
PHYSICAL REVIEW B VOLUME 38, NUMBER 6 15 AUGUST 1988-II

Influence of electromagnetic field variations on the surface-efFect mechanisms
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By a series of model calculations the effects of various theoretical ingredients on a simple theory
of photofield emission yield are illustrated. Only surface-effect mechanisms are retained, but for
reasonable parameter choices the predictions can be made to agree with experimental data. The
influence of different possible spatial variations for both the potential-energy barrier and the photon
field are treated.

OVERVIEW

Photofield emission is a spectroscopy that combines
features of both field emission and photoemission in that
electrons are ejected from a surface under the joint
influence of a strong, static electric field and weak, dy-
namic radiation fields. It has the advantage over the
separate methods of allowing one to study electronic
structure for final-state energies between the Fermi level
and the unperturbed vacuum level.

A lot of work has been done on excitation mechanisms
that may apply. Both theoretical descriptions and experi-
mental evidence exist for a variety of surface and bulk
effects. In this paper we shall consider carefully the pre-
dictions of one particular class of models in order to clar-
ify what they can describe. We refer to these as jelliurn
models of photofield emission and acknowledge that they
have been studied often before with various goals and de-
grees of sophistication. ' ' The primary simplification of
such models is that they exclude effects due to discrete
atoms; in particular, they contain none of the convention-
al bulk transitions. Hence we will discuss neither the ex-
perirnental evidence nor the theoretical methods
developed for bulk band-structure or band-gap surface
states. ' In their favor the jelliurn models can treat all
the pure surface-excitation effects, and their predictions
even at the simplest level ' give a reasonable qualitative
description of the energy-distribution curves seen experi-
mentally. Indeed, a common method of identifying
structure due to bulk effects is to compute first the pre-
dictions of a (scaled) jellium model and then, by compar-
ison with the experimental data, find the (generally) small
deviations.

Our particular interest with jellium models here in-
volves the question of scale and we focus on the absolute
value of the yield per incident photon. The data recently
published by Gao and Reifenberger' for the (110) and
(111}faces of W provide the experiinental information
that we compare with, but one should not expect a jelli-
um model to represent quantitatively the behavior of a
transition metal. Our emphasis will be more on under-
standing the theoretical ingredients of such a calculation
and their surface sensitivity. We agree with the con-
clusion found by Feibelman for regular photoemission

that the total yield is much more surface sensitive than
are its distribution over energy and angle.

Our theory is based on the independent-particle ap-
proximation, but in several places we use quantities
which for a priori values require many-body calculations.
We completely neglect damping effects for the photoelec-
tron and for the hole left behind. We assume both move
in a common potential energy V(x), which for a smooth
surface depends only on x, the normal coordinate, and
which quickly saturates to a constant value in the bulk;
see Fig. 1. As an aside, note that the experimental resolu-
tion of the puzzle of (static) field-dependent oscillations
in the yield argues against the need to include dynamic
image-potential effects in V,

' ' ' and we do not. The
radiation field driving the transitions is viewed as acting
only through the normal component of its vector poten-
tial, A„(x),since it alone has a significant variation near
the surface; see Fig. 1. Our accounting for this variation
is the principal new feature of the calculations.

With these basic ingredients the reduction of general
photoemission theory is straightforward. The problem
becomes essentially one dimensional since the eigenstates
of both electrons and photons have factors of plane waves
for motion parallel to the surface and since the parallel
wave vector of the photon is generally negligible com-
pared to that for the electron. The net result is that A„
alone acts to excite electrons, which transition between
eigenstates of motion along x, conserving their wave vec-
tors parallel to the surface. From the golden-rule formu-
la for photoemission, we find that the yield per incident
photon in a jelliurn model can be written as

Y= JdE Y(E), (1)

where Y(E), the (final} energy distribution of the yield, is

Y(E)
cos0 ~ fico

X I dWI ir2T(Wf) ~MI; ~

. (2)
(W;WI)'

