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Cluster coherent-potential approximation in ternary random alloys
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The augmented-space formalism introduced by one of us is used here to develop a self-consistent

cluster coherent-potential approximation for the density of states for ternary random alloys. The

approximation yields an averaged Green function which maintains its Herglotz properties for all en-

ergies and disorders. An application is made to a model for the ternary brass Cu-Ni-Zn.

I. INTRODUCTION

Recently we proposed a first-principles methodology to
study the electronic properties of substitutional random
binary alloys. ' This augmented-space formalism (ASF)
generalized the conventional coherent-potential approxi-
mation ' (CPA) to include the effects of off-diagonal dis-
order, clustering, and short-ranged order. Unlike earlier
approaches, the ASF maintains the Herglotz analytical
properties for the single-particle propagator and the
Ward identities for the vertex corrections to the response
functions: properties essential for obtaining physical re-
sults. Related works are the traveling-cluster approxima-
tion and the Herglotz, self-consistent approximation in-
troduced by Kaplan et al. also based on ASF. However,
these are still to be implemented on realistic models. Ex-
tensions to the KKR (Korringa-Kohn-Rostoker) CPA
method have been proposed. '

Most of the above implementation has been to binary
alloys. Random ternary alloys form a class of systems of
great interest: from ternary semiconductor alloys used in
devices to brasses and stainless steels. Several single-site
CPA or non-self-consistent embedded-cluster studies on
ternary alloys have already appeared in the litera-
ture. ' Our group has already studied a class of ter-
nary alloys: the III-V semiconductor alloys like
Ga In, As and GaIn„Sb& „," although in the bond-
antibond basis we reduced the problem to a pseudobinary
one. Here we wish to develop the formalism to the ter-
nary brass system Cu-Ni-Zn.

We have taken Cu-Ni-Zn as the prototype ternary al-

loy in the same spirit as when we had chosen Cu-Ni as a
prototype binary metallic alloy. It is a simple but in-

teresting system where diagonal disorder dominates; the
centers of the d bands of the three constituents are widely
separated. Off-diagonal disorder, characterized by
differences in constituent band widths, is small. It is well
known that the single-site CPA begins to fail in alloys
where we have a small concentration of one constituent
whose band center differs from the host by amounts large
compared with the bandwidths. This is certainly the case
with Cu-Ni-Zn.

II. THE AUGMENTED SPACE FOR A TERNARY ALLOY

To introduce the basics of the formalism, let us concen-
tra, te on a d-band model within the tight-binding basis.

P(N; ) =x„(N; —1)+xit(N; )+xc(N, +1) . (2)

Mookerjee suggested that one can now introduce a space
iI), on which the configurations of the variable N, may be

described. The basis
~

f„' ) in this space describes the

configurations of N; whereas the probability density is re-

lated to an operator M,. through

P(N;)= —Im(fo
~

(N I M, )
'

~ fq)—. (3)

Note that P (N; ) and M; are the analog of the density of
states and the Hamiltonian. In the case of the ternary
distribution the rank of the space P, is 3. The method of
constructing a representation of the matrix M; has been
described in some detail in Ref. 12. We first rewrite (2) as

P(N;)= ——Im
1

7T

Xg Xg Xc
+ +, n =N, —i0+

n —1 n n+1
and expand the right-hand side as a continued fraction

n —a&—
bz

b
n —a2-

n —a3

The representation of the matrix M,- is a 3 &(3 matrix and

The d states in a lattice with cubic symmetry can be
categorized into t2g and eg symmetry components hav-

ing, respectively, threefold and twofold degeneracies.
The corresponding Hamiltonian is then a 2&2 matrix
and may be written as

X in —in + g g injm —, in,jm
l, Il J, m

where e;„ takes the values e„„,ez„, or ec„ for the three
different constituents. n = 1 or 2 according to whether we
are interested in the t2g or e component. The Green
function 6;„;„may be calculated as a continued fraction
using the recursion method. ' The coefficients are shown
in Table I.

