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We consider the nonequilibrium behavior of the spin-glass ordered phase within the droplet scal-
ing theory introduced previously. The fundamental long-time nonequilibrium process is assumed to
be the thermally activated growth of spin-glass ordered domains. The remanent magnetization,
m (t), in zero field is found to decay at long times as m (t)-R, , where R, -(lnt)' ~' is the linear
domain size, P is the previously introduced barrier exponent describing the growth of activation-
barrier heights with length scale, and A, is a new nonequilibrium dynamic exponent, satisfying the
relation A, )d/2 for d-dimensional systems. The effects of waiting for partial equilibration before
making a measurement are studied in various regimes. The effects of quenching first to one temper-
ature and then to another are also examined. Such experiments can, in principle, be used to obtain
information about the relative rate of dynamic evolution as well as the overlap between the equilib-
rium states at different temperatures. In particular, the length scale L&T, below which equilibrium
correlations at temperatures T and T+AT are similar, plays an important role. The decay of m (t)
and the growth of spin-glass order after a quench are examined in Monte Carlo simulations of the
Sherrington-Kirkpatrick model.

I. INTRODUCTION

At temperatures below a rather sharp freezing temper-
ature Tf, experiments on spin glasses are dominated by
history-dependent phenomena which are indicative of
nonequilibrium behavior. ' Indeed, the presence of such
behavior is often used to characterize a system as a spin
glass. In certain three-dimensional systems, such as
Cu:Mn and the Edwards-Anderson model with Ising
spina, the weight of experimental and numerical evidence
is that in zero magnetic field the onset of nonequilibrium
effects coincides reasonably well with the critical temper-
ature T, at which the nonlinear susceptibility diverges.
Below T„ the equilibrium state of the system is thus
presumably some kind of ordered spin-glass phase. Based
on scaling arguments, a phenomenological picture of the
equilibrium properties of the ordered phase below T, was
developed in Ref. 2 and is presented in some detail in the
companion paper. In this paper we concentrate on
nonequilibrium effects and the approach to equilibrium at
temperatures below T, . %'e focus, for simplicity, on Is-
ing systems with a symmetric distribution of nearest-
neighbor exchanges; ho~ever, we expect that, qualitative-
ly, many of the results should apply to Heisenberg sys-
tems and also in the presence of power-law interactions
such as the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interactions in metals, as has been argued for the equilib-
rium behavior in Ref. 3.

For Ising systems with finite-range (i.e., square-
integrable) interactions, we have argued that at any
given temperature below T, the system has only two pure
equilibrium states which are simply related by global spin

reversal. Furthermore, in a nonzero magnetic field H,
which breaks the global symmetry, the spin-glass phase is
destroyed. * Thus there is no thermodynamic transition
in a field H, although there is still a reasonably sharp dy-
namic freezing line T&(H, co ), whose position as mea-
sured, say, by ac susceptibility is dependent on frequency
N.

We will see that in spite of this seemingly simple struc-
ture of the equihbrium phase diagram [much simpler
than the infinitely many states and transitions in a field
found in the Parisi solution of the infinite-range
Sherrington-Kirkpatrick (SK) model' ], very rich none-
quilibrium behavior occurs. Some of these effects are due
to an important subtlety of the ordered phase: the corre-
lations in the states at T ~ T, are very sensitive to tem-
perature, in that if the temperature is changed, the rela-
tive orientation of spins which are far enough apart will

change randomly. ' '

A. Outline

This paper is organized as follows. In the remainder of
the Introduction we summarize the important features of
the equilibrium behavior and discuss the onset of hys-
teretic behavior as the temperature is lowered, then in
Sec. II we discuss the approach to equilibrium following
a quench from infinite temperature or infinite magnetic
field. We find that it is necessary to introduce a new
nonequilibrium exponent A. which relates the remanent
magnetization to the size of the growing spin-glass or-
dered domains; this exponent is shown to have an analog
in pure systems. In Sec. III we discuss a general class of
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C. Onset of hysteretie behavior

We now discuss the onset of nonequilibrium behavior
as temperature is decreased. In zero field, the charac-
teristic relaxation time y, of the system diverges (as dis-
cussed in Sec. V of Ref. 3} as T +T+. The expect—ed
form of this divergence is

y, -ro
I

E
I

where

T —T.
T.

(1.2)

experiments in which the system is probed at various
frequencies or times after waiting a specified amount of
time t for the system to equilibrate. The qualitative be-
havior of the magnetization decay in various field and
time regimes is examined. Section IV considers double
temperature quenches, where the system is first allowed
to equilibrate for a time at one temperature below T, be-
fore moving to another temperature. Here the relative
rate of domain growth as well as the differences between
the equilibrium states at the two temperatures enter in
determining the behavior. In Sec. V we analyze the
quasiequilibrium behavior in the frequency regime
cot &&1, Sec. VI contains a discussion of recent experi-
ments, and Sec. VII some conclusions. Results of
Monte Carlo simulations of quenches of the SK models

and the Mattis spin glass' are reported in Appendix A.