Here, a=e /Pic is the fine-structure constant, fico is the
photon energy, 8 its angle of incidence, and P the angle
between its polarization vector and the plane of in-
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[ . ]=(cos8) '
i
A„(8)
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l

i
A(I)

i
(4)

where A(I) is the full vector potential of the incident
photon and A„(8)is the normal component of the re-
fracted field in the bulk. These fields are to be evaluated
far from the surface on the scale of electronic screening
lengths, but close to the surface on the scale of a trans-
verse wavelength or skin depth. Typically, a few tens of
angstroms away from the surface satisfies these con-
straints; see Fig. 1.

Before describing the rest of (2), we stress that the
square brackets contain the only dependence on 8 and P .
Hence, the polarization dependence of the yield in the jel-
lium models is very simple and the variation with the in-
cident angle is readily calculated once e(co) is

cidence. The factor

2 cosO

ecos8+(e —sin 8)'

is the Fresnel transmission ainplitude for a (p-polarized)
wave to refract from vacuum into a metal of dielectric
function e(co). An alternate expression for the contents
of the square brackets in (2) is

prescribed. Experimentally, one has often reported a
(near) cos P~ dependence of Y, ' ' ' ' and noted that
the yield due to p-polarized light is greatly enhanced at
large angles of incidence. Such observations do not prove
the validity of a jellium model since various bulk excita-
tion mechanisms can exhibit the same dependencies, but
they do support the idea that jellium models successfully
describe some of the significant variations. We em-
phasize that this conclusion is independent of the detailed
variation of V(x) and A„(x)near the surface.

This region of detailed variation, shown schematically
in Fig. 1, is important for determining the magnitude of
Y(E} through the matrix element Mj;. The terms in
front of this in (2} are f (E fico), t—he Fermi occupation
factor for the initial electron state; W&(8';), the value of
the kinetic energy inside the bulk metal associated with
motion along x in the anal (initial) state; and T( W& ), the
transmission probability for the photoelectron to escape
the metal. This function decreases rapidly with decreas-
ing W&, if W& is below the top of the barrier, and serves
to cut off the integrals in (1) and (2) before kinematic con-
straints enter. The matrix element M&, is defined by

1 d d
M&;

——
&

—a + a

0—

{a)

with a scaled A„(x) represented by

a (x)=@+(1—e)ri(x),

where the complex-valued function g varies between 0
and 1 as one goes from just outside to just inside the met-
al. In Fresnel optics,

riF(x) =B(x —x ),
where 6 is the unit step function and x locates the
plane where one matches the vacuum and bulk macro-
scopic fields. The one-dimensional eigenstates in (5) have
also been conveniently scaled. If we denote by x, the
point where V(x) begins its constant bulk value, then

Ak;
P, (x)=sin(k, x+5, ), x )x, ; W, =

-l0—
A' k~

2 2

P&(x)=e ~, x &x„W&—— ——8', +fico . (9)

-l2—

FIG. 1. Typical spatial variations in a jellium model of
photofield emission near the surface along the normal coordi-
nate x. In (a) an energy barrier is shown which confines the
electrons to the right. On this side V saturates beyond x, to a
constant value, which is taken as the zero of energy. On the
left-hand side V has a peak value due to the applied static field.
The dashed line denotes the Fermi level. In (b) the real part of
the normal component of the vector potential is shown. It has
been normalized to go to unity on the right-hand side, while its
value on the left differs by a factor of e, the dielectric constant
at the excitation frequency. On a wider spatial scale (hundreds
of angstroms) A„will oscillate on the left and decay on the
right, but these variations have a negligible effect on the excita-
tion matrix elements.

The variation of these states in x &x, depends on the
spatial variation of V. Although there is no general ana-
lytic solution, one can easily generate them along with
T( lV&) and the phase shift 5, by a numerical solution of
Schrodinger's equation.