The ternary random occupation may be characterized
by an occupation variable N;, which takes the value 1, 0,
or —1 according to whether the site labeled by i is occu-
pied by the constituent atom labeled by A, 8, or C. In
the absence of short-range order we have the probability
density of N; as
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TABLE I. Coefficients for the Green function 6;„,„.Exponents are given in square brackets.

0
1

2
3
4
5

6
7
8
9

10

a„

0.0
—0.736 282[ —02]
—0.285 673[—01]
—0.160 718[—01]
—0.134 218[—01]
—0.112 190[—01]
—0.131 124[—01]
—0.671 958[—02]
—0.165 180[—01]
—0.123 618[—01]

0.0

Orbital 1

Orbital 2

0.100000[+ 01]
0.295 643[ —02]
0.235 335[—02]
0.179 840[ —02]
0.162 690[ —02]
0.156 254[ —02]
0.174 530[ —02]
0.153 999[—02]
0.195 674[ —02]
0.173 710[—02]
0.168 461[—02]

&n

0.0
—0.262 667[—02]
—0.833 132[—02]
—0.962 267[ —02]
—0.540 195[—02]
—0.472 927[—02]
—0.398 838[—02]
—0.611 713[—02]
—0.219 311[—02]
—0.107 605[ —01 j

0.0

Orbital 4

Orbital 5

b

0.100000[+01]
0.211 155[—02]
0.158 428[ —02]
0.121 493[—02]
0.601 881[—03]
0.131 840[ —02]
0.869 993[—03]

—0.895 845[ —03]
0.854 633[—03]
0.126 003[ —02]
0.125 162[—02]

0
1

2
3
4
5

6
7

9
10

0
1

2
3
4
5

6

7
8
9

10

0.0
—0.736 282[ —02]
—0.285 674[ —01]
—0.203 862[ —01]
—0.134712[—01]

0.907 024[ —03 ]
—0.596 882[ —02]
—0.463 769[ —02]
—0.128 520[ —01]

0.128 076[—02]
0.0

Orbital 3

0.0
—0.736 282[ —02]
—0.285 673[—01]
—0.203 862[ —01]
—0.134712[—01]

0.907 012[—03]
—0.596 881[—02]
—0.463 773[—02]
—0.128 520[ —01]

0.128 075[—02]
0.0

0.100000[+01]
0.295 643[ —02]
0.235 335[—02]
0.205 787[ —02]
0.152 931[—02]
0.164 361[—02]
0.155 990[—02]
0.131 672[ —02]
0.134450[ —02]
0.160 917[—02]
0.158 227[ —02]

0.100000[+01]
0.295 643 [—02]
0.235 335[—02]
0.205 787[ —02]
0.152 932[—02]
0.164 361[—02]
0.155 990[—02]
0.131 672[ —02]
0.134 450[ —02]
0.160917[—02]
0.158 227[ —02]

0.0
—0.262 665[ —02]
—0.833 131[—02]
—0.116066[—01]
—0.128 611[—02]
—0.736 858[ —02]
—0.194090[—02]
—0.532 768[ —02]

0.453 185[—04]
—0.123 153[—01]

0.0

0.100000[+01]
0.211 155[—02]
0.158 428[ —02]
0.121 205[ —02]
0.610 331[—03]
0.135 928[—02]
0.985 064[—03]
0.829 151[—03]
0.955 998[—03]
0.127 546[ —02]
0.147 460[—02]

in operator form it may be written as

M; =a j P, +a~P o+a~P

+b, (To&+T io)+b~(T, , +T») (4)

where P and T are projection and transfer operators and
the configuration states are labeled by 1, 0, and —1.