B. Summary of equilibrium behavior

We briefly summarize the salient features of the picture
of the equilibrium behavior of the Ising spin-glass or-
dered phase developed in Ref. 3. At a fixed temperature
T below the ordering temperature T, (which we assume is

positive) the global spin reversal symmetry is broken and
there are two pure states related by this global symme-
try. The dominant low-lying excitations in each state are
droplet excitations which occur on all length scales
L &g, where g -(T,—T) is the critical correlation
length. The droplet excitations of scale L have a broad
distribution of free energies FL with characteristic magni-
tude YL and weight extending down to zero. The
coeScient Y( T) is a temperature-dependent stiffness
modulus which vanishes for T~ T, and the exponent 8
satisfies 0 & 8 & (d —1)/2. The droplets' surfaces are

fractal with area scaling as L * with (d —1) &d, &d.
Barriers for annihilation and creation of the droplet exci-
tations also have a broad distribution with characteristic
magnitude bL", where the barrier exponent |t( satisfies
(d —1)&f&8 and b(T) vanishes as T~T, . Much of
the behavior is dominated by the actiue droplets, i.e.,
those with FL & T; the large active droplets are dilute. As
temperature is changed, the states change so that at large
separations the relative orientations of spins changes ran-
domly

The spin-glass phase is destroyed by a magnetic field
but the equilibrium correlation length gH and the loga-
rithm of the correlation time lnv& both diverge as inverse
powers of H for H ~0 at T (T, .

and to is a microscopic time (which we will often use as
our time unit}. The onset of marked hysteretic phenome-
na in zero field occurs just above T„where v., reaches
laboratory time scales.

In a small magnetic field, the relaxation times will also
grow very large as T~T, but not actually diverge, due
to the absence of an equilibrium transition. However,
below T, in fixed field the relaxation times will continue
to grow. For temperatures below a crossover tempera-
ture T„(H) given by

T, —T„(H} H2/(P+y)
7 (1.3)

where P and y are the critical exponents of the zero-field
transition, the deviation from criticality will be dominat-
ed by the temperature difference T, —T. In this regime,
the relaxation times grow exponentially for small H as
discussed in Sec. IV of Ref. 3 and have a broad distribu-
tion characterized by lnrH, where

in[yH /y, (e )]-
' 2tt/d —20

I
s

I

(P+ y) i2

H
(1.4)

Thus for reduced temperatures of a few times e„(H}, the
relaxation rates will grow extremely rapidly, quickly
reaching the macroscopic measuring times of an experi-
ment. Because of the very broad distribution of relaxa-
tion times, broad even on a logarithmic time scale, freez-
ing will not occur at a precise temperature but can gen-
erally be characterized by a temperature TI(H, co ')
below which most of the relaxation requires times longer
than the measuring frequency co of an experiment. ""
From Eqs. (1.1)—(1.4) we see that for small H,

T, —T (H co ')I ' H2/(y+p)
I
ln~r

I

(d —2())lgdy+p)

T.
neo 0

(1.5)

which is only weakly dependent on the measuring fre-
quency co provided co is small enough. Except for the log-
arithmic factor the freezing line as a function of H and
T, —T scales the same way as a de Almeida-Thouless
transition would be expected to if it existed. ' ' Below
the freezing temperature, the system will always be sub-
stantiaily out of equilibrium.

We note that above TI(H, co '), indeed even above T„
there will always be some rare regions of the system that
are anomalously weakly frustrated, giving rise to very
slow relaxation and hence some small amount of non-
equilibrium behavior on any experimental time scale. '

However, only below TI will these effects become large.
It is clear, therefore, that different measurements with
varying precisions will find onset of nonequilibrium be-
havior at different temperatures and T& thus character-
izes the freezing in only a very crude manner.

In large magnetic fields where the Zeeman energy is
comparable to the exchange energy J-T„ the collective
spin-glass aspects of the freezing will not occur and ap-
preciable hysteretic phenomena will only occur at tem-
peratures low enough so that, with a macroscopic
measuring frequency,
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We will not be concerned with this regime here.

II. EQUILIBRATION FOLLOWING A QUENCH

We now turn to nonequilibrium phenomena in the or-
dered spin-glass phase. We first consider an ideal quench
of an Ising spin glass in zero magnetic field from infinite
temperature to a temperature T below T, . As argued in
Ref. 4, we assume the equilibrium states at temperature T
and zero field are simply a pair of states related by a glo-
bal spin flip. As discussed in Ref. 3 each of these states is
well approximated on large scales by an effective ground
state with active droplet fluctuations which are rare. We
call one of these states %=%& and its spin reversal
%=%r. (We will usually drop the subscript T when only
one temperature is being discussed. ) Each spin has a pre-
ferred direction (S;) in state ip (and minus that in 0}.
We can hence decompose the random configuration im-
mediately after the quench into domains (or individual
spins} which have the same orientation as in ip and those
which have the opposite orientation, and are thus aligned
as in %. At temperatures far below T„ the equilibrium
states will be well characterized by the preferred spin
directions. However, near to T„ there will be large fluc-
tuation up to the scale of the critical correlation length

-J E
~

". The description in terms of domains of 4
and 0 is only valid on length scales larger than g, since
the domain walls will have width of order g . We gen-
erally restrict consideration to this regime of length
scales.