Our formal description of (2) is now complete, and in
the next section we describe its evaluation for various
choices of V(x) and ri(x). For the cases we consider, the
magnitude of M&, is most sensitive to the form of the vec-
tor potential, as described by a (x). For instance, if one
varies the matching plane location in (7) from well inside
to well outside the metal (on the scale of Fig. 1), then the
effective a acting to photoexcite electrons near the sur-
face changes by a factor of e, so Y changes by

~

e
~

. For
the model parameters we use, '

~

e
~

) 10, so changing
x by a few angstroms can change Yby several orders of
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magnitude. This sensitivity requires careful attention if
one hopes to make a quantitative theory of the yield.

mation (LDA) to treat the influence of exchange and
correlation. The effective one-body potential energy can
then be written as

MODEL CALCULATIONS

We begin with a description of the various potential-
energy barriers that we have used. First, is the step bar-
rier,

V~(x) = —2ire f dx'
~

x —x'
~
[n (x') n—+(x')]

+ V„,[n (x)]+eFx/2+ V (13)

V, (x)= V,8(-x), (10)

which crudely represents the system in zero field. The
barrier height, Vo ——10.8 eV, ' is the sum of the free-
electron Fermi energy, EF——5.6 eV, and the work func-
tion for W(110), 4=5.2 eV. The effect of a static field, F,
appears in the triangular barrier (TB), where

V2(x) =( Vo+eFx)8( —x),
where epO. Neither Vi nor V2 allow for an image-
potential interaction. This feature is included in the im-
age rounded barrier (IRB), for which

2

V&(x)= Vo+eFx+ 8(x, —x) .
4x

(12)

IO

Here, x, is determined by the condition that V3 be con-
tinuous. Illustrations of V2 and V3 are given in Fig. 2 for
the choice F=0.31 V/A. '

All of the above barriers are models that lack self-
consistency. Their shapes are chosen largely for ease of
solution and they contain parameters, e.g., Vo, that can
be fitted to experimental information that is difficult to
calculate. If we require that a barrier be self-consistent,
then we must explicitly account for many-electron effects.
We do this in one case, but to keep the calculation rela-
tively simple we use a local-density-functional approxi-

Here the first term is the (Hartree) potential energy due
to the electron density, n, and the ion density, n+. For a
jellium model n+ (x)=n&8(x), where ns is the bulk den-
sity and x=0 is at the jellium edge. In the second term
we use the approximation proposed by Hedin and
Lundqvist. The last two terms are needed to make
V4~0 as x~ ~ in the presence of an applied field F.
The actual values of V4(x) can only be found numerically
as the end result of an iteration procedure which starts
from a guess for V~(x), which allows the calculation of
an n (x), which yields a new V4(x), and so on. Since this
procedure has been described in detail elsewhere, we
only draw in Fig. 2 our final result. For the V4 shown
there, the bulk density is described by the parameter
r, =3, and the excess electron density at the surface
corresponds to an applied field of

4n.e f dx [n (x) n+ (—x)]=F=0.3 V/A . (14)

Although V4 is self-consistent, its neglect of discrete
atomic structure leads to a considerable underestimate of
the barrier height for W(110) and its use of the LDA
makes it lack an e /4x term far outside the metal. Hence
the IRB is a better choice for comparisons with experi-
ment.

In our basic Eq. (2) the quantity that has the most sen-
sitivity to V(x) is the transmission factor T(Wf). We
support this claim in Fig. 3(a) by plotting T versus final
energy (normal to the surface) for an electron fico above
the Fermi level. Since the electron must tunnel for ener-
gies less than the barrier maximum, T varies over several
orders of magnitude for a modest change in %co. On the
other hand, the scaled inatrix element Mf; in (2) shows
much less change over the same frequency range. This is
illustrated in Fig. 3(b). The Mf; shown there all use
W;=Ez and Wf EF+Aco, and ——have ci= 1 in Eq. (5) in
order to suppress the influence of field variations. As
shown in the Appendix, the result for the step barrier is
especially simple in this limit [see (A3)] and may be writ-
ten as

Mo(co) = ( VOEF )' /fico . (15)

-IO
I

-8
I

-6

x(A)

I

-2

FIG. 2. Various potential-energy barriers vs normal coordi-
nate: TB denotes the triangular barrier, IRB the image-rounded
barrier, and LDA the self-consistent barrier found in a local-
density-functional approximation. See the text for a further
description of their parameters.

