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Electron-gas self-energy at metallic density
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The self-energy of the uniform electron gas is analyzed within the lowest order in the screened po-
tential, using different approximations for the dielectric function. The present numerical analysis

reveals that a rather simple approximation for the dielectric function can be used to derive a good
estimate for the self-energy.

I. INTRODUCTION

The study of the electronic properties of a homogene-
ous electron gas has been of special importance in the de-
velopment of solid-state physics. It is now well estab-
lished that electron-gas data can be used as input parame-
ters for application to the real systems of density-
functional theories. ' At present, quite good knowledge
of total energy as well as static properties of electron gas
seems to have been achieved.

Thanks to the above results, a rather good description
of the ground-state properties of real metals has been ob-
tained within the local-density approximation ' (LDA).

Because of the success of LDA calculations of ground-
state properties, it is rather obvious to extend such a
treatment to one-particle behavior. Such an extension,
based on the Sham and Kohn LDA approximation for
one-electron self-energy, has been shown to be feasible in
the case of real metals' "and in a slightly different form
in the case of nonconducting systems. ' In the work done
on metals' '" the electron-gas self-energy obtained by
Hedin' within the random-phase approximation (RPA)
has been used, giving quite good results. In the case of
nonconducting systems, a proper variant of the same
Sham and Kohn approach has been proved to be fairly
good. ' Recently, ' another variant of the method has
been applied to simple metals with very good results.

However, despite the obvious importance of one-
electron self-energy of electron gas, little effort has been
devoted to its calculation. To our best knowledge, apart
from the calculation by Hedin' and co-workers' *'

within the RPA, there is only one other calculation of the
self-energy' in a wide range of density, momentum, and
energy. It should be remarked that little is known about
the accuracy of those calculations.

To get further information on the electron-gas self-
energy, we shall analyze some aspect of practical ap-
proaches, confining ourselves to the lowest order (GW)
(Refs. 13—16) and GW-like approximations. In fact, most
of the available information on self-energy is based on ex-
pressions which can be cast into the standard GS' form,
after a proper definition of the screened potential W; It
should be also observed that even the recent approach
proposed by Vignale and Singwi' and Schreiber and
Bross' belongs to the same class.

In our opinion, to derive a meaningful approximation
for the self-energy, it is very important to use fully con-
serving expressions in the sense of Baym and Kadanoff.
This fact has been already recognized, ' but little has
been said about self-energy.

We shall show that GF-like approaches are fully con-
serving. Moreover, a set of numerical calculations will be
used to obtain a guess regarding the accuracy of the self-

energy we derived. In fact, we believe that the quality of
a self-energy calculation can be established through a
total-energy calculation, performed employing the self-

energy itself. This method to decide the accuracy of the
self-energy is based on the fact that there exists an exact
relationship between the chemical potential, and hence
the self-energy, at the Fermi surface and the total energy.
Using such a connection, we can assess the validity of the
calculation by comparison with the accurate total energy
deduced by means of the variational Monte Carlo ap-
proach.

It should be also mentioned that in this way we ap-
proach the total energy through a perturbative evaluation
of the interaction potential. Such a procedure, as ob-
served by Overhauser and Tsai is expected to be more
accurate than standard models based on interaction
strength integration of the interaction potential deduced
from the approximate pair-correlation function.

In the following sections, we shall briefly recall the for-
mal framework, which is fairly known, which will be fol-
lowed by a discussion of the conserving condition with
reference to the GR'-like approximations. In addition,
we shall present a set of numerical calculations of self-

energy based on simple approximations for the dielectric
function and hence for the screened potential. The
dielectric function will be deduced using static approxi-
mations for the local geld factor, though the method can
be extended to energy-dependent local fields with little
numerical effort. The quality of the resulting self-energy
will be discussed by comparison to total energy, thus get-
ting a feeling about the validity of the local field itself.

