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We present a new method for calculating the average integrated total density of states (N(E) ) of
a disordered system on a Bethe lattice terminating on a closed surface. We first give a rigorous
proof of a "negative eigenvalue" theorem and subsequently derive exact expressions for (N(E) ).
The node-counting property for the Bethe lattice is then straightforwardly deduced. We apply our
method to obtain (N(E)) for the cases of Lorentzian and Gaussian disorder. The behavior of
(N(E)) is dominated by the surface states due to the special topology of the system. Thus, we
finally discuss the relevance of our results to the densities of surface states in real lattices in connec-
tion to relevant material from the literature.

I. INTRODUCTION

The node-counting method that relates the number of
zeros (nodes) of an eigenstate of energy E to the integrat-
ed density of states of the system up to that energy, first
introduced by Schmidt in the studies of one-dimensional
(1D) random systems, has been extensively used in calcu-
lating energy spectra of such systems. The usefulness of
the method relies in the fact that it is rather straightfor-
warp to calculate the expectation value of the number of
nodes of eigenstates around an energy E in a given en-
semble of random 1D systems. The restriction to 1D sys-
tems on the other hand limits the usefulness of the
method and the spectra of random systems in two or
three dimensional lattices are derived by other generally
approximate methods like the coherent-potential approxi-
mation (CPA) for example.

The simple tridiagonal form of the Hamiltonian of a
1D random system with nearest-neighbor interactions
(simple linear chain) is a central feature that simplifies the
formalism and makes the method tractable. A block-
tridiagonal form of the Hamiltonian is again a central
feature in the "negative eigenvalue" method proposed by
Dean and Martin and reviewed by Hori. The integrat-
ed density of states in that method is related to the num-
ber of negative eigenvalues of appropriate block matrices
appearing in the secular equation of the system. Higher-
dimensional lattices can have such block-tridiagonal
Hamiltonians and their spectra have been calculated this
way.

In another approach to problems involving general
Hamiltonian matrices, Mattis has proposed a systematic
method of reducing the problem to the study of tridiago-
nal matrices which are isomorphic to the simple linear
chain and for which node counting can be properly uti-
lized.

In this paper we study the spectral properties of a
tight-binding Hamiltonian on a Bethe lattice, by showing

that it can be written in a proper block-tridiagonal form.
A rigorous proof of a properly restated "negative eigen-
value" theorem is given and exact expressions for the in-
tegrated density of states are derived. The node-counting
property for the Bethe lattice is a direct consequence of
this analysis.

The case of a Bethe lattice is special in the sense that
locally it can be made to resemble the structure of vari-
ous two- or three-dimensional lattices, while it possesses a
special topological structure that is drastically different
from the structure of those lattices. The above properties
of the Bethe lattice have two very important conse-
quences. First, the average total density of states can be
calculated with the method presented here. Second, its
topological structure emphasizes the surface of the lattice
where most of the sites lie. (For large Bethe lattices
N„„/N,„&~1 for Z &&2, where the N's are the number

of sites, total and surface, respectively, Z is the lattice
coordination. ) Therefore in such a system the total densi-

ty of states is dominated by its surface part.
In what follows we present in Sec. II the steps leading

to the proof of the node counting property for the Bethe
lattice. We then develop an exact method for calculating
the average total density of states of a tight-binding,
disordered Bethe system terminating on a closed surface.
The method has been outlined in a previous paper.

In Sec. III we present the behavior of the total density
of states for the cases of Lorentzian (Sec. IIIA) and
Gaussian (Sec. III B) randomness. The form of the bulk
density of states is well known since the Bethe lattice has
been used extensively for such calculations. The total
density of states in our system differs drastically from
such forms in the case of weak disorder due to the dom-
ination of the surface states. In the limit of strong disor-
der the form of both bulk and surface densities of states is
dominated by the form of the randomness. Thus in Sec.
III C we conclude this work by discussing the relevance
of the above results to the surface density of states of
disordered real lattices.
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II. NODE COUNTING ON THE BETHE LATTICE