In Fig. 3(b) we normalize the Mf, for the other barriers
by this expression. The variation of the ratios with fm is
modest when compared with that of T. This implies that
the frequency dependence of the photofield emission yield
is essentially determined by that of

~

t
~

T(EF+A'co), al-

though one must know the Mf; in order to predict its ab-
solute magnitude.

Since our focus is on the total yield Y, and not its ener-

gy distribution Y(E), it is useful to change the order of
integration in (1) and (2) to find, in the zero-temperature
limit,
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FIG. 3. Photon-frequency dependence of (a) the transmission
coe5cient for the final-state electron, and (b) the normalized ab-
solute square of the matrix element, ignoring spatial variation of
the vector potential. Note the logarithmic scale in (a) and the
linear scale in (b). The curve labels refer to the potential-energy
barriers shown in Fig. 2. The initial and final states here move
only along the surface normal and the initial energy is at the
Fermi level EF.

which represents one of several approaches that have re-
cently appeared. ' The simplest improvement over the
Fresnel approximation is called the ansatz and deter-
mines q from the equilibrium electron-density profile:

ri„(x)=no(x }/n ji,
where

no(x)=3nz f d(k;/kF)[I (k;—/k+) ]((};(x).

Here, kF is the Fermi wave vector and the occupied
eigenstates are normalized as in (8) so no(x~ao )~na.
This approximation to g smoothes out the discontinuity
in gF and removes the free parameter x . Ho~ever, it is
not frequency dependent, nor is it exact at any frequency,
although it agrees reasonably well with detailed jellium
model calculations at frequencies belo~ the plasmon
frequency Np.

To remove these deficiencies requires considerable
computational e8'ort. We examine here two further
cases. The first we call 7)o(x), since it comes from a full
calculation at cu =0, but we shall use it without
modification over the whole photofield-emission frequen-
cy range. To estimate the size of error this entails, we
also calculate i) at one finite frequency, co/co~ =0.25. The
analysis behind these last two g's has been amply de-
scribed elsewhere. We only note here that they both
represent a random-phase approximation to the linear

I.O—

05—

2a 2si 8 z

cos8

f dW;
X

(W, Wf)'"
Ef —8';

T(Wf) (Mf, ~

~.

(16)

00

IO— (b)

Thus only one integral needs to be done numerically and
the range of W, in (16) is from EF down to where
T ( W, + fico ) becomes negligible.

To calculate the Mf; we need both V(x), which deter-
mines the initial and final eigenstates, and il(x), which de-
scribes the spatial variation of the perturbing field. A
common approximation in photoemission theory is to
completely ignore the latter variation by setting q:—1. In
previous photofield emission theories the only explicit im-
provement on this has been by the use of the g that re-
sults from Fresnel optics, see Eq. (7}.' This contains
as a free parameter x, the position of the matching
plane. We reconsider here the predictions of these g's,
but also illustrate the effect of several further refinements.

The improvements come specifically from the calcula-
tional scheme developed by Kempa and Schaich,

0.5—

-5 Io

it (A)
FIG. 4. Normalized plots of the 6eld variation near the sur-

face of a LDA model, whose potential-energy barrier is shown
in Fig. 2. The function i) is defined by Eqs. (5) and (6). In (a)
the solid curve gives g calculated from the system response at
zero excitation frequency, while the dashed curve is g found
from the ansatz (17). In (b) the real (imaginary) part of g is
shown by the solid (dashed} curve calculated at the excitation
frequency co/co~ =0.25.
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response of a system whose ground state is described by
the LDA.

