGUMENTS FOR 8 ((d —1/2)

In this appendix we present an argument to support
the inequality

(A 1)

X)l
= Ila (A3)

with n an integer vector.
We are interested in the probability P, (B) that changes

in the ground-state configuration occur a distance B from
the sheet with

be derived using the coarse-graining procedure outlined
in Sec. VI. We use energy units of J—Y=1. We also re-
quire the assumption that the distribution of droplet free
energies, pL(FL)(c/L for FL «L, where pi(FI ) is
defined prior to (2.5). Note that we do not need to as-
sume that the full distribution scales, only that pL (FI ) is
sufficiently small for low energies. We take periodic
boundary conditions in all d directions on the box of size
L, and then change the signs of a (d —1)-dimensional
sheet of bonds perpendicular to the sheet, yielding an-
tiperiodic boundary conditions in the perpendicular
direction. We label the (d —1)-dimensional hypercubic
array of perpendicular bonds in the sheet by the coordi-
nate x~~ with xl a (d —1)-dimensional integer vector. We
will make the sign change of bonds J„notall at once,

"ll

but in a series of steps. At the first step, we change the
signs of a subarray of the bonds in the sheet with integer
lattice constant a ~g 1, i.e., those bonds with coordinate

1((a ((B((L . (A4)

(g2 )l/2 L 8 (A2)

In order to go from periodic to antiperiodic boundary
conditions the signs of a plane of bonds J," have been
changed. Since the distribution of J;~ s is invariant under

J,"~—J;1, the average free energy (of many realizations)
after changing the sign of any fraction of these bonds will
be the same. Clearly the rms change in the free energy
due to changing the sign of just one bond is of order uni-

ty. If the free-energy changes due to changing different
bonds were independent, then we would immediately find
that XL was the sum of L" ' terms of random sign and
hence 8=(d —1)/2. This assumption of independence is
clearly not valid, especially for nearby bonds. However,
the correlations in the free energy change due to chang-
ing bonds a distance r apart will decay with r. By the
general scaling assumption, we expect these correlations
to decay as 1/r . Thus the larger the exponent 8, the
morc rapidly the correlations will decay and the more
plausible the argument using approximate independence.

To proceed, we will assume that 8&(d —1)/2 and
then, using the approximate independence, find a con-
tradiction. For simplicity, we work at zero temperature;
similar results at positive temperature can, in principle,

which was introduced in Sec. II and plays an important
role in many aspects of this work. We first give an intui-
tive, although overly naive and thus not entirely correct,
argument and then proceed with a careful derivation of
the result by assuming the converse and arriving at a con-
tradiction.

We define 8 as in Ref. 12 and Sec. X via the difference
in free energy XL between periodic and antiperiodic
boundary conditions in one of the directions of a cube of
size L":

We will argue that for 8y (d —1)/2, P, (B) is sufficiently
small that even after all the bonds have been changed, the
probability P&(B) that the ground state has changed a
distance B from the sheet is still small for a and B ((L
chosen appropriately. This is inconsistent, because
changing all the bonds will almost always change the
ground state at distances of order L.

We first allow relaxations of the ground state to occur
by Gipping clusters contained in boxes of size a" centered
on the changed bonds. These relaxations will occur in a
positive fraction of the boxes but will usually only involve
spins within distances much smaller than a of the
changed bonds at the centers of the boxes. After this
process, there will be an anomalous amount of energy left
in the slab of thickness a about the sheet because we have
not allowed relaxation outside the small boxes. The aver-
age of this excess energy per box will be less than or of
order 1/a since it will primarily arise from those
changed bonds mhich would have caused a cluster of size

a to Rip if we had allowed all possible relaxations. This
occurs only with probability & 1/a since it implies that
a droplet of scale ~a with energy of order J which
passed through the changed bond must have existed in
the original ground state.

We now consider whether a low-energy droplet D of
size B in the original ground state I 0 can Hip due to the
changes in the slab. Because of the correlations between
droplets discussed in Sec. II we need only consider one
such putative droplet in each cube of size B"which inter-
sects the slab. The energy Ez of the droplet is its original
energy E~ in I 0 plus a change hE from the changes in
the slab of thickness a. The change in energy will consist
of two parts: a random piece of magnitude
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aE„& B
a

(d —1)/2

(A5)

which arises from the random changes in each box of size
a through which the droplet passes, and an error part
AEF due to the extra energy in the slab discussed above,
which will be of order the number of boxes through
which the droplet passes in which further relaxation out-
side the boxes could have occurred. This error term is of
order

doing a gauge transformation in the intervening region to
move the changed bonds back to our original sheet. Be-
cause of the statistical translational invariance, we should
have P, (8}=O(1) for all 8, since the resulting single wall

which is the difference between the final and initial
ground states will lie at a random position perfectly un-

correlated with which parallel sheet of bonds we

changed. In fact we expect that the wall will wander a
distance of order L transversely.