After the quench, the system will try to lower its free
energy by, on average, decreasing the amount of interface
between + and %', thus growing larger and larger
domains of 4 and +. This is the same situation as en-
countered in the growth of ordered domains in a pure Is-
ing system. ' However, in the spin glass the growth with
time t of the characteristic length scale R, of the domains
of the two states will be very slow because of the
randomness-induced free energy barriers. As discussed in
Ref. 3 we expect that the barriers B that must be sur-
mounted in order to move sections of wall between 4 and
%' of length scale L will be of order hL~ for large L,
where b( T) sets the free-energy scale of the barriers. In a
time t after the quench, free-energy barriers of height
B= T lnt can be surmounted so the characteristic length
scale of domains R, grows as

R, —
' 1/Itt

T lnt

b(T)
(2.1)

where time t is measured in units of a microscopic time to
for T «T, or the critical correlation time r, (T) which
diverges for T~ T, as in Eq. (1.1). We expect that this
growth of domains is the fundamental process of the
long-time nonequilibriurn dynamics of spin glasses below
T'

We use the expression "domains" in a somewhat loose
sense: In three dimensions there will be an interpenetrat-
ing network of regions of the two states and some closed

domains of each of the states (as in, e.g. , Fig. 4 of Ref. 3).
The characteristic scale of the separation between walls is
given by R, . A more precise definition can be given by
measuring the overlap between the nonequilibrium
configuration of the spins [S,.(t) ) with their correlations
in the equilibrium state: I (S;S )+I. We define the none-
quilibrium overlap

(2.3)

(d —1) &d, &d . (2.4)

The arguments presented there for locally minimum ener-

gy walls should also apply here, so that we expect that on
length scales shorter than R, the domain walls at time t
will be fractal with dimension d, . (Note that fractal
structure on scales much less than R, does not occur in

quenched pure systems. In pure systems, the typical local
radius of curvature of the walls at time t is of order R, .)
The domain walls thus occupy a fraction

p (t)- 1
(2.&)

R

of the system's volume. Near the domain walls, the dis-
tribution of small scale droplet excitations will be
modified, leading to corrections to the equilibrium behav-
ior even at frequencies r0 satisfying

~

Inca
~

&&Int. These
corrections are discussed in Sec. V.

Because of the absence of probes which couple to the
spin-glass order, e.g., by distinguishing between the equi-

:N-E(i, j;T, r)= (S,&, )~ S, (t)S,(r), (2.2)

where the overbar denotes averaging over the system
with the separation r," fixed. On scales larger than R, we

expect random relative orientation of S, (t) and S,(t) and
thus rapid decay with distance of:-NE(r, }, w"hile for

«r;J «R„:-NE will be of order q E~( T). An integral
over r; will thus yield contributions primarily from

&I'j Q R, so that

1
NE(»J)-qEA( T) Rt

V,
(with V the volume and the thermodynamic limit
presumed).

We note that the logarithmic growth law Eq. (2.1) is of
the same form as the growth of domains in other random
magnets, ' ' although the growth in spin glasses will, on
the scale of single domains, be less steady. This is be-
cause the typical individual domain wall motions occur-
ring in the spin-glass domain growth are displacements
by length of order R„ for other random inagnets, the typ-
ical displacements scale sublinearly in R, for long
times. '

After the coarsening (domain growth) has proceeded
for some time, the fluctuations on length scales L &~R,
will be in local equilibrium —they will be droplet excita-
tions around the configuration in which the system is
stuck at time t. Far from domain walls, the droplet exci-
tations will be just those of the equilibrium pure states, 4
and +, while near the domain walls they will be modified.

In Ref. 3 we argue that the walls of large droplets will

be fractal with the surface area of domain wall segments
d

of linear length scale L scaling as L ' with
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librium states %' and 4, the growth of domains cannot be
directly observed. An indirect method is possible, how-

ever, via the nonequilibrium decay of magnetization. If
the system is quenched from infinite magnetic field rather
than infinite temperature, the behavior of the growth of
the ordered domains will be statistically similar, since the
fully aligned configuration that is obtained in infinite field

is, as far as the equilibrium states are concerned, no
different from any other random configuration. (For real
experimental spin glasses with short-range ferro- or anti-
ferrornagnetic order this is not precisely correct, but the
differences between quenches from infinite field and
infinite temperature should be significant only at short
times when the domain sizes are on the same scale as this
short-range order. }

A. Quench from infinite field

After time t following the quench from infinite field,
the magnetization density m (t) is proportional to
fP, (R, ) ——,'], where P, (R, ) is the probability that a spin
is in the same domain in which it started, i.e., that it has
flipped an even number of times. This probability can be
calculated exactly for a pure one-dimensional Ising
Glauber modelz and numerically for the SK (Ref. 5)
model and pure Ising models (and thus the trivially relat-
ed Mattis' spin glass) in higher dimensions, as is dis-
cussed in Appendix A. A power-law dependence of
P, ——,

' on R, is found in each case; we thus make the nat-
ural conjecture that this mill be the case for finite-
dimensional spin glasses. We thus have

'
A, /f

1m(t)-
R,~ T lnt

(2.6)

A, &(d/2) . (2.7)

An upper bound for A, is suggested by the following
scaling argument: Consider a region of linear size L. Let
—,+f be the fraction of spins in the initial configuration
of this region which are in state W. Let us then look at
the configuration after a time t such that R, =L. The
average fraction of the spins in the region that are in state
+ at t is P~(L,f). The natural scaling conjecture is that
for large L

Pq, (L,f ) ,' =g (fL'), —— (2.8)

for some exponent a, with g a nondecreasing odd function
which we will assume is smooth and satisfies g(x ~ ~ )

where we have introduced the nonequilibrium exponent
The exponent A, is, as far as we understand, an in-

dependent dynamic exponent unrelated to equilibrium ex-
ponents, although further investigation may yield a scal-
ing relation between A, and other exponents.