In Fig. 4 we compare these various q's, as calculated
for the LDA barrier shown in Fig. 2. Notice their similar
shapes but relative shifts along the surface normal. An
analogue of the matching plane position x of the
Fresnel gF can be defined as

d = f dx [e(x)—g(x)]

= fdxx"„", (19)

where we have used the notation of Feibelman for the d
parameter. For gF and rt„(ofLDA model) the integral
is easy,

-3
IO

-4
IO

C

O
0

IO
CL

C
O

CP

4l

&7
IO

-6
IO +

+

F
dJ

4m.nz e
(21)

-8
I

2.5
I

3.0
I

5.5

and the value of d J for r, =3 and F=0.3 V/A is —0.028
A. For the g's coming from the full calculation, we can
only list the numerical values

dj(ca=0)= —0.67 A

dl(ca=0. 25ca )=( —0.79—i0. 24) A

(22)

(23)

The relative order of these d J
's agrees with the alignment

of the q's in Fig. 4. Note the relatively small change (at
least in the real part) of the results for ca=0 and
ca /ca& ——0.25.

Before describing our model calculations for Y, we re-
mark that we evaluate the matrix elements Mf; by using
(5) directly. If a (i.e., g) is independent of position, the
matrix element can be exactly rewritten as proportional
to a matrix element of d V/dx, which for a steplike V is
easily evaluated. When a is position dependent, this
transformation based on a commutator identity can still
be done, as we show in the Appendix, but it provides no
particular simplification. Hence we do not use this trans-
formation in our calculations, although Gao and Reifen-
berger did in theirs. ' The important point is that the
transformation, if done correctly, is exact. '

We have now described various approximations for the
different ingredients that must be combined to give Y in
(16). If one is aiming to compare directly with experi-
mental data, ' then any jellium model will be quite inade-
quate unless it incorporates some parameters that can be
adjusted in order to mimic the effects of discrete lattice
structure. We make the following changes from a pure
jellium model, such as one based on the LDA and the g's
in Fig. 4. The values of the dielectric function needed to
evaluate t in (3) are taken from an experimental compila-
tion. For V(x) we use the IRB shown in Fig. 2, whose
height has been adjusted to agree with other experi-
ments. To retain the freedom of a fitting parameter, we
calculate Y using the Fresnel gF for several choices of
x, measured from the coordinate zero in Fig. 2. Typical
results are shown in Fig. 5 along with experimental data
points. At any co, the yield appears to be a monotoni-
cally increasing function of x, which is easy to under-

lira (e V)

FIG. 5. Photon-frequency dependence of the yield in elec-
trons per incident photon at 70'. The image-rounded barrier is
used for V(x) and experimental values for the dielectric func-
tion e(co). The various sets of solid points (connected by lines
for clarity) are found from the Fresnel model of field variation.
The matching plane location labels each set. The dashed curves
result from the approximate, analytic matrix elements found in
the Appendix. The lower one is from (A3) and the higher one is
from (A7). The predictions of the ansatz model of field varia-
tion are denoted by )&'s. Finally the data from Ref. 16 for
W(110) have been scaled to our units and plotted as + 's.

stand from (6) and the large magnitude of e(ca). To fit the
data would require x = —2 A at low frequency, and a
slightly more negative x at larger co. As we discuss
below, these values are not unreasonable. In an analo-
gous Fresnel-IRB calculation for W(111), where
V0=10.0 eV, the x that fit the data' are about —1.5 A.