A. The model

We consider a Bethe lattice of coordination number Z
branching out of a central lattice site, in n homocentric
layers of sites (Fig. 1). The lattice terminates in an exter-
nal boundary layer labeled 0. Moving inwards we label
1,2, . . . , n the successive layers of the lattice up to the
central "layer" n which contains only one site labeled c.
Each layer k &n contains Nk ——Z(Z —1}" " ' lattice
sites, each labeled (k, 1), where I =1,2, . . . , Nk is an in-

tralayer site label and the central site c is thus alternative-
ly labeled (n, 1 ). Consequently the lattice as a whole (ex-
cluding the boundary 0 layer} contains a total
N =[Z(Z —1)" ' —2]l(Z —2) sites and every site (k, l)
has Z —1 nearest neighbor (NN} sites

(k —l, l', k —l, l'+1;. . . ;k —1,I'+Z —2)

on layer k —1 and one NN is the (k+ 1,l") on layer
k + 1 (see Fig. 1).

We consider the layer 1, adjacent to the boundary layer
0, as the surface of our system which then contains

N, =Z(Z —1}" ~ sites. Note that N, /N~(Z —2}l
(Z —1) as n ~ 00 i.e., the surface contains a finite frac-
tion of all sites even at the limit of the infinitely large sys-
tem.

We assume a one-electron tight-binding Hamiltonian
for particles on the above lattice, of the form

over NN sites only. We adopt the boundary condition
eo I

——+ 00 for every site (0, I) on the external layer 0.
We observe that the matrix representing our Hamil-

tonian (Eq. 2.1) in the Wannier-like basis has the block-
tridiagonal form:

A1 B1 0

B1 A2 B2

0

0

0
(2.2)

0 TB„2 A„1 B„
0 B„1 A„

The diagonal elements Ak, k & n, are Nk XNk diagonal
matrices, k being a layer level, with (Ak),J

—sk;5;~,
A„=s, and the off-diagonal elements Bk are Nk XNk+(
matrices (Bk denoting the transpose) which can be writ-
ten in block-diagonal form as (Bk );J = V5;~, for
k =1,2, . . . , n —1, where V=( —V, —V, . . . , —V)
(column vector}, containing Z —1 elements. The last off-
diagonal elements B„1adjacent to the central site n are
( —V, —V, . . . , —V) (column vector}, containing Z ele-
ments.

The eigenvalues I E; I of H are the zeros of the charac-
teristic equation

n Nk

H = y y I
k, I & sk, I & k I

I

—V X'
k=11=1

(2.1)

h(E)—:det(H EI&)=0—
where IN is the N XN unit matrix. Then

N'

h(E)= g(E; E) ', —

(2.3)

(2.4)
The

~
k, l) are Wannier-like vectors forming the basis.

The sk I are the diagonal matrix elements of H, V is the
energy transfer integral, and the primed summation is

where A, ; the degeneracy of the zero E; with g,. , A, ; =N.
The expression

~ ~
~ ~

N'

N„(E)=—g A,;e(E E; ), —
i=1

(2.5)

where e is the Heaviside unit-step function gives ap-
parently the percentage of eigenvalues that are smaller
than E. Thus N„(E) is the total integrated density of
states per site (TIDOS) of our system.

lay B. Negative factor counting

layer 2

layer 1

H ('i'
rr

layer k (4, (kil, l )
~ / I I

I)
(k I) Lk. l ' r

~ J'
4 ~

~ ~

~ ~A
it

I (k-1,I41)L

When H has a block tridiagonal form, Dean and Mar-
tin have sho~n that

n

det(H EIN)= g detU—k(E),
k=1

(2.6)

where the Uk(E) are real symmetric matrices given by
the recurrence relation:

Uk(E) = Ai EIN —Bk & Uk '& (E)B—k

FIG. 1. Bethe lattice of coordination Z =4 in n homocentric
layers. Layer 1 is the surface layer and C is the central lattice
site. The sites in layer k are labeled (k, l), I being an intralayer
label.

with U)(E)= A, EIN . (2.7)—
In our case of the Bethe lattice, all the Uk(E} are diago-
nal matrices as can be easily verified by induction from



38 TOTAL AND SURFACE DENSITY OF STATES ON THE BETHE. . . 3811

(2.7), because of the special form of our Ak and Bk [see
(2.2)]. Then

We are interested in the ensemble average value (N„(E))
of the N„(E) and from (2.11) we see that

Nk

detUk(E)= II Xk ((E),
l=1

(2.8)
1

n

(N„(E))=—y y (e( —X„"',(E))) .
& k=1I =1

(2.13)

where Xk i(E) are the Nk eigenvalues of Uk(E) and from
(2.7) we see that the Xk &(E) obey recurrence relations,