An upper bound on m (t) and thus a lower bound on A.

is obtained by considering the maxiinum possible m (t)
which can arise from domains of size R, . The typical to-
tal moment per spin of a spin-glass domain of size R, is of
order R, ", because the relative orientations of the
spins are random within the domain. Thus the maximum
possible value of m (t) is of order R, and we obtain an
essentially rigorous lower bound for the exponent A, :

=O(1). Let us first consider a fixed positive f, so that
the initial configuration is biased a finite amount towards
O'. If a &0, then this bias grows as the domains grow,
which appears reasonable. If a ~0, on the other hand,
this bias is forgotten as the domains grow. We can now
obtain a lower bound on m(t) by assuming that which
spins are in state 4 at time t is completely uncorrelated
with which spins are initially in state O'. This gives a
lower bound, because positive correlations which
enhance m(t) are expected. The initially random distri-
bution after the quench implies that f is normally distri-
buted with variance L . Thus we obtain

—I 2 L Lm(t)&4 Jdf e " ' fg(fL') .
v'2n

(2.9)

We now have two cases: (i) if a & d /2, then g acts likes a
step function on the relevant scale of the normal distribu-
tion of f and we obtain m(t)&O(L "~

) and thus
A. &d/2 which, together with the bound (2.7), would im-

ply A, =d/2; and (ii) a &d/2 in which case the small-
argument limit of g dominates (2.9). In the latter case we
make two natural assumptions: first g(x)-x for x~0,
which yields m (t) & 0 (L' ) and thus A, & d —a. We
now suppose that a is non-negative since, at least naively,
the forgetting of an initial finite bias (itnplied by a &0)
appears unlikely. We thus obtain

A, &d . (2.10)

Unlike Eq. (2.7), however, this must be viewed as only a
suggestive bound, since many assumptions ment into its
derivation. The inequalitites (2.7) and (2.10) appear to be
satisfied for the SK model and for pure Ising models
(and thus Mattis' spin glasses) in two and three dimen-
sions as is discussed in Appendix A. For the pure Ising
model in d =1 at T =0 the exact Glauber solution gives
a =0 and A, =d —a =1, which again satisfy our inequali-
ties. We now turn to various consequences of the picture
of the equilibration processes below T, in terms of the
growth of ordered domains.

III. WAITING-TIME EFFECTS
AND MAGNETIZATION DECAY

In the preceding section we have argued that at time t
after a quench from infinite temperature or magnetic
field, there is a length scale R, which characterizes the
scale on which equilibrium has been established. If we
probe the system on scales much smaller than R„
quasiequilibriurn results should be found which, for spa-
tially averaged quantities, will be close to those in true
equilibrium.

In this section we consider a class of experiments in
which the system is cooled rapidly from above T, to a
temperature T ~ T„ then a time t is waited before prob-
ing the system. The prototypical example is decay of
thermal remanent magnetization (TRM) after cooling in
a small-magnetic field H, which is turned off after the
waiting time and then the magnetization is measured at
times t +t. In the small-field regime, we will show that
for a wide range of times the magnetization is linear in
the magnetic field. Other regimes of magnetic field are
also considered.
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We first consider short times t «& t . In this regime,
the process which will occur are on length scales

'
1/ttr

T lnt

h(T)
(3.1}

This will be much less than the spacing,

R:—Rf

' I/f
T lnt

b,(T)
(3.2)

between the domain walls which remain after waiting
time t„,provided

lnt « lnt (3.3)

Hrn, (t)—
(lnt)

(3.4)

in the short-time regime, where 8 is the stiffness exponent
discussed in Ref. 3. The decay (3.4) is due to the depolar-
ization of independent small droplets of size -L, whose
magnetic moment pr is such that their magnetic free en-

ergy satisfies

pLH «T,
and whose free energy in zero field satisfies

F &T,

(3.5)

(3.6}

This condition (3.3) defines the early epochs. We use
epoch to mean an interval of, say, a factor of 2~ in lnt,
which corresponds to a factor of 2 in L, by (3.1). It is, of
course, rather difficult to satisfy (3.3); at this stage, how-
ever, we are interested in the asymptotic regimes, and we
will return later to questions concerning the nature of the
crossovers between asymptotic regimes.

Since in early epochs the processes which occur in time
t are on scales small compared to the domain wall spac-
ing, they will be characteristic of one of the two equilibri-
um states %z and %z except near the frozen-in domain
walls. Only a small fraction of the system is near a
domain wall, so that to first approximatiop, the relaxa-
tional processes are characteristic of equilibrium. From
the companion paper, we know that the processes which
relax a small magnetization in equilibrium at time t are
primarily thermally active droplets of size -L, . These
will give rise to a quasiequilibrium (qe) component of the
magnetization decaying as

which condition Eq. (3.5) remains valid up to and beyond
scale R, i.e.,

qM 2HR « T (3.8)

where we have inserted the magnetic moment factor
q~(T) from Eq. (3.13) of Ref. 3; q~(T)=qEA(T) for an
ideal spin glass. In this limit, the first nonequilibrium
effects which will occur as t increases are associated with
the finite-waiting time and the continuing growth of the
domains rather than the nonlinear effects of the magnetic
field.