The next step is to replace the variables e, and V, in
terms of the their values for the three different constitu-
ents and the occupation variables. In the binary case, for
example, we had e; =a +bN; with a =e~ and
b =(e„—e~). The relationship must contain two param-
eters which are then adjusted against e~ and e~. In the
ternary case we should have three parameters to adjust
against the three values ez, ez, and ec. The relationship
should then be of the form e;=a+bN;+cN, ; the third
term is an independent one, since unlike the binary case,
N; for the ternary case is no longer idempotent. %e easi-

ly see from the above that a =ez, b =(e„—ez)/2, and
c = ( e z +ez —2ez ) /2.

Similarly, in the binary case we had V; = 3
+B(N;+N~)+CN;N~. The expression was symmetric in
the two variables N; and N and involved three parame-
ters A, 8, and C to be adjusted against the three parame-
ters V~~, Vzz, and Vcc. In the ternary case we have

V, = A +B(N;+N )+CN;N +D(N; +N, )

+E(N, N~+N N~)+FN~N~ .

This is symmetric in the labels i and j and involves six pa-
rameters to be adjusted against the six values taken by

j QQ Vpp Vcc VQ+ and Va c and Vac The values
of the parameters are shown in the Appendix.

The augmented-space Hamiltonian may now be con-
structed according to the recipe described in detail by
Mookerjee' or Gray and Kaplan "
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(eg —es) (,.) (eg+ec —2es)
H =esI XI+ g P, XM"+ g P; X(M"')'+ g g A T,, && I

+ g Q BT;~ x (M"+M' ')+ g g CT;~ xM"x M' '+ g g DT;J x [(M") +(M' ') ]
I J J I J

+ y y ET . . &([M' X(M J') +(M' ) XM i']+ y

HAFT

. . X(M ' )~&&(M'~~)~ .

The augmented-space theorem then gives

G;i = (iFO
~

(EI H) —'
~jFo ) .

So far, the treatment has been exact. We now begin the
cluster approximation. We partition the augmented
space into a subspace spanned by the n sites within the
cluster and their 3" configuration ( C) and its complement
C'. We approximate the Hamiltonian in C' by a
translationally symmetric effective Hamiltonian to be
self-consistently determined. We now use the partition
theorem' to reduce the effective Hamiltonian to one only
on the subspace C, by introducing a surface potential
S(K) to describe the effect of C'. Finally we apply the
partition theorem once more to reduce the Hamiltonian

to a space c spanned by iFO, i =1,2, . . . , n. From self-
consistency this must be the effective Hamiltonian. The
reduction is described in detail by Inglesfield' and Ku-
mar et al. ' The cluster CPA (CCPA) equation is of the
form

K=H'+PFOH G' (K)H PFO.
—P ~G' (K)=(EI H) —' is the inverse in the subspace

c' complement of c, and H =P &HP &+S(K).
The matrix elements in the subspaces C and C* are

shown in the Appendix for a two-site CPA (n =2). The
self-energy having been calculated, the Green functions
are obtained from the Hilbert transform from the pure-
host density of states n (E).
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FIG. 1. The CCPA densities of states for Cu-¹iZn alloys with concentrations of Cu:Ni:Zn (a) 40:30:30,(b) 45:15:40,(c) 50:40:10.
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III. RESULTS AND DISCUSSION

Figure 1 shows the two-site CCPA density of states for
three different compositions of the ternary alloy of Cu-
Ni-Zn. These are compared with the corresponding re-
sults in the single-site CPA (Fig. 2). It is well known that
the configuration fluctuations arising out of random clus-
tering, short-ranged order, and off-diagonal disorder may
lead to additional structures which are suppressed in the
single-site CPA. In a previous communication' on
binary alloys we have argued that the dominant
disorder-induced structures have their origin in the
bonding-antibonding nature of states within the cluster.
Figure 1 shows that a similar effect also is present in ter-
nary alloys. Structures appear in the impurity bands on
both sides of the central host Cu band. The impurity
bands have two sharp peaks and these grow at the ex-
pense of the host as we increase the concentration of the
impurities. The structure on the Ni side of the band is
qualitatively very similar to the case of binary Cu-Ni. '