II. FORMAL FRAMEWORK

To study the self-energy of the electron gas we start
from the conserving approach of Baym and Kadanoff;
instead of using the series expansion in terms of the
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screened potential. '

In the conserving scheme of Baym and Kadanoff the
self-energy is given by

M(1, 1')= —' f V(13)G~(13,23+)G '(21'}d2d3,

where V is the bare Coulomb potential, G and G2 are the
one-particle and two-particle Green's functions, and the
numbers stand for space-time coordinates in standard no-
tation. Equation (1) is conserving in the sense that, given
an approximate two-particle Green's function, the solu-
tion of the Dyson equation

G '(ll'}=Go '(ll') —M(11') (2)

and of Eq. (1} allows the number of particles as well as
the momentum flux to be conserved. In Eq. (2) Go is the
one-particle Green's function with the Coulomb potential
V switched off.

It should be remarked that, in principle, G2 can be de-
rived from G. However, in this case, the entire procedure
has to be self-consistent. To avoid such a complex self-
consistent procedure, whose feasibility has to be shown,
G2 can be given as input. In this case, all observables
connected to 62 cannot be deduced using G2 as derived
from G, as such a procedure will lead to internal contrad-
ictions. Nevertheless, such a contradictory situation ap-
pears to be the normal practice of band-structure calcula-
tions in solids. For instance, the optical conductivity is
generally deduced from one-particle wave functions ob-
tained solving a Schrodinger equation containing approx-
imate exchange-correlation potentials. These potentials
can be considered as static approximations for the self-
energy, so that, in view of the above discussion, the calcu-
lation of the optical conductivity could be incorrect.

Starting from Eqs. (1) and (2) it is quite natural to
dePne a screened potential, using the implicit form

G (11')W(1+ I') = —f V(13)G2(13,23+ )

and (6) are compatible with the symmetry properties of
G2. However, in the case of the uniform electron gas,
where Gz(1, 2, 1',2'} depends only on coordinate
differences, Eqs. (5) and (6) can be consistently satisfied.

In the general case, it is not obvious that the GW ap-
proximation is a conserving scheme and the correspond-
ing self-energy has to be considered with some care.

III. NUMERICAL ANALYSIS OF SELF-ENERGY

To study numerically the self-energy of the electron
gas we use the following form in the reciprocal space for
the dielectric function:

Qo(q, ~)
e(q, co) =1+

1 —G (q, co)Qo(q, co)
(7)

G(q)=0,

G(q)=—1 q

(Sa)

(&b)

G(q)=—1
2 q'+k~

4

G(q)= A
kF

(Sc)

Qo(q, co) being the Lindhard polarizability and G (q, co) an
appropriate local-field factor. Equation (7) is quite gen-
eral, however, little is known about the actual form of the
local-field factor. Although some approximation for the
frequency-dependent local field has been proposed,
we prefer to resort to the more widely employed static ap-
proximation.

To perform this numerical study we shall confine our-
selves to a number of analytical approximations which
appear to be quite reasonable in calculating the total en-

ergy by using the standard interaction strength integra-
tion algorithm.

We have employed four different local fields, namely

XG '(21')d2d3 . (3)

This definition has to be compared to the G W approxima-
tion, which implies the following form for the screened
potential:

A
F

4

+(B+—,'A)
F

4kF —q 2kF+q
X ln

4kFq 2kF-q

'2

(8d)

W(11')=f V(12)e '(21')d2,

e(1,2}being the dielectric matrix. ' '

To compare Eqs. (3}and (4) we introduce

f(11',3)=fG2(13,23+)G '(2l')d2 .

(4)

(5)

For Eq. (4) to be a conserving approximation in the sense
we described, the following relationship must hold:

f (11',3)=G(ll'}E '(31'} . (6)

Such an equation can define a meaningful dielectric ma-
trix or alternatively a meaningful two-particle Green's
function, if appropriate symmetry properties of these
functions are satisfied.

Unfortunately it is not possible to show that Eqs. (5)

where the equations refer to the RPA, Ref. 29, Ref. 30,
and Ref. 31, respectively, kF being the Fermi momentum
and A, 8, and C appropriate functions of electron densi-
ty. ' The RPA calculation has been already performed
by Hedin' and has been repeated here for comparison
purposes.

Employing the dielectric function of Eq. (7), the self-
energy is readily deduced as an integral in the energy
momentum space

4me
M(q, co)= f des' f dq' e '(q', co'}

(2m )

X (co —co' —
~ q —q'

~

')

The numerical evaluation of Eq. (9) can be performed
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„Mo(x)+3r' I" ', dx,
S

(10)

where a =(4/9m. )', E(r, ) is the total energy per particle,
and Mo(r, )=M(k~, k~) is the self energy at the Fermi
surface.