For times t ~gt, the domains will continue to grow,
reaching a size R, +, . Each of these domains will have a

residual magnetization which has not yet decayed away
and which cannot decay further by depolarization of
droplets of size &R, i.e., inside each domain, the size is

4& or its inverse. Thus we now have a situation which is
similar to the decay of the magnetization following a
quench from infinite magnetic field as discussed in the
previous section, except that the average magnetization
at time t„such that, say, R, +, ——2R will be determined

N N

by the cooling field H and the relaxation processes at ear-
lier times. Thus we expect from Eq. (2.6) that for
Int » lnt, which defines the late epochs,

'
A.

m(t) ' +'.R

rn(t ) R,
(3.9)

so that at very long times

R
m (r)-m (r„)

'
A,/f

lnt
-rn (t„)

lnt
(3.10)

A, &d/2&(d —1)/2&8 . (3.11)

In order to obtain the magnetization at time t„, it is
necessary to understand the crossover between the early
and late epochs. We will return to this crossover at the
end of this section. However, we next consider the be-
havior in stronger fields, in particular when condition
(3.5) is not satisfied.

where we have used R, +, =R, for t ~&& t, and we ex-

pect m(t„)~H in the weak-field regime. Thus we see
that for small fields, the logarithmic decay rate of the
magnetization as a function of 1nt is faster in the late
epochs (3.10) than in the early epochs (3.4},because

which is just the condition for them to be active. In this
regime, their response is simply linear in H and charac-
teristic of equilibrium. Since the magnetic moment of a
droplet of size L is

S. Intermediate fields

For fields in the range

TS ' HR" YR-qM (3.12}

pL L d/2 (3.7)

the condition Eq. (3.5) will require smaller fields as L,
grows.

A. Weak fields

We must thus distinguish several regimes of magnetic
field strength. The simplest regime is weak field for

the fields can give rise to nonlinear polarizations of the
active droplets but they are not large enough to Nip a
significant fraction of all the droplets at scale R which
typically would cost a free energy FL —YR . This latter
condition is just the condition that

(3.13)

where the magnetic correlation length gH(T), given by
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FL
(F )= 1 —c (3.14)

from Eq. (2.5) of Ref. 3. These corrections will affect the
initial magnetization and its decay due to droplets of
scale L, & R by amounts of relative order
(Hq~ Ld~z/TL )~ which is still small in the
intermediate-field regime by Eq. (3.12). One might have
naively expected larger corrections of relative magnitude
Hq~~zL ~z/T to occur in this intermediate-field regime,
but they do not appear in any straightforward fashion,
due to the above-mentioned cancellations.

It is quite possible, however, that other more subtle
effects may come into play in the intermediate-field re-
gime. For example, the field dependence, and therefore
history dependence, of the barriers for droplet annihila-
tion and creation and the barriers for the growth of
domains during the waiting time may well have
significant consequences. These will be left for future in-
vestigation.

C. Strong fields

When the field is large enough that its nonlinear effects
on scale R are appreciable, i.e., when

1/2R d/2H & yL, 8 (3.15}

then the behavior should change dramatically. In this re-
gime, the effect of the field on the difference between the
H =0 equilibrium states + and + and the state of the sys-
tem just before the field is turned off is at least as large as

Eq. (3.24) of Ref. 3, is the length scale at which the order
is destroyed by a field for T & T, . In this intermediate-
field regime, the magnetization which is established by
taking an equilibrium zero-field state and turning on a
field for a time t is given by the nonlinear response of
the droplets with sizes less than or of order R . This
nonlinear response should also affect the contribution of
droplets of these sizes to the remanent magnetization de-
cay. It might be expected that the nonlinear response of
the droplets would be large since the nonlinear suscepti-
bility of a single active droplet grows rapidly with in-
creasing size and decreasing temperature as discussed in
Sec. III of Ref. 3. However, averaging over the distribu-
tion of excitation free energies FL of the droplets reduces
the cumulative effect dramatically, due to the assumed
smoothness of the distribution pL of excitation free ener-
gies FL for FL~0 defined in Sec. III of Ref. 3. This is
the same effect which reduces the nonlinear susceptibility
divergence from its naive form (see Sec. III of Ref. 3}.
Physically, the mechanism is quite simple: For a uniform
distribution of droplet free energies, there is a zero-
temperature regime of linear response with a total suscep-
tibility which is the same as that at positive temperatures
even though the regime of validity of the positive temper-
ature linear response of an individual droplet vanishes as
T~0.

The remaining effects of the nonlinear response of
droplets are controlled by the correction to the distribu-
tion pr (Fr ) for small FL

the effect of the finite-waiting time.
When Eq. (3.15) is strongly satisfied, the system is

disordered by the field on scales larger than the magnetic
correlation length (H and can equilibrate in the epoch

lnt -InrH ——g « lnt
T W (3.16)

Thus in this regime the waiting-time effects will be negli-
gible, since the system is in a paramagnetic state that can
equilibrate well in times less than t . ' Equation (3.15)
just corresponds to the condition that the field H is above
the dynamic freezing line at tiine t (frequency co-r ')
discussed in Sec. I. There will still be some small
waiting-time effects in this regime (as mentioned in Sec.
I), since some regions will have anomalously large bar-
riers which yield local relaxation on time scales longer
than t . ' These effects will be swamped by the dom-
inant time dependence, which we now discuss.

In the large-field regime, the short-time behavior at
epochs

Int (&ln~H (3.17)

will be the near equilibrium response. At late epochs,

lnt ~&lnv~, (3.18)

on the other hand, the nonequilibrium growth of ordered
domains will dominate yielding Eq. (2.6). The crossover
between these regimes will occur for lnt-ln~H and be
roughly independent of t .