I'+ Z —2

X„i(E)=c„i , E ——V g X„',~ (E)
m =I'

with

Xi i(E)=si i E—
on the first layer and

Z

X,(E)=e, E —V—g X„',i(E)
1=1

(2.9a)

(2.9b)

at the central "layer" n (i.e., the site c). Furthermore we
obtain using (2.3), (2.6), and (2.8)

n k

b(E) = II II x„,(E) .
k =11=1

(2.10)

Dean and Martin have given a rather general proof
that the number of negative eigenvalues of the matrices

{U„(E)] at some energy E equals the number of eigenval-
ues E; of H with E; & E. They called this statement "the
Negative Eigenvalue Theorem. " In stage (1) of their
proof (see Ref. 3, pp. 410 and 411) they assume that h(E)
have no zeros in common with IIk ', detUi, (E). Thus,
they claim, the zeros of b(E) coincide with those of
detU„(E) [see (2.6)]. We verified that in our case of the
Bethe lattice the above assumption is not generally true,
even when all eigenvalues are distinct, as Dean and Mar-
tin require, and that there may be such common zeros. A
modified statement of their theorem is nevertheless true
for our case as we show in the Appendix, where we
present a rigorous proof of our negative eigenvalue
theorem for the Bethe lattice.

According to the theorem the TIDOS of the system
(see the Appendix) is given as

n k

N„(E)=—g g e( —X„,(E)) . (2.11)
/c =11=1

where 6 is again the Heaviside unit-step function and the
Xk &

(E) are defined in the Appendix.

C. The TIDOS of the disordered Bethe lattice

n

P{&k,i]= II II PO(ek, i»
k=11=1

(2.12)

We consider hereafter an ensemble of systems with H
given by (2.1} in which the probability of every
configuration {ek &] for the diagonal elements of H is
given as

Having assumed uniform boundary conditions on the sur-
face, we have statistical homogeneity within every layer.
We shall then need the probability distribution +k(Xk, E)
of Xk(E) (we hereafter drop the intralayer index I) in
terms of which we have from (2.13)

(N„(E))= g f 4„(X;E)dX .k (2.14)

k f @k(X;E)dX
i (Z —1)"

(2.15)

For the calculation of the @k(Xk,'E) we use the re-
currence relations (2.9) with the initial condition (2.9a).
We have

q, (X,;E)=f 5{Xi—(s, —E)}P,(s, )ds,

=Pii(E +Xi ) (2.16)

Also, observing that the ek;, {Xk, ] in (2.9) are statist-
ically uncorrelated to each other, we obtain in a fashion
similar to (2.16) the integral recurrence relation

Z —1

'0 E+Xk+v' y—00 i=1

Z —1

x II 4k i(y;;E)dy;,

(2.17)

which together with (2.16} permits the calculation of all
4 i (Xg', E).

Since the Xk obey "continued-fraction" type of re-
currence relations like (2.9), the 4„(X;E) converge as
k~ ~ to 4„(X;E)provided the Po(e) is well behaved,
where 4„(X;E) is the solution of the integral equation
obtained from (2.17) by putting @i,(X;E)

i(X;E)=4„(X;E). In the case where Po(c, ) is a
Lorentzian [see (3.1)], Eggarter' has given an elegant
proof of the above statement. Due to the convergence
property of @k(X;E) we calculate (N(E) ) by consider-
ing a convergence range of k, layers for 4k and express-
ing (N (E) ) from (2.15) in the form

k,

(N(E)) = y „f '
4„(X;E)dX+(Z—1)

, (Z —1)"

One can easily show that the sequence of (N„(E)) as
n —w oo (the infinitely large system) converges uniformly
to

( N(E) ) = lim (N„(E) )
n —+ 00

i.e., the c.k I are statistically uncorrelated random vari-
ables having a common probability distribution Po(Ek &).

X;E dx,

(2.18)
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p2
fk(X;E)= 24k(V /X;E),

X
(2.20)

which we shall need in the next section for obtaining re-
sults in the Lorentzian and Gaussian randomness case.

III. BEHAVIOR AND SIGNIFICANCE OF ( N (E) )

where k, depends on the degree of randomness in the sys-
tern.

The node counting property is a direct consequence of
the above analysis through the following reasoning.