We also show in Fig. 5 other approximate results. The
dashed curves come from using different V(x)'s in the
calculations of T(Wf ) and Mf, specifically, the IRB is
used for T( Wf ) and the step barrier is used to evaluate

Mf;. Such a inconsistent approach has been used be-
fore, ' but from Fig. 3 we expect it to differ only slightly
from a full IRB evaluation. The upper dashed curve uses

gF with x =0 and essentially agrees with the full IRB
result. The lower dashed curve uses g=1. This curve
can also be thought as coming from any gF with
x & —10 A. The simple form of V and gF for the
dashed curves allow one to find analytic expressions for
their Mf, , which are derived in the Appendix.

The remaining x's plotted in Fig. 5 result from the IRB
model together with its ansatz gz. For the IRB shown in
Fig. 2, dj"(IRB)=—0.358 A. Indeed, the results for Y
are quite similar to what one gets if gF with
x =d~ (IRB) is used instead. The implication is that for
the frequencies considered here the detailed shape of g is
not as important as is the value of the real part of d J.

We can further explore the validity of this idea by cal-
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culations with the LDA barrier. Since we want to treat
both V and g in the same way, we switch to a pure
jellium-model calculation. Thus we now use the real
valued Drude E(co)= 1 —co /co and find T( Wf ) from the
LDA barrier, both for r, =3. There are no free param-
eters and a comparison with tungsten data would be
poor. However, our present aim is only to exhibit the
effect of different approximations for q, specifically those
curves shown in Fig. 4. The results are plotted in Fig. 6.
Using either g~ or gF with the same d~ gives essentially
the same results. Switching to go, whose d~ according to
(22) is slightly farther out in vacuum, gives a slightly
smaller yield. The approximation of using qo for all the
frequencies in the plot is not severe since correcting it at
co/co& ——0.25, where it should be worse, it virtually unno-
ticeable. This is somewhat surprising considering the
difference between g's shown in Fig. 4, but not unimagin-
able. In a similar sense we can claim that the size of x
needed in Fig. 5 to fit the W(110) data is reasonably close
to the d j 's of Eqs. (22) and (23).

We conclude that the predictions of a pure jellium
model are fairly certain, since all the points at any co in
Fig. 6 are close. However, such models cannot represent
transition metals. When one adapts the jellium model to
tungsten by introducing parameters fitted to experiment,
i.e., e(u), Vo in an IRB, and x in gF, then reasonable
choices do allow good agreement with experiment. For
future work, we note that while considerable effort has
been made to incorporate band-structure effects into the
calculation both of e(co) and of the surface potential-
energy-barrier shape, only qualitative discussions have
been made about their inhuence on g. It is in this latter

area that we are presently developing quantitative
methods.
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APPENDIX

Here we develop an alternate expression for the matrix
element Mf; in (5) and make contact with the estimate of
Gao and Reifenberger, ' called GR here. We begin by
setting h, = —,

' [a (d /dx ) +(d /dx)a] and applying the
commutator identity

AcoMf' —(ff ~
[ho, h, ] ~ P; ) (A 1)

where hc =p /2m + V(x); p =Kid/i dx is the (one-
dimensional) unperturbed Hamiltonian. Both p, and pf
are eigenfunctions of ho, whose eigenvalues differ by Ace.

Explicitly ~orking out the commutator gives

V
a

1 p da da
+2 2 d +P d

-3
IQ

C

O
0
CL

O IQ

CP
Cl

4)

(A2)

A common approximation in photoemission theory ig-
nores the spatial variation of a, replacing it by its unit
value inside the metal. If furthermore V has a step func-
tion form V(x) = Voe( —x), then

Vo Vo 8';
Mf; — $f'(0)P;(0)=, (A3)

IQ o

I

O.IQ
I

O. I5
I

0.20
I

0.25

FIG. 6. Photon-frequency dependence of the yield in elec-
trons per incident photon at 70. The LDA barrier shown in

Fig. 2 is used for V(x) and the dielectric function is
e(co) =1—~~/co'. The solid points (connected by lines to guide
the eye) are found from the Fresnel model of field variation.
The matching plane location is at d~ of (21). The Fresnel re-

sults agree to within the size of the points with those calculated
from the ansatz field, shown in Fig. 4(a). The open circles are
found by using the g function calculated at co=0 [also shown in

Fig. 4(a)] for all frequencies. The results from the g function
shown in Fig. 4(b), evaluated at co/co~=0. 25, lies within the
open circle plotted here at that frequency.

where the second expression follows from
P;(0)=sin5; =( W;/Vo)' . This result is equivalent to
GR's simplest estimate. Note that for photofield emis-
sion it not only approximates a, but also neglects the
effect of the applied static field on Mf;.