In not so large fields, where (3.15) is close to an equali-
ty so that

ln~H -lnt (3.19)

the crossover between the short- and long-time regimes
will be affected both by H and t . Because of the expect-
ed broad distribution of barriers, the effects of the field
will start to come in when H is still considerably less
than, but a significant fraction of, the freezing field
Hf(T, t ) [i.e., where Tf(Hf, t )=T], so that there is
likely to be a range of fields for which the crossover from
short-time to long-time regimes is affected by both 8 and

D. Crossover regime

We have found that the basic behavior of the magneti-
zation decay for all fields is an early-epochs regime with
relaxation similar to that in equilibrium and a late-epochs
regime with relaxation similar to that following an
infinite-field quench. Ignoring possible intermediate-field
effects, the crossover between these regimes occur at an
epoch lnt which is roughly the minimum of lnt and
lnvH. The natural guess is that much of the crossover be-
tween early and late-epoch behavior occurs on a logarith-
mic scale in time so that it is very broad.

It is quite possible, however, that there are also cross-
over effects at times t-t due to, for example, lack of
equilibrium of excitations with relaxation times ~ of order
t (rather than just in~-lnt ). It is natural to hy-
pothesize a scaling form, for, for example, the magnetiza-
tion in the weak-field regime as a function of t and t:
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m(tt )
X

H (lnr)«~ int
(3.20)

However it could well be that the scaling function X(x) is
not smooth for x =1, reflecting the suddenness on a loga-
rithmic time scale of the processes with t -t . The scal-
ing function X(x) should go to a constant for x «1
yielding Eq. (3.4) and decay as x' '~~ for x &&1 to
match (3.10). This suggests that the magnetization near
crossover is

m(r, r )-m(t„, t )-H(lnr ) (3.21)

which can be substituted into Eq. (3.10) to yield the be-
havior for late epochs.

At this stage, it is not at all clear how to make further
progress in understanding the crossover regime by, for
example, establishing the validity of Eqs. (3.20) or (3.21),
or investigating the effects of relaxation for t-t . It is
possible that some toy models which contain some of the
essential features of the dynamics may be useful; we leave
pursuit of this for future research.

IV. EFFECTS OF CHANGING TEMPERATURE

In addition to the simple "quench and wait" experi-
ments discussed above, other system histories provide
useful additional information about the spin-glass or-
dered phase. We consider here one such class of experi-
ments which provides information on the temperature
dependence of the spin-glass phase.

We consider quenching to a temperature T, & T„wait-
ing for a time t ], then changing rapidly to another tern-

perature Tz & T„waiting a time t z and finally probing
the system. For simplicity we consider only linear
response measurements: either remanent magnetization
decay in the weak-field regime a time t after the second
waiting period, or ac susceptibility measurements at fre-
quency co.

During the wait at T„ the system equilibrates towards
the state at that temperature achieving a domain size
R &. As discussed in Sec. VII of Ref. 3 the states at T2
will differ on long length scales from those at T&. In par-
ticular, the overlap correlation function introduced in
Ref. 3

R~z=min(L&r, R w, ),12
(4.3)

although for LhT —Rml they will probably be smaller
12

than this by a factor of order unity. The domains will
continue to grow during the second waiting period but
this growth will not be appreciable unless R z [from Eq.
(3.2) with t z, Tz] is &R z. The final domain size at the
end of the waiting period will be

R =max(R z, R z), (4.4)

again, being slightly larger for R~2-Rq2. At time t after
the end of the waiting periods, we will have behavior
similar to the single-quench case but the crossover from
early to late epochs will occur when

LT R (4 5)

which could be much later than t„2 if R z&R 2. We
thus have three regimes depending on the relative magni-
tude of R„2,Lzz-, and R

12

A. Small temperature change

If (T, —Tz }, t „and t z are small enough then Lar
12

will be the greatest length and then

R =max(R„|,Rwz), (4.6)

with, if R„&=R z, a small extra increase (which is negli-
gible asymptotically) due to the extra evolution possible
in time t, plus t„2. In this regime, observing the cross-
over from t, -dependent to t, -independent regimes as
t, is varied provides a measure of the relative barrier
heights at the two temperatures. This crossover will
occur at

Tz h(T, )

wl T g(T )
wz (4.7)

B. Large temperature change

where b, ( T) is the amplitude of the scale dependence of
the barriers. Note that near T„ the dominant tempera-
ture dependence in Eq. (4.7) will be that of b,(T) provid-
ing a means of extracting the exponent fv with which
b( T) vanishes as T~ T, , as in Eq. (5.18}of Ref. 3.

:-(i,j,T„Tz )
—= (S;SJ ) z (S;SJ ) z. (4.1)

will decay with increasing distance
~

i —j ~

with a
characteristic length scale Lzz which for a not too

12

large b T, z
—=

~
T, —Tz

~

satisfying

b, T&z & [T,—max(T„Tz)]

is given by '

If L~~ &&R~2, then R =R~2 and the ~aiting time at
12

T& is ineffectual: The results will be the same as for a
quench directly to T2 from above T, and be essentially
completely independent of t &.

C. Intermediate temperature change

(4.2}
R~2 &&L~~ &&Rwi

which is most easily achieved with T» T2, then

(4.8)

Thus immediately after the quench to T2, the size of the
domains of states %'& and %'z cannot be larger than

2 2

L~z . Their size will generally be
12

R =L~~ (4.9)

and the behavior will be independent of both t, and t 2.
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This provides a possible way of obtaining the overlap
length Lzz, by measuring the crossover between early

12

and late epochs in this regime as a function of ET,2.