Starting from the eigenvalue equation H
~

qI, E )
=E

~

+;E ) in a matrix form, where H is given by (2.1)
and

~

4;E ) is a column vector
~

[ak & I ) [ak &
being the

amplitude of
~

O';E ) at site (k, l)], we introduce the quo-
tients IIk &(E):Vak—+1 &

/ak &. From the eigenvalue equa-
tion one can see that the IIk&(E) obey the same re-
currence relations (2.9) as the Xk &(E) and therefore their
probability distributions Pk ( IIk, E) coincide with the
41,(Xk', E) as given by the same integral recurrence rela-
tions (2.17). Thus the percentage of negative Xk, (E) ap-
pearing in the right-hand side of the expression (2.18) for
(N(E)) coincides with the percentage of negative
IIk &(E). The negative IIk &(E) are associated with the
zeros of the eigenstates around E since they simply regis-
ter the local changes of sign of the amplitudes of

~

4;E )
and the node counting property is likewise established.

We conclude this section by giving below the Fourier
transform (FT) version of Eq. (2.17)

4k( ~;E)=(—&2n ) 'e ' Po( co)[fk,(—co;E)]'

(2.19)

where indicates the FT of 4,f and

and

1 1(c} X(X;a,y )dX =———arctan(a ly )
2

(3.4)

We assume a Lorentzian disorder for the common
probability distribution Po(e) of the diagonal elements
Ek &

of our Hamiltonian (2.1). Thus, expressing the ener-
gies in units of V [i.e., taking V = 1, Eq. (2.1)],

Po(e) =X(e;0,yo), (3.5)

where X(e;O, yo) (see 3.1) is centered at e=O and is of
width yo. Next we observe from (2.16) that 4,(X;E) is a
Lorentzian with a, = E, y—, =yo, and so is f, (X;E) [see
(2.20), (3.3}],with ( A „I,) given in terms of (a„y, ) as in
(3.3). Using the FT of f, we see that all subsequent 4k,
k =2, 3,4, . . . produced by iterating relation (2.19) are
also Lorentzians with (a&,yk) obeying the following
algebraic recurrence relations:

O'k —&

ak —— E —(Z——1)
2

&k —i+'Vk —i
(3.6)

Vk —1

y1 ='yo+(Z 1)
&k —i+7k —i

since now only FT's of the Lorentzian appear in relation
(2.19},and then (2.19}is satisfied when the exponents ap-
pearing in both sides of it [see (3.2)] obey relations (3.6).

As mentioned in Sec. II, Eggarter' has shown that the
iteration of (3.6) makes the values of ak, yk converge ex-
ponentially fast to a(E),y(E), where (a(E),y(E)) is ob-
tained as the solution of the algebraic system derived
from (3.6) when setting ak ——ak 1 a(E) and ——yk
=yk 1 y(E), that ——obeys a (E)+y (E)&Z —1. We
find

In the present section we study the behavior of
(N (E) ) [Eq. (2.15)] in the case of (A) Lorentzian and (B)
Gaussian diagonal disorder of the Bethe lattice and in (C)
we discuss the applicability for our results for studying
the surface DOS of disordered real lattices.

A. The Lorentzian disorder case

a(E)= —
—,'E(1+q),

y(E) = —,
' yp(1+ 1/q),

where

q=—
~

E
~

-'(-,'[E'—y,' —4(Z —1)]

(3.7)

X(X;a,y) =——1 y
& (X —a)'+y'

having the following properties:

(3.1)

1(a) X(co;a,y) = —exp( —y ~

a)
~

i ace), —(3.2)

We consider here the Lorentzian (or Cauchy) distribu-
tion X.(X;a, y ) centered at a and of width y

+ p[E2 y2 4(Z 1)]2+y~2211/2}1/2

Thus, the 4k as k~~ converge to 4„given by
(a(E),y(E)) [see (3.1)].

The average TIDOS (2.15) is expressed using (3.4) and
(3.6) as

1 Z —2
(Z —1) 'arctan(ak jyk ),

k=1

where X(co;a,y) is the FT of X(X;a,y ).
(b) The function having the limiting behavior

(3 8)

l(X; A, I')= X(1/X;a, y)
1

X &N(E))
2

'Vo
as E~k~ .

is again a Lorentzian with

a +y ~+y (3.3)

Dancz and Edwards, " using the Green's-function tech-
niques, have also derived an integral expression for the
averaged-total density of states of the Cayley tree, in the
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case of an infinitely large system with Lorentzian disor-
der.