We define

'd —1

EE~(8) & B 1

a
(A6)

0 1a=
d —1 2

which by assumption is positive so that

(A12}

In deriving Eqs. (A5) and (A6) we have assumed that the
droplet D passes through each box of size a and has its
energy affected by an amount of order one in each box. If
d, gd, as we expect to be the case, then the droplet will

only pass near some fraction of the altered bonds and
thus (A5) and (A6) are overestimates. We would like to
make the error term small compared to the estimate (A5)
for the random part of hE so that we should choose a
and B so that

0(a & —,',
and choose

a-L'
and

B-L

(A13}

(A14)

(A15)

« (8 /a )(d —()/2 (A7)
with

0(z &x (1. (A16)
This requires

B(d —1}/2 (d —1)/2 8 (AS)
It is then straightforward to see that we require from Eq.
(A8)

In this case, the probability that Ez &0, which is just the
probability that the droplet will Rip in the new ground
state, is

x &z(2+2a),
and we have P((8)« 1 when

(A17)

~E
. . (d 1)/2
B 1

p, (8)-
a B8

1

B8

Since for 6) & (d —1)/2, p, (8) decreases with 8, the total
probability of any droplet Gipping on scales & B is dom-
inated by scale B and hence is bounded above by
(L/8)" ' p, (8), which is just the sum of the (L/8)
different regions of size B which intersect the slab. Thus

' d —1
' (d —1)/2

P (8)& L B
0 (A10)

bo =—a, bN =B, (A19)

1+z/2
(A18)'' 1+a

These are only compatible if a & a, = ( V2 —1 ) /2, so we

have not yet succeeded in demonstrating that any a & 0
yields small P((B), although we have found a bound on 8
well away from d —1, namely, 8 & (d —1)/&2.

In order to improve the bound, we need to perform
several intermediate steps on scales between a and B to
better control the error bEE(8). We thus introduce a se-

quence of lengths b„with

We now allow all further relaxations to achieve a new
ground state I which is statistically similar to the origi-
nal ground state. We next repeat the process with anoth-
er array of bonds with spacing a in the sheet and repeat
a ' times until the signs of all the bonds in the sheet
have been changed. The probability P, (8) that any
changes in the ground state have occurred a distance & B
from the sheet is bounded above by a 'P, (8) so that

b„-L",
with

~n —1& "n

(A20)

(A21)

(d —1)/2L d —1

e (~ —(in+ (Al 1)

If we can choose a and 8 satisfying (A4) so that
P((8) «1, then there is a contradiction, since the new
bond configuration could have been equally well reached
by first changing the bonds in a parallel sheet a distance
~ 8 from the chosen sheet resulting in the changes being
localized near that sheet with high probability, and then

for all n so that as L~~, b„/b ~oo for n ~m. We
now allow successively relaxation in boxes of size b„
which form a slab centered on the altered sheet. After al-
lowing relaxation up to scale b„1we consider the
change in energy of a droplet of scale b„.This will pass
through (at most}, (b„/b„,)" ' boxes of size b„,in
which relaxation has already occurred. We want to
choose the b„iteratively so that the random part of the
change in energy of droplets of size b„is larger than the



38 EQUILIBRIUM BEHAVIOR OF THE SPIN-GLASS ORDERED PHASE

error term due to the excess energy arising from the

confinement of the relaxation in boxes of size b„,. In

each box of size b„,we then have, by assumption, a ran-

dom extra energy at most of order (b„~/a) which(d —1)/2

can be picked up by the droplet of scale b„,with a possi-
ble error from the fraction of these boxes

b n —1

(d —1)/2

/b 0

b„
b,F..„(b„,b„

n —1

' (d —1)/2
' (d —1)/2

n —1

b„ (d —1)/2

(A22)

in which the constraint of no relaxation (so far) at scales
larger than b„1causes an error. Thus the random part
of the change in energy of the droplets inside the boxes of
scales between b„1and b„which we now allow to relax
will be

1+z/2
1 )x =u~) 1++ (A26)

which can clearly be done for all a since a sequence of
u„'swhich increases without bound can satisfy Eq. (A24).