D. Other eSects

There will certainly be effects of temperature changes
other than those discussed above. For example, even
small temperature changes might affect barrier heights
enough to yield more subtle behavior. In addition, since
the system will tend to evolve at long times by almost al-
ways going over the smallest possible barriers, memory
effects might result from such pseudodeterministic behav-
ior, which could be at least partially reversible.

V. APPROACH TO EQUILIBRIUM

' 1/f
T

f
inca [ (5.1)

We now consider corrections to the true equilibrium
behavior which occur due to the finite domain size R
which is obtained after equilibrating for a time t at tem-
perature T & T, . As mentioned earlier, we expect that
for measurements at frequency co, the results should ap-
proach equilibrium as

~

Inco
~

/lnt ~0; we are here in-

terested in the form of the corrections to this asymptotic
limit which is, of course, difficult to attain. We thus con-
sider a measurement which probes length scales of order
L; for an ac susceptibility measurement the length scale
probed is

age excitation free energy of droplets of size L is reduced
by

J S

EFt (R )-po(L, R } YR (5.3)

due to the frozen-in walls, where po(L, R } is the proba-
bility that a droplet of scale L appreciably coincides with
the frozen-in wall. This probability is related to the
frozen-in wall density at scale L, no(L), and the condi-
tional probability, Po(L) that a droplet on scale L coin-
cides appreciably with a section of a much larger wall
which is within a distance L of the droplet:

po(L, R )=nD(L, R }po(L) . (5.4)

From the general scale invariance of probabilities of cer-
tain events, and since two droplet excitations around
spins separated by -L will coincide with probability in-
dependent of L (Sec. II of Ref. 3), we conjecture that

Po (L )~constant (5.5)

for large L.
We can now estimate the correction to the density of

active droplets due to the changes in free energy as
represented by Eq. (5.3): We expect that this will be
parametrized roughly by a reduction in the effective
stiffness Y by an amount

'd —8

~Y- Y. (5.6)

nD(L)-
R

(5.2)

of the regions of size L.
Now, in a region of size L which includes a frozen-in

wall, the free energy of that section of wall will have an
d,

average value of order (L/R) 'YR and a random part
of order YL . The former arises since the section of wall

d
has a fraction (L /R) ' of the whole excess free energy on
scale R which is YR . Since we are interested in the
dynamics of excitations at scale L, we must ask what the
effect of the frozen-in wall is on local excitations-
especially droplets.

If the wall of a droplet coincides for a region of scale L
with the frozen-in wall, then it is likely to have, on aver-
age, a lower excitation free energy Fz than it would have
had if the frozen-in wall were not present. Thus the aver-

We will assume that L &&g, so that the walls are sharp
on scale L,„; this is just the condition that co~, &&& 1 with

r, (T) the critical correlation time given, near T„by Eq.
(1.1).

We thus focus on regions of size g «L «R . Since
the distance between frozen-in domain walls is R, and
they have fractal dimension d„we expect that in a
volume R there will be of order (R /L) ' regions of
size L which the domain walls pass through. Thus, the
frozen-in domain walls will affect a fraction

d —d

This yields, results for, for example, the out-of-phase ac
susceptibility at frequency co measured after waiting time
tw'

Y"(~,t )=I"(co,ao) 1 —c»

' (d —8)/g
/

inca
/

lnt
(5.7)

VI. DISCUSSION OF EXPERIMENTAL RESULTS

The picture developed in this paper and its companion
should enable some comparisons to be made between the
theory and experiments on Ising spin glasses. Unfor-
tunately, well-characterized Ising spin glasses have not
been found and we are thus faced with the complications
of Heisenberg systems with various kinds of anisotropy
whose properties below T, have not yet been thoroughly
investigated theoretically. We can, however, hope that
many of the qualitative and some of the quantitative as-

for
~

1nco
~

&&lnt, where we have used Eqs. (3.2) and
(5.1) for R and L . We thus expect that the corrections
to physical quantities at frequency co decay very slowly,
so that, unless for some reason the constant c& happens
to be anomalously small, it will be very difficult to extract
the true equilibrium behavior P"(co, ~ ).

It is natural to guess that as long as cot « 1,
7"(co, t ) /X" (~, ao ) will be a scaling function of

~

inca
~

/lnt, the expression in the large brackets in (5.7)
being the small-argument behavior of that scaling func-
tion.
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with 7., a microscopic time for T- —,T, and the critical
correlation time for T~T, . Similarly the dissipative
part of the susceptibility is expected from Eq. (4.18b) of
Ref. 3 to behavior as

X"(to}-
~

into',
~

('+ ly) (6.1)

A useful way to parametrize data is via effective ex-
ponents:

and

a (t)=- d lnm (t)
d lnt

d lnX" (to)z( )=-
d inc@

(6.2)

(6.3)

which should be roughly constant over wide ranges of
time or frequency, as found in experiments. From the
theoretical predictions we expect

a (t)= 8/
ln(t /r, )

(6.4)

and

pects of the picture developed here will apply to the more
realistic systems and attempt comparison with experi-
ment. Even a cursory discussion of the large body of ex-
perimental literature' on nonequilibriurn phenomena
below the freezing temperature in spin glasses is far
beyond the scope of this paper, so we will, instead, re-
strict ourselves to a brief discussion of some aspects of a
particular set of experiments. We will focus on linear
response measurements: ac susceptibilities and magneti-
zation decay in the weak-field regime.