Figure 2 shows the behavior of the total average DOS

p(E)= (N(E) &

d
dE

for the cases @0=0.1V (low disorder) and yo=0. 5V (in-

termediate disorder) of a Bethe lattice with Z =4.

(2.15)]. Starting at the surface of the system with [see
(2.16}]

@,(X;E)=G(E+X;o), (3.12)

we use again the FT version (2.19) of the recurrence
scheme for the subsequent 4k. In this scheme it is most
convenient to use an expansion of 4&k, fk in terms of
orthonormalized Hermite function'

B. The Gaussian disorder case (X;a)=C e ~ H (X;a), (3.13)

We consider here the Gaussian distribution G(X;cr),
centered at X =0 and of width o.

where H, m =1,2, . . . , are Hermite polynomials obey-

ing

G(X;o )= —exp( —X /2a )
&Acr

having a FT

(3.9) H =2aXH, —2a(m —2)H

H, (X;a)=1, H~(X;a)=2aX,
1/2 —1/2

G(co, cr)= —exp( —o co /2) .
&2m.

(3.10)
Cm [(m —I }!](2a )

Po(e) —=G(e;o ) . (3.11)

In the present case we proceed to obtain numerically the
4„needed for the calculation of the TIDOS (N(E) ) [see

We assume a Gaussian disorder of width 0. for the com-
mon probability distribution Po(s) of the diagonal ele-

ments sk I of our Hamiltonian (2.1). Thus expressing the
energies in units of V as in Sec. III A, we have

and a is a positive definite parameter.
This expansion is always possible since the 4k, fl, are

square integrable functions. ' The FT of %' is given as

'4 (co,a) =( i ) '4— (co; 1/a) (3.14)

f (X)= g A (a)% (X;a) f(co)
m=1

and then the FT of 4k, fl, is directly given from the ex-

pansion of 4k, fk in the X space; if

1. 75-

1.50- (a)
where

A (a)4 (cuba),
m=1

1.25 A (a) =f f (X)4 (X;a)dX . (3.15)

1.00-

0.75-

0.50 .

0.25-

0
0.35 '

0.30-

020-

015-

0.1 0—

0.05-

0—

EI V

Using (3.12), (2.20), (3.15), and (3.14) we introduce in
(2.19)f&(ru) properly expanded in terms of 4 (co;a) and
we obtain 42(co). Purseval's theorem' permits us to ex-
press the B' '(a) entering the expression @2(X)

,
B' '(a)% (X;a), in terms of 42(m) as

B' '(a)= f kz( —co)4 (co;a)dao .

Having obtained thus 42(x), we use (2.20) to obtain
f2(co) properly expanded in terms of 4 (co;a) using
again (3.15) and (3.14), and the iteration proceeds likewise
to obtain all subsequent 4I, (X).

In performing the calculation we used the first fifty-two
Hermite functions and the overall accuracy in the calcu-
lation of the 4k is estimated to be 3—5 %. We found that
the @k(X;E)converge to a function N (X;E) in a num-
ber k, of iterations (corresponding to k, surface layers)
that, as expected, depended on E and decreased rapidly
with increasing disorder cr The average T.IDOS (N(E) )
is calculated using (2.15) and Fig. 3 shows the behavior of
the total average DOS

d
FIG. 2. Total density of states per site p vs E/V of a system

with Z=4 and Lorentzian diagonal disorder of width (a)

yp
——0, 1Vand (b) yp ——0.5 V. for the cases (a) cr =0.5 and (b) o =1 and 2&3 (all o in
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0.7-

0.6-

0.5-
(a)

04-

0.3

0.2
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r~~
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\I
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~ ~
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r

(b)

0.05

-2 0 2 4

E I V

a%
~

FIG. 3. Total density of states per site p vs E/V of a system
with Z =4 and Gaussian diagonal disorder of width (a) a =0.5 V
and (b) cr=1.0V (dashed line) and cr=2&3V (solid line). The
bulk density of states in all three cases is also shown by dotted
lines. Note that V introduces energy scale proportional to the
unperturbed bandwidth Bo——4&Z —1 V.

units of V). The bulk DOS pb(E) given ' by

p& (E)=J 4„(X;E)4„(1/X;E)dX,

is also shown on the same figure by dotted lines.