Assuming that e(r, ) is known as a result of the Monte
Carlo calculation, Eq. (10) can be used to derive a rather
accurate estimate of Mo(r, ). In fact, we have

along the lines described in Refs. 13 and 17. No special
difficulty is present in performing such a calculation
apart from the presence of the plasmon pole contribution.
To handle the diverging behavior of 1/e(q, co) when the

energy is close to the plasma frequency, we added an

imaginary part to the plasmon energy. This imaginary
contribution shifts the plasmon pole from the real axis
and, in principle, should be taken vanishingly small.
Several values for the imaginary part have been tried to
derive a converging self-energy within 1 rnRy. It should

be remarked that special care has been devoted to the cal-
culation of M(q, co) at the Fermi surface, to obtain a
chemical potential as accurate as possible. Present nu-

merical accuracy on M (kz, k~ ) is estimated to be of the

order of 0.1 rnRy.
Finally, we observe that in Eq. (9} the actual one-

particle Green's function is assumed to be well approxi-
mated by that of free particles. Therefore, the present
calculation is not a self-consistent estimate of Eqs. (3) and
(6). However, the main purpose of present analysis is the
study of the effect of the local field so that self-
consistency is considered a secondary requirement. As a
check, we determined the self-consistent self-energy at
selected values of energy, momentum, and density and we
found that self-consistency has a little effect on the self-

energy itself, according to Hedin' who reached similar
conclusions.

Several densities n =3/4nr, have. been considered with

r, ranging from 0.1 to 50. Typical results are reported in
Table I, where the self-energy is given for the different lo-
cal fields at selected values of the momentum along the
free-electron parabola co =q .

Comparing present results within the RPA with the
self-energy given by Hedin' we see that they agree to 1

or 2 mRy, so that we expect both calculations to be accu-
rate at least at this level, also in view of the numerical
checks we have performed.

Looking at Table I, we see that the effect of the local
field is not negligible: the difference between two
different calculations being tens of rnRy. Moreover the
local field also effects the q dependence of the self-energy.
As a consequence of the chosen local field we can expect
an effect on the shape of the spectral weight function.
Before performing a spectral analysis to study the single-
particle behavior with different local fields, it is
worthwhile to derive the total energy of the system.

First of all we recall that the following exact relation-
ship holds

To evaluate Mo(r, ) from the accurate Monte Carlo data,
we employed the analytical fit suggested by Vosko, Wilk,
and Nusair, thus deducing an estimate of the Fermi-
surface self-energy, which can be considered as a refer-
ence for other calculations.

Comparison between the different self-energies as de-
duced from Eqs. (9) and (11) is given in Table II. It is ap-
parent that the simple local field introduced by Geldart
and Vosko gives the best estimate of Mo(r, } in the
whole metallic density region.

It is somewhat surprising that the local field of Ref. 31
does not supply a good evaluation of Mo(r, ) even though
it gives a reasonable approximation for the pair-
correlation function. We consider the wrong behavior of
such a local field in the present context as an indication
that a static local field is not very useful in deriving accu-
rate dielectric functions. Furthermore, we can note that
Eq. (8d) gives rise to a result which is increasingly in er-
ror as the density is lowered.

Looking at Table II we also see that the result of Ref.
17 is rather wrong at high density, while its accuracy in-

creases at low density. This suggests that the local field

has to be such that correct high-density limits can be al-

ways derived.
To gain a better insight about the relevance of the local

field, we also used Eq. (10) directly to get an estimate of
the correlation energy through the integration of Mo(r, ).
To this purpose we calculated Mo(r, ) up to r, =50 per-
forming a numerical integration and then deriving the
correlation energy through subtraction of the Hartree-
Fock contribution to the total energy

+ 3

2~ar,

The results of this calculation are given in Table III.
Once again the local field of Geldart and Vosko is in
very good agreement with the correlation energy deduced
by Ceperley and Alder. To check the quality of present
numerical integration and, in turn, the quality of the
self-energy we obtained from the Monte Carlo data
through Eq. (11), we used this last estimate to again
derive e, . We employed the same numerical approach
used in obtaining the results of Table III. The correlation
energy so derived is reported in the second column of
Table III and compares fairly well with the original data,
the error being less than 0.4 mRy in all cases.