At each stage beyond the first, we have kept the proba-
bility that individual droplets flip small, and finally at
scales )8, so small that with high probability no drop-
lets will flip, yielding the desired result; namely, the con-
tradiction occurs for all 8y(d —1)/2. Although these
arguments rely on many assumptions of approximate in-
dependence, and are, in any case, far from rigorous, we
believe that the conclusion will be correct, provided a
scaling picture exists for the ground state and its excita-
tions, and it will be left as a future challenge to make
tighter arguments for 8&(d —1)/2. We note that once
8((d —1)/2, all sorts of problems become apparent in
these kinds of arguments and similar reasoning definitely
cannot be used to yield the natural guess of 8=(d —1)/2
(although, perhaps, by more careful arguments the d in
the inequality could be replaced by d, ).

while the error term will be

EE~(b„,b„,)—
b n —1

'd —1
b n —1

b
(d —1)/2

n —1

bo
n —1

' (d —1)/2

(A23)

APPENDIX 8: INSTABILITY OF SPIN-GLASS
ORDERING TO A FIELD

Villain' has argued that the ordered state of an Ising
spin glass may possibly be stable against a small uniform
magnetic field. Here we wish to counter some of his ar-
guments. We assume, as argued in Ref. 18, that there are
only two pure states in zero field.

First, Villain' works within a picture in which only a

where the three factors are, respectively, the number of
boxes of size b„1through which a droplet of size b„
could pass, the random energy change in the boxes of size

b„1,and the probability the changes inside a box of size

b„1will result in relaxations outside the box, i.e., the
probability of an error. We now choose the u„sothat

EE„(b„,b„~)&(b„/a)'

By the time we get to scale 8, we will have improved the
original error estimate Eq. (A6) by a factor (a/B), due
to the allowing of the intermediate scale of relaxations.
We note that at each stage, the earlier errors will be
thrown away once we allow for all the relaxation up to
that stage. All that is important is that our estimate for
the random energy change at the final step is not invali-
dated by intermediate scale relaxations.

At stage n we are adding up almost random terms from
stage n —1, we thus just need overa11 bounds on the mag-
nitude of these random terms. The errors Eq. (A23) can
be kept small compared to the random part (A22) at each
stage by choosing

u„,& u„&u„,(1+2a)+z (A24)

0&z g2a (A25)

and N large enough so that

for all n. The overall probability P, (B) can be made
small by choosing

FIG. 4. Schematic picture of the domain walls present in the

ground-state configuration of an Ising spin glass in a uniform

magnetic field. The domain walls separate regions in which the

spins are aligned with one of the zero-field ground states I and

regions where they are antialigned with I . The characteristic

length scale of these domains is the correlation length, which

diverges (3.24) as a power of the magnetic field H for H~0.
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fraction of the droplets on each length scale larger than

gH align with the field, and these aligned droplets are
hierarchically nested as illustrated in his Fig. 1. This
contrived scenario is postulated without any justification.
Our picture of the equilibrium state in a field is quite
different. We argue that most of the droplets of length
scale of order gH align with the field, while smaller drop-
lets of size L only align with a smaller probability of or-
der (I/gH)' ' . The moments of the droplets of size

gH are of random sign; the resulting pattern has no corre-
lations or structure on length scales »gH, as illustrated
in our Fig. 4. The lines in Fig. 4 are domain walls
separating regions aligned with a zero-field ground state
and regions antialigned with the zero-field ground state.
Thus for length scales »gH it is inappropriate to discuss
the droplets. The former zero-field droplets on these long
scales have now broken up into many smaller droplets of
size of order gH, each of which is independently aligned
with the field.

Villain' postulates that a large droplet with L »gH
will contain many smaller droplets that are frozen into a
given alignment, but there remains a connected cluster of
free spins with fractal dimensionality 28. The number of
spins in the clusters is -L and the moment is of order
L . Thus the direct interaction with the field can precise-

ly balance on all scales the exchange interaction - fL
of the large droplet with its environment. To the extent
that this scenario makes any sense at all, an important
effect has been neglected, namely the exchange interac-
tions of this fractal cluster with the frozen-in smaller
droplets inside of it. These exchange interactions add to
the effective fields felt by the large fractal cluster of spins,
thus making it easier for the field to align the full droplet.
In fact, we would argue that these interactions with the
frozen-in droplets must cause the fractal cluster to break
up into dotnains of size of order gt„each choosing an
alignment that satisfies these interactions as best as possi-
ble. This is because the remaining part of the large clus-
ter must, under Villain's hypothesis' that it has fractal
dimension less that d„bevery stringy so that it can be
cut by domain walls of area &&L ', while the interac-
tions with the already frozen-in droplets will occur across
a surface of fractal dimension at least d, . We believe that
an internally consistent picture exhibiting Villain s
scenario cannot be made.

We note, however, that we cannot completely rule out
more complicated scenarios which, for example, might
yield more than two pure states in zero field with the de-
struction of only some fraction of them by a field, the rest
mixing together to form new states.
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