C. DOS in the surface region of disordered real lattices

The local DOS in the surface region of real systems has
been studied by many authors using tight-binding
methods' and more recently by ab initio pro-
cedures. ' Though it is quite clear that these ab initio
methods have shown the importance of deriving the elec-
tron charge distribution at the surface self-consistently in
order to obtain correctly the surface DOS, a task which is
not envisioned here, these methods are incapable of han-
dling large amounts of disorder and often require large
amounts of computer work. With this in mind it is in-
teresting to examine the extent to which qualitative
features from our calculated DOS agree with those from
relevant ab initio and tight-binding calculations, as an in-
termediate check, prior to studying the behavior of the
local DOS in the surface region in the case of systems
with intermediate and strong disorder, where such checks
do not exist. As we discuss below our results should be-
come dramatically more realistic as the disorder of the
system is increased. Therefore the discovery of some
qualitative resemblances of the weak disorder behavior of
our model to the existing results for ordered systems,
should provide reasonable evidence for the pertinence of

our results to real systems when intermediate or strong
disorder is present.

The centrosymmetric Bethe-lattice construction used
in our model (see Fig. 1), apart from the obvious advan-
tage stemming from the simplicity of the formalism,
which makes the solution tractable for any amount of dis-
order present in the system, has at first sight an advan-
tage as well as a disadvantage over other possible con-
structions using Bethe or real lattices. The advantage lies
in the capability of the construction to imitate locally a
real lattice topology in every neighborhood of the whole
surface layer and not only in the vicinity of an appropri-
ate cluster of sites, as in the usual Bethe lattice applica-
tions. The disadvantage of the construction is its
dramatic failure to imitate the topology of successive real
lattice layers, because the number of lattice sites in our
layers decreases geometrically fast inward from the sur-
face. This fact would also make unjustifiable the use of
anything beyond the tight-binding Hamiltonian.

A more careful examination reveals though, that the
advantage becomes truly significant only if a large
amount of disorder is present. Because then, the eigen-
states are localized rather strongly and their DOS de-
pends mainly on the local lattice topology explained
above.

A more careful examination reveals also that the disad-
vantage is a minor one in the overall scheme, if one is in-
terested in the electronic structure of the first few layers
of the surface region, in the presence of large ainounts of
disorder, for the following reasons: As discussed in the
Introduction, most of the lattice sites in our construction
lie in those first few layers (for example 96% of the sites
lie in the first three layers for Z =4). Then, if due to dis-
order the states are well localized at every part of the sys-
tem, the total DOS we calculate has a rather small contri-
bution from the states localized in the rest of the system.
In the above example the rest of the system contains less
than 4% of the total number of sites. In other words, our
total DOS is then dominated by the states localized in the
first few layers.

We come now to compare our results in the case of
weak disorder with relevant ones for ordered systems,
from the extensive literature associated with surface elec-
tronic structure. We note first that electron charge redis-
tribution affects almost exclusively the first surface layer
(see for example Fig. 10 of Ref. 23) and therefore the lo-
cal density of states in subsequent layers (second from the
surface, etc.} should show little influence from charge
redistribution. Therefore, when a calculation of local
DOS in the surface region includes self-consistently the
charge redistribution, its results should differ substantial-
ly from ours only in the first surface layer. With that in
mind, we compared our results to a variety of local
DOS s obtained by various Hamiltonians and interesting-
ly enough we found them to have common basic features,
in the layers adjacent to the first surface layer.

We first mention Ref. 16 (Fig. 1 therein) and Ref. 20
(Fig. 21 therein} where in a non-self-consistent tight-
binding scheme they obtain the same basic three-peak
structure of the surface DOS, although the structure is
shifted with respect to the band center in Ref. 20 due to
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the second-neighbor overlap integrals that shift the band
but do not change the bandwidth. A similar behavior has
the non-self-consistently calculated surface DOS present-
ed in Fig. 2 (dashed line} of Ref. 17.