Further effort could be devoted in deducing a better lo-
cal field, still within the present approach. However, we
consider very interesting the present conclusion that the
simple local field of Eq. (8b) allows us to obtain such a
good estimate of the self-energy. It is also worthwhile to
point out that Eq. (8b) does not fulfill special require-
rnents which are thought to be important. Nevertheless,
present good results are obtained and this can be con-
sidered in agreement with the observation that accurate
high-momentum behavior of G(q) is not important in
many respects. On the other hand, a similar, abnost
phenomenological, local field has been employed recently
to analyze the electron gas even as a function of ternpera-
ture with rather reasonable results.
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To get further information on the effect of the local
field on the one-particle behavior of the electron gas, we
also analyzed the spectral weight function, ' ' which is
defined by

A(q, co)= ——lim I co+Mo+irlsgn(co —k~)
1 2

~ q-O+

q— M—[q, co+i rl sgn(co —k„)]I

(13)

It should be remarked that when the energy is different
from the chemical potential, the imaginary part of the
self-energy is nonzero so that the limit in Eq. (13) is easily
carried out. On the other hand, when co is close to kF,
the imaginary part of M(q, co) vanishes as (co kF—) and

A(q, co) approaches a 5 function of energy, so that well
defined one-particle states exist.

Using the various self-energies we have considered, we
found that the overall shape of A(q, co) is almost indepen-
dent of the local field. In all cases we also recovered the

TABLE I. Self-energy along the quasiparticle dispersion relation co=q as calculated using various local fields. The RPA results
have already been presented in Ref. 13.

q/kF 0.2 0.4 0.6 0.8 1.2

Re(M)
Im(M)

Re(M)
Im(M)

Re(M)
Im(M)

Re(M)
Im(M)

Re(M)
Im(M)

Re(M)
Im(M)

Re(M)
Im(M)

Re(M)
Im(M)

Re(M)
Im(M)

Re(M)
Im(M)

Re(M)
Im(M)

Re(M)
Im(M)

—1.4582
0.2583

—0.6816
0.1123

—0.4516
0.0629

—0.3434
0.0401

—0.2804
0.0277

—0.2389
0.0203

—1.3920
0.2835

—0.6244
0.1286

—0.4025
0.0737

—0.3007
0.0477

—0.2427
0.0333

—0.2052
0.0246

—1.4505
0.2345

—0.6830
0.1009

—0.4542
0.0565

—0.3458
0.0361

—0.2825
0.0251

—0.2408
0.0184

—1.3850
0.2575

—0.6270
0.1153

—0.4063
0.0660

—0.3043
0.0428

—0.2458
0.0301

—0.2079
0.0223

Local field of Ref. 29

—1.4326
0.1751

—0.6891
0.0726

—0.4622
0.0407

—0.3530
0.0262

—0.2886
0.0184

—1.4143
0.0981

—0.7004
0.0390

—0.4745
0.0219

—0.3637
0.0142

—0.2976
0.0101

—0.2459 —0.2535
0.0136 0.0075

Local field of Ref. 30

—1.3702
0.1918

—0.6370
0.0824

—0.4180
0.0471

—0.3146
0.0308

—0.2546
0.0218

—1.3596
0.1064

—0.6554
0.0436

—0.4361
0.0249

—0.3301
0.0165

—0.2677
0.0118

—0.2154 —0.2265
0.0163 0.0089

Local field of Ref. 31

—1.3957
0.0302

—0.7126
0.0116

—0.4880
0.0065

—0.3757
0.0042

—0.3079
0.0030

—0.2624
0.0023

—1.3525
0.0324

—0.6763
0.0128

—0.4565
0.0073

—0.3478
0.0048

—0.2828
0.0035

—0.2395
0.0027

—1.3647
0

—0.7201
0

—0.4995
0

—0.3868
0

—0.3181
0

—0.2715
0

—1.3327
0

—0.6921
0

—0.4747
0

—0.3645
0

—0.2977
0

—0.2527
0

—1.3324
—0.0297

—0.7251
—0.0117

—0.5094
—0.0067

—0.3971
—0.0045

—0.3277
—0.0033

—0.2803
—0.0025

—1.3114
—0.0319

—0.7050
—0.0129

—0.4908
—0.0075

—0.3799
—0.0051

—0.3117
—0.0037

—0.2654
—0.0029

Re(M)
Im(M)