An improvement of (A3) can be made by allowing a to
have the Fresnel form, as described in (6) and (7). Then
both d V/dx and da /dx are proportional to 5 functions,
so the integral in (A2) can still be explicitly done. How-
ever, some mathematical care is necessary if x in (7)
vanishes, i.e., if the radiation field and the potential ener-

gy have discontinuities at the same point. This leads, in
(A2), to expressions proportional to e(x)5(x), where
5(x)=(d/dx)e(x) is a 5 function. We interpret such
products as
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e(x)| (x)=— [e(x)e(x)]1 d
2 dx

J dx 5(x )B (x)=b, (0)+—,'b2(0)

=—'[8 (0+ )+8 (0 )], (A5)

e(x)=-,'n(x) .1 d
2 dx

(A4)

Hence, for smooth "test functions, " b, (x) and b2(x), we
find for 8 (x)=b, (x)+e(x)bz(x) that the integral across
x=O is

where 0+ (0 ) is just above (below) 0. GR use an alter-
nate, physical reduction of (A5); however, our scheme
makes Mf,- a continuous function of x, while theirs does
not.

Using (A5) in (A2) for a model with a single-step
discontinuity at x=O in both Vand a yields

ficoMf; —— Vo + (1—e)—1+@ l Vo Vo
Wf — + W;—

2 ' 2

fi'
$f'(0)p, (0)+(1 e) — (0) (0) .

2m dx dx
(A6)

Vo +(1—e) + lV;—1+e %co

2 2
Ao)Mf; ——

Vo

From the solutions of Schrodinger's equation for a single step barrier one can reduce (A6) to
' 1/2

I
(A7)

which is similar to, but different from, GR's result that "allows for spatial variation in A." The predictions from both
(A3) and (A7) have been plotted in Fig. 5.

'H. Neumann, Physica 44, 587 (1969).
B. I. Lundqvist, K. Mountfield, and J. W. Wilkins, Solid State

Commun. 10, 383 (1972).
3A. Bagchi, Phys. Rev. B 10, 542 (1974).
4C. Caroli, D. Lederer-Rozenblatt, B. Roulet, and D. Saint-

James, Phys. Rev. B 10, 861 (1974).
5E. Taranko, Acta Phys. Pol. A 49, 721 (1976).
E. Taranko, Acta Phys. Pol. A 53, 761 (1978).

~C. Schwartz and M. W. Cole, Surf. Sci. 95, L243 (1980).
SC. Schwartz and W. L. Schaich, Phys. Rev. B 24, 1583 (1981).
C. Schwartz and M. W. Cole, Surf. Sci. j.15, 290 (1982).
R. Reifenberger, D. L. Haavig, and C. M. Egert, Surf. Sci.
109, 276 (1981).

'R. A. Young, Solid State Commun. 45, 263 (1983).
A. Puri and W. L. Schaich, Phys. Rev. B 28, 1781 (1983).
J.-W. Wu and G. D. Mahan, Phys. Rev. B 28, 4839 (1983).

"D.Venus and M. J. G. Lee, Surf. Sci. 125, 452 (1983).
D. L. Haavig and R. Reifenberger, Surf. Sci. 151, 128 (1985).
Y. Gao and R. Reifenberger, Phys. Rev. B 35, 8301 (1987).
H. Neumann and Ch. Kleint, Ann. Phys. (Leipzig) 27, 237
(1971).