We then examine a number of papers where the calcu-
lations of surface DOS contain various degrees of self-
consistency in charge redistribution. Comparison of our
results with the local DOS of the first surface layer con-
tained in these references shows substantial discrepancies
due to charge redistribution as discussed above, and such
discrepancies are more dramatically obvious in the work
of Kerker et al. (see Fig. 3 of Ref. 22). On the other
hand, the behavior of the DOS in the second layer from
the surface exhibits again the basic three-peak structure
in all cases examined, and we mention Fig. 1 and Fig. 2 of
Ref. 18, Fig. 1 of Ref. 19, Fig. 12 of Ref. 23 and Fig. 16(c)
of Ref. 24. In Figure 4 we show two of the cases referred
to above, namely the self-consistent calculation for the
second from the surface layer presented in Fig. 12 of Ref.
23 (solid line) and the non-self-consistent calculation for
the surface layer presented in Fig. 2 of Ref. 17 (dashed
line}, for comparison with our calculated surface DOS
presented in Fig. 3(a) above (dash-dotted line). One
should notice the good qualitative agreement consisting
of a coincidence in the positions (unlike their magni-
tudes}, of most of our peaks, to the corresponding ones of
the other two curves, especially the solid curve.

Having established the kind of relevance our results
bear to surface-region DOS in the case of weak disorder
we proceed to some conclusions emerging from the be-
havior of our DOS in the case of intermediate and strong
disorder. One conclusion concerns the overall shape of
our DOS that is dominated there by the type of the ran-
domness (i.e., the DOS has a Gaussian shape for Gauss-
ian randomness as in Fig. 3). The other conclusion con-
cerns the gradual smoothening of the structure as disor-
der is increased, leading to its practical disappearance in

the strong disorder case. We note that such features of
the DOS have been noticed in cases of bulk disorder too.

In closing we should emphasize the fact that our
method can be extended in a simple way to include
layer-dependent randomness and can also be useful in

studying interface DOS and bring about most of their
qualitative features.
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APPENDIX

We consider here the functions Xk &(E) defined as the
eigenvalues of the corresponding matrices Uk(E), which

obey relations (2.9). As shown by Dean and Martin, the
characteristic polynomial h(E) is expressed as the prod-
uct of all the Xk &(E), for all values of E that are not
singular points of this product [see (2.3) and (2.10)].

In what follows, E denotes values of the variable on the
real axis. We first prove the following lemma.

Lemma. The Xz &(E) are fractional rational functions
of E with a degree of the numerator greater by 1 than the
degree of the denominator. Every Xk &(E) is a strictly de-

creasing function of E, at all open intervals in which the
E axis is divided by the singular points of Xq &(E) that lie

on it. Moreover, any zeroes of a Xk &(E) are simple and

any nonremovable singular points of it are simple poles.

Proof by perfect induction

The X, &(E) obviously have all the properties stated in
the lemma [see (2.9a)]. Also, differentiating (2.9) and
(2.9a) with respect to E we obtain

d 1'+Z —2

X„((E)= —1+V g X„, (E)
m =1'

04-
n
j

/

J

with

d
dE Xi i(E)= —1 .

X Xk i ~(E) (Al)

(Ala)

02-

't pI.
~ ti

E/V

We now suppose that all Xk, &(E) for a given k have
these properties. Then it is obvious from (2.9}that all the
Xk &(E) are rational fractions too, represented in the form
of sum of a polynomial (e„,—E) of the first degree and a
proper fraction. This representation being unique, the
degree of this polynomial represents the difference of the
degree (numerator-denominator) of these new rational
fractions. Also, from (Al) it is obvious that for every
Xk ((E),

d
Xk i(E) (0,

FIG. 4. Surface DOS p vs E/V from Fig. 12 of Ref. 23 (solid
line) and from Fig. 2 of Ref. 17 (dashed line), for comparison
with our Fig. 3(a) (dashed-dotted line).

for every E including the singular points E„in the sense
that
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d
lim Xkr(E) &0

E~E dS

Xi, I(E„)= lim Xk i(E) .
E~E,

(A2)

Then according to the lemma, if the Xk i(E) have any
singular points, these points are simple poles, and at all
open intervals in which the axis is divided by these poles,
the Xk"i (E) are strictly decreasing functions of E. More-
over, the properties of the Xk i(E), namely (a) having the
degree of the numerator greater by 1 than the degree of
the denominator, and (b) X„i(E)- E, E~k~—shown
for the Xk i(E) in the lemma and the corollary, are obvi-
ously shared by the Xk i (E) too.