Re(M)
Im(M)

Re(M)
Im(M)

Re(M)
Im(M)

Re(M)
Im(M)

Re(M)
Im(M)

—1.4076
0.2783

—0.6209
0.1276

—0.3869
0.0740

—0.2768
0.0484

—0.2128
0.0342

—0.1706
0.0255

—1.4001
0.2526

—0.6230
0.1147

—0.3902
0.0668

—0.2799
0.0440

—0.2154
0.0313

—0.1728
0.0235

—1.3834
0.1879

—0.6311
0.0825

—0.4002
0.0484

—0.2887
0.0325

—0.2227
0.0236

—0.1789
0.0180

—1.3689
0.1044

—0.6463
0.0442

—0.4157
0.0263

—0.3020
0.0181

—0.2338
0.0135

—0.1882
0.0106

—1.3563
0.0319

—0.6639
0.0131

—0.4339
0.0078

—0.3181
0.0055

—0.2477
0.0042

—0.2002
0.0034

—1.3321
0

—0.6780
0

—0.4516
0

—0.3350
0

—0.2632
0

—0.2143
0

—1.3059
—0.0315

—0.6893
—0.0133

—0.4677
—0.0082

—0.3514
—0.0060

—0.2788
—0.0047

—0.2289
—0.0040
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TABLE II ~ Self-energy at the Fermi surface in various approximations. The result of column 1 is de-
rived from the fit (Ref. 23) to the Monte Carlo data (Ref. 22) as described in the text. Columns 2, 4, 5,
and 6 refer to the local fields of Eqs. (8a), (8b), (8c), and (8d), respectively. Column 3 is deduced from
Ref. 17.

rs Mo(r, ) (Ry)

—1.3574
—0.7141
—0.4933
—0.3803
—0.3111
—0.2642

—1.3937
—0.7483
—0.5259
—0.4115
—0.3411
—0.2932

—1.307
—0.691
—0.482
—0.373
—0.309
—0.263

—1.3327
—0.6921
—0.4747
—0.3645
—0.2977
—0.2527

—1.3647
—0.7201
—0.4995
—0.3868
—0.3181
—0.2715

—1.3313
—0.6776
—0.4514
—0.3349
—0.2632
—0.2143

double-peak structure observed by Lundqvist' ' with a
little effect on the relative intensities. Typical results are
shown in Fig. 1 in the case of RPA and in the case of the
local field of Geldart and Vosko. As we can see, only the
peak position is affected by the change of the local field.

The fact that the peak position is affected by the local
field could have some relevance in explaining recent pho-
toemission data on sodium. Assuming that sodium is
reasonably modeled by an electron gas at r, =4, we ex-
pect a bandwidth reduction with respect to the free-
electron gas as due to self-energy effects. This reduction
amounts to 12% and 18% of the free-electron bandwidth
using the RPA and Geldart and Vosko local fields, re-
spectively. These numbers should be compared with the
observed value of 25%. Therefore it is seen that the Gel-
dart and Vosko local field gives rise to a better agreement
as compared to RPA. It is quite clear that the compar-
ison with experimental data cannot be considered as a
check for electron-gas theory, however the above esti-
mates are rather gratifying.

The relative position of the auxiliary peak to the main
(one-particle) peak is almost independent of the local
field. This fact is expected, as such an auxiliary peak
should be due to the coupled propagation of the electron

Eq (Bb)

5 ~ i

(b)

ao (Ry)

and the plasmon' and the plasmon dispersion relation is
slightly affected by the local field. We found that the
solution of the equation

e(q, ru) =0

RPA Eq (Sb)

(c)

TABLE III. Correlation energy deduced from the chemical
potential. Column 1 is taken from Ref. 23, column 2 is derived
from the chemical potential of Ref. 23 throughout present nu-
merical procedure, column 3 is the correlation energy within
RPA as deduced by Hedin (Ref. 13), and column 4 is the RPA
result derived from the present chemical potential. The last
column has been obtained from the chemical potential resulting
from the local field of Eq. (8b).