The Zn part of the band has almost comparable peaks
with a rounded central dip and these structures grow as
the concentration of Zn is increased. In comparison the
CPA density of states in the impurity region is almost
featureless. Such clustering structures also appear in
computer simulations of alloys. Mills and Ratanara-
varaksa have reported fine structure in a calculation on a
model Hamiltonian on a simple cubic lattice by incor-
porating multiple scattering from pairs of sites within the
traveling-cluster approximation (TCA). This suggests
that the origin of the fine structure in the density of states

fa)

has a microscopic origin in the disorder-induced
configuration fluctuations in the system. Such clusters
play a crucial role in order-disorder phase transitions and
the energetics of such transitions requires a careful study
of the cluster-based structures in the density of states.
The augmented space provides a systematic way of study-
ing such effects.

APPENDIX

For a two-site ternary alloy, the augmented subspace C
described in the text is of rank 8 and is spanned by the
basis

«foo «fo& «fo & xf&o «fi i ~

f i -» xf-io «f i » xf 1

Vfoo~ Vfot Vfo-i Vfio Vf&i

Vf —lo Vf -i | V'f &-1 . -
We shall label these states as 1 to 18.

The ternary distribution matrix M is tridiagonal, as
discussed before, and its matrix elements are

a, =D, a2 ——[Dxz l(8 D) ] D,—a3 D—xz l(D——2 8);-
b, =8 D, b2 ———xa+C(D —C);
D =«~ —xc' 8 =«~ +xc' C =Dxa i(8 D), —
a being the diagonal and b the off-diagonal elements.

The matrix elements of the augmented Hamiltonian H
in the subspace C are given below:

4 (b)
3—

- p. 4
I

-02
lE
0.2

I

p.4

lh
op 2

O

~~
lh

C) 4—
(c)

I

-0- 2 0.4

3—

l

O.)5 0.4
I i

-0.35 —0.10

Energy (Ry)
FIG. 2. The one-site CPA (1CPA) densities of states for Cu-Ni-Zn alloys with concentrations of Cu:Ni:Zn (a) 40:30:30, (b)

45:15:40,(c) 50:40:10.
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H(1, 1)=H(2, 2)=e„' H(1, 2)=H(2, 1)=V;

H(1, 5)=H(2, 11)=W]', H(1, 8)=H(2, 12)=D2b]b2,

H(3, 3)=H(4, 4) =H(13, 13)=H(16, 16)=e, +So,
H(5, 5) =H(6, 6) =H(7, 7 ) =H(11,11)=H(14, 14)=H(17, 17)=e2+So,

H(8, 8)=H(9, 9)=H(10, 10)=H(12, 12)=H(15, 15)=H(18,18)=e3+So ,
'

H(3, 6) =H(4, 7)=H(13, 14)=H(16, 17)= W, +S, ;

H(3, 9)=H(4, 10)=H(13, 15)=H(16, 18)=D2b]b2+S] ',

H(5, 7)=H(6, 8) =H(7, 9)=H(11, 12)=H(14, 15)=H(17, 18)= W2+S, ,

e] ——eB+D]a]+D, (a ] +b', ); e2 =eB+a2D] +D2(a 2 +b2+b] );
l

e3 ——eB+a3D, +D2(a3+b~); W] D]b—]—+Dq(a]+aq);

W2 —D]b2+D2bp(ap+a3) D, =(e„—ec)/2; Dz (e——
A +ec 2eB )/2

and So(E) and S](E) are the diagonal and off-diagonal
elements of the surface potential which arises because the
18)&18 cluster is immersed in the full self-consistent
medium.

In case there is off-diagonal disorder, then, as discussed
in the text there are six parameters in the expression for
V, ; these are given by

~ = VBB' & =(VAA+ VCC —6V —6V +6V

C=(V„B+VBC —2VBB)/2; D =(V„B+VBC —VBB);

E =(6V„B+6VBc 4VBB VAA VCC )/2;

( VBB CC+ VAB+ VBC)
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