' T. Radon and Ch. Kleint, Surf. Sci. 60, 540 (1976).
E. Taranko, J. Phys. (Paris) 38, 163 (1977).

~ Ch. Kleint and T. Radon, Surf. Sci. 70, 131 (1978).
'T. Radon, Surf. Sci. 100, 353 (1980).
D. Venus and M. J. G. Lee, Phys. Rev. B 28, 437 (1983).
T. Radon and Ch. Kleint, Surf. Sci. 144, 638 (1984).

24A. Modinos and Ch. Kleint, Solid State Commun. 50, 651
(1984).
Y. Gao and R. Reifenberger, Phys. Rev. B 32, 1380 (1985).
D. Venus and M. J. G. Lee, Surf. Sci. 172, 477 (1986).
D. Venus and M. J. G. Lee, Phys. Rev. B 34, ~~".9 (1986).
Y. Gao and R. Reifenberger, Phys. Rev. B 35, 4284 (1987).

2 Y. Gao and R. Reifenberger, Phys. Rev. B 35, 6627 (1987).
M. J. G. Lee, Phys. Rev. Lett. 30, 1193 (1973).
R. Reifenberger, H. A. Goldberg, and M. J. G. Lee, Surf. Sci.
83, 599 (1979).

D. L. Haavig and R. Reifenberger, Surf. Sci. 151, 128 (1985).
P. J. Feibelman, Phys. Rev. Lett. 34, 1092 (1975).
P. J. Donders and M. J. G. Lee, Surf. Sci. 160, 280 (1985).

3sW. L. Schaich, in Many Body Ph-enomena at Surfaces, edited
by D. Langreth and H. Suhl (Academic, New York, 1984).
W. L. Schaich, in Photoemission in Solids, edited by M. Car-
dona and L. Ley (Springer, New York, 1978), Vol. 1.
P. J. Feibelman, Surf. Sci. 46, 558 (1974).
Y. Teisseyre, R. Haug, and R. Coelho, Surf. Sci. 87, 549
(1979).
L. Hedin and B. I. I undqvist, J. Phys. C 4, 2064 (1971).

~A. Liebsch, J. Phys. C 19, 5025 (1986).
P. Gies apd R. R. Gerhardts, Phys. Rev. B 33, 982 (1986).

42F. Schreir and F. Rebentrost, J. Phys. C 20, 2609 (1987).
For r, =3, EF——5.57 eV and %co~ =9.07 eV.

~C. M. Egert and R. Reifenberger, Surf. Sci. 145, 159 (1984).
45K. Kempa and W. L. Schaich, Phys. Rev. B 34, 547 (1986).

W. L. Schaich, and K. Kempa, Phys. Scr. 35, 204 (1987).
47K. Kempa and W. L. Schaich, Phys. Rev. B 37, 6711 (1988).

P. Gies, R. R. Gerhardts, and T. Maniv, Phys. Rev. B 35, 458
(1987).
A. Liebsch, Phys. Rev. B 36, 7378 (1987).
P. J. Feibelman, Prog. Surf. Sci. 12, 287 (1982).

'We disagree with the claim by B. C. Meyers and T. E.
Feuchtwang [Phys. Rev. B 27, 2030 (1983)] that "the matrix
element for photoexcitation can be evaluated directly and. . .
it differs from the transformed matrix element. "

5~Handbook of Optical Constants of Solids, edited by E. D. Palik
(Academic, Orlando, 1985).
T. V. Vorburger, D. Penn, and E. W. Plummer, Surf. Sci. 48,
417 (1978).

54The specific algorithm one should use to convert the relative
yield, Yz, of Ref. 16 to our absolute yield, Y, is

0
Y=(Y&/cos6)JT/F~, where JT——197 electrons/A s is the
theoretical tunneling current at 300 K and F = 199

0 P
photons/A s is the characteristic photon flux [Y. CJao and R.
Reifenberger (private communication)].