(b)

10" x5

')s

(a)

fs-4

rs

1

2
3
4
5
6
10

—120.0
—89.6
—73.8
—63.6
—56.3
—50.7
—37.1

—119.6
—89.5
—74.0
—63.7
—56.2
—50.6
—37.0

e, (r, ) (mRy)

—157.8
—123.8
—105.8
—93.8
—85.1

—78.4
—61.5

—154.8
—122.3
—104.9
—93.0
—84.3
—77.5
—60.7

—125.7
—95.6
—80.6
—70.8
—63.8
—58.6
—45.8

m (Ry)

FIG. 1. Spectral weight function as a function of energy at
selected values of q/kF at r, =2 and 4 [(a) qlkz 0, (b)——
qlkF 0 5, (c) ql——kr=. 1.5]. The data have been calculated
within the RPA (left-hand side) and using the local-field approx-
imation of Ref. 29 {right-hand side).
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TABLE IV. Ratio between the actual compressibility and independent electron compressibility.
Column 1 refers to Hartree-Fock approximation to the total energy, column 2 refers to the total energy
of Ref. 23, column 3 is taken from Ref. 35, and columns 4 and 5 are deduced from the chemical poten-
tial of approximations of Eqs. (8b) and (8d). Column 6 is derived from the dielectric function of Eq.
(Sb).

rs

0.01
0.1

1

2
3
4
5
6

10

1.0016
1.0168
1.1988
1.4663
1.9901
2.9706
5.8556

203.1731
—1.5186

1.0016
1.0169
1.2093
1.5485
2.1985
3.9279

20.4970
—6.1812
—0.9758

1.017
1.206
1.524
2.045
3.067
5.988

200
—1.058

Kp/K

1.0016
1.0169
1.2098
1.5484
2.1912
3.8611

17.8925
—6.6480
—1.0086

1.0016
1.0170
1.2118
1.5683
2.2847
4.3602

67.0938
—4.8513
—0.8331

1.0017
1.0169
1.1988
1.4964
1.9904
2.9712
5.8581

206.3838
—1.5184

(q fixed} is affected by the local field only when q is close
to the critical momentum.

In view of the behavior of the spectral function, the
analysis of energy-dependent local fields appears rather
interesting. However, the inherent formal complexi-
ty of available energy-dependent local fields makes the
numerical calculation much more time consuming, while
no clear check on the quality of the spectral function is
available.

IV. CONCLUDING REMARKS

The most relevant conclusion we can derive from
present calculation is that the electron-gas self-energy is
appreciably affected by the local field and that the total-
energy calculation can be employed to get some idea on
the quality of the calculation. Furthermore, even simple
local fields such as that proposed by Geldart and Vosko
can be used to produce a rather good estimate of the total
energy, whereas the much more involved phenomenologi-
cal suggestion of Ichimaru and Utsumi ' appears not to
be adequate especially when r, increases. In particular,
we found that the local field of Ref. 31 does not give a
good estimate of the self-energy at the chemical potential
(see Table II) because of the rather high peak present
around q =2kF. We believe that our result gives an indi-
cation of the inadequacy of the static approximation in
deriving accurate dielectric functions.

Further development of the GW-like approximation
could be the analysis of the effect of the compressibility
sum rule. ' However, to satisfy such a sum rule, a com-
plex self-consistency condition has to be taken into ac-
count. Within the present description the compressibility
sum rule can be written as

COp K k~
e(q, O)=1+n =1+, q~0 (15}

where co~ is the plasma energy, a is the isothermal
compressibility, and k, is the screening wave vector.
Thus, such a condition is not straightforward; however,
we checked to what extent it is satisfied within various
approximations. The results of this evaluation are given
in Table IV, where the ratio of the actual compressibility
to the noninteracting one Kp= 2~a r, is reported in com-
parison with that derived from the Monte Carlo data
and other available approximations. As expected, our
best approximation to the self-energy [Eq. (Sb)] gives a
rather good estimate of the compressibility as deduced
directly from the chemical potential derivative. Howev-
er, the corresponding dielectric function is poorer than
that derived by Ichimaru and Utsumi. 3' In any case, this
behavior is in the spirit of a perturbative approach, as an
approximate screened potential is used to derive a reason-
able self-energy, while the dielectric function is only a
rough approximation.
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