Finally, and most important, if a point E; is a simple
pole of a Xk i (E},then E; is also a zero of at least one of
the Xi, , (E), where (k —I,m) belongs to the "group"
of corresponding lattice points [NN to (k, l}] involved in
(2.9). This means that every point E; that is a simple pole
with multiplicity ( Mult(P; ) ) given by the number of
Xk i(E) in our system that have a simple pole at E;, is
also a zero of multiplicity ( Mult(Z; ) ) given by the num-

ber of corresponding Xk, i.(E) in our system that have a
zero at E;. Moreover (Mult(Z;)) & (Mult(P;)). Then
introducing hm, . below, we have

there. Then the truth of the statements about simple
zeros of the Xk i(E) as well as their "strictly decreasing"
property, follows immediately. Finally, since the
Xi, , (E) have simple zeros it follows from (2.9) that
the poles of a X„,(E), created by simple zeros of the

Xk, (E}involved in (2.9), are simple. The rest of the
poles of X„i(E), if any, are created from removable
singular points E, of the Xk, (E) for which
limE E X„,~ (E)=0 and are simple too, since as

shown above

d
lim X„, (E) &0 .

E~E dE

Corollary: For every Xk i(E) we have Xi((E)- E, —
E—++ oo.

We hereafter introduce the XkLrl(E) as being the ration-
al fractions Xk i(E) in lowest terms, i.e., at all removable
singular points t E„]of a Xi, i(E) we define

k; =Am;, (A6)

while the points E,. for which hm; =0 are the removable
singular points that have been eliminated in (A5}.

%e can now prove the following negative eigenvalue
theorem:

Theorem: The number of Xk"i(E) that have negative
values at a point E that is not a zero of A(E) is equal to
the sum gA, ; of the multiplicities A,; of all zeros [E; I of
h(E), for which E, & E.

Proof: The Xki(E) obey the corollary of the lemma.
Therefore at E = —00 the Xk"i ( —~ ) are all positive and
at E=+~ the Xl", i(+ ~) are all negative, their total
number being N [see (2.8)]. When E is crossing a point
Ei that is a (Mult(Z;)) zero and a (Mult(P;)) pole of
some Xkr(E), then a number (mult(Z;)) of those
Xk i (E) obviously change from positive to negative values
and the rest, a number (mult(P;)) of them, obviously
change from negative to positive values, the net increase
of the total number of negative Xk i (E) being
( Mult(Z; ) ) —( Mult(P; ) ) .

Starting from E=—00 where we have no negative
Xk i(E), we increase by b,m; their number [see (A3)] at
every point E; we encounter before a given value E.
Therefore the total number M„(E)of negative Xk i (E) is

M„(E)= g hm;,
E,. ((E)

with gz~&Eibm, -N, E~+ ~ since at that limit all

Xk i (E) are negative. Then, using (A6) we finally obtain

M (E}= g A.; (A7)

(A3)], all E; are removable singular points of the rational
fraction appearing in the rhs of (A4}. Then at every
singular point E; the limit E~E; of that rhs exists and
expressing that rational fraction in lowest terms we elimi-
nate all these removable singular points and we are left
with a polynomial. Therefore

n Nk
' LT

b,(E): g—ffX~"i(E)
k =1 I=1

and at every point E, for which ( Mult(Z, ) ) & ( Mult(P; )

[i.e. hm; & 1; see (A3)] we have a zero of 5(E) of multipli-

city A,;, where

b, m,.
—= ( Mult(Z; ) ) —( Mult(P; ) & 0 . (A3) E. ( (E)

We can now proceed to show that A(E) defined in (2.3)
can be expressed in terms of the Xk i (E) at every value of
E. Indeed, starting from (2.10}we have

n K

b,(E)= ff ff X„,(E), (A4)
k =11=1

for every E that is not a pole of any Xk I (E), because by
expressing b(E) as in (A4) we eliminate all removable
singular points of the XI, i(E), and the only singular
points contained in the right-hand side (rhs) of (A4) are
the simple poles of the Xk"i(E). Therefore, since at every
singular point E; we have (Mult(Z;) ) & (Mult(P;), [see

and this completes the proof.
Note: By their definitions

n Nk

M„(E)= g g e( —X„",(E))
jc =11=1

and
N'

A,;—= g A,;e(E E;), —
E,. ( &..E)

where X' is the number of distinct energy levels and e is
the Heaviside unit-step function. Then, relation (2.11)
follows immediately from (2.5) and (A7).
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