We first consider observation of the expected near-
equilibrium behavior at measuring times t or inverse fre-
quencies ~ ' much shorter than the waiting time t for
which the system has been equilibrated. Experiments in
this regime indicate behavior which is apparently in-
dependent of the waiting time for long enough t, and it
has been shown that the expected relations between Auc-
tuations and responses of different kinds hold in this re-
gime. 7 From Eq. (3.4} we expect the quasiequilibrium
component of the magnetization to decay as

m (t)/H —[1n(t/~, )]

is that the approach of X"(co,t ) to apparent equilibrium
for long t appears rather faster than expected from Eq.
(5.7): Indeed the condition

~

1nco
~

&& lnt is never
satisfied experimentally. Thus considerab1e caution
should be exercised in assuming that the observed long-t
behavior is really equilibrium, especially since the
fluctuation-dissipation theorem and other relations be-
tween correlation functions will be obeyed as long as
quasiequilibriurn exists with cot && 1.

We now turn to aspects of the dynamics further from
apparent equilibrium. We first note that, qualitatively,
the crossover behavior found in Sec. III for the decay of
the magnetization after waiting time t„, in the small-field
regime, is also found experimentally: Crossover is ob-
served for lnt-lnt, in at least some experiments.
Moreover, the eff'ective exponent a (t) shows a marked
increase in this regime consistent with the expectation
from Sec. III. In three dimensions it is likely that A, /8 is
quite large, perhaps as big as 10, since 0 is small. This
implies that if the crossover occurs quickly on a logarith-
mic time scale, then a,„will increase markedly for t ~ t,
perhaps in a way consistent with the experiments. What
is somewhat surprising, however, is that at least some
crossover appears quite rapid experimentally, certainly
considerably more rapid than lnt . Unfortunately, ob-
taining enough decades in t at the shorter t end [where
ln(t /r, ) varies most rapidly] to test scaling predictions
such as Eq. (3.20) seems unlikely. More theoretical work
on the crossover regime is definitely needed in order to
make real comparisons with experiments.

Finally, we cornrnent on one "double-quench" experi-
ment in which the system was equilibrated for a time t„,
at 0.96T, then cooled to 0.72T, . It was found that the
behavior at 0.72T, did not depend on the waiting time
t, , suggesting agreement with the large-temperature-
change regime of Sec. IV, an identification that is reason-
able quantitatively. Further investigation of the effects of
varying temperature differences would certainly be in-
structive. The reduced effects of equilibrating at a slight-
ly lower temperature T2 on the behavior when returned
to T~ found in the same series of experiments, is also
qualitatively consistent with the growth of barriers with
decreasing temperature as in Eq. (4.7). At this stage,
many of the other results from this rich set of experi-
ments remain a mystery.

(6.&) VII. CONCLUSIONS

when the logarithmic factors are large. The observed
values of a for 1s & t & 100s and a&- for co-10 Hz at
T/T, =0.7 in CdIno 3Cr, 7S4 are 0.02 and 0.06, respec-
tively. For T/T, -0.7, ~, should be -to —10 ' so
with the simplest possibility 8/g= 1, we expect
a =0.03 and a+-=0.07 in not unreasonable agreement
with experiment. The apparent exponents observed are
far smaller than those of order —,

' found for the SK mod-

el, yet it should be noted they are not much smaller
than the power-law decays at the critical point where, for
example, we expect a =(d —2+g)/2z =0.07.

A rather surprising feature of some of the experiments

In this paper we have shown how a rich variety of
nonequilibrium effects arise from a picture of the spin-
glass phase with only two albeit temperature-dependent
states. Much further work on various crossover regimes,
the effects of temperature changes on barriers, and the
consequences of more complicated Heisenberg systems
needs to be done in order to make detailed comparisons
with experiments. However, we hope that it is now ap-
parent that the complicated features of the Parisi solution
to the SK model, ' particularly those involving many pure
states, are not needed to explain much of the equilibrium
and nonequilibrium behavior of spin glasses.

We end with a comment on why it is impossible to



382 DANIEL S. FISHER AND DAVID A. HUSE 38

equilibrate spin glasses on long length scales, in contrast
to the case of random-exchange ferromagnets which also
exhibit logarithmic growth of domains following a
quench to below T, .

When random-exchange magnets and spin glasses are
cooled slowly through T„ the domain sizes will grow
large just below T, since the large barriers are present
only on scales larger than the correlation length g, and
thus affect only times larger than the critical correlation
time ~, . From scaling near T, we expect schematically

dRr

dt C

exp[ —(R, /g )~] (7.1)

so that at a/red T 5 T,

R, -( [In(t/7, )]'~~, (7 2)

APPENDIX A: DECAY OF REMANENT
MAGNETIZATION IN THE SHERRINGTON-

KIRKPATRICK MODEL
AND THE MATTIS SPIN GLASS

In order to estimate the new nonequilibrium dynamic
exponent A, introduced to Eq. (2.6), we have performed
Monte Carlo simulations of the Sherrington-Kirkpatrick
(SK) model and the pure Ising model which is equivalent,
via a random gauge transformation, to the Mattis spin
glass. ' The results are presented and discussed in this
appendix.

Let us consider a general quench of an Ising spin sys-
tem in which the system is prepared in the initial random
configuration [S;(0)=+1] and then its evolution at tem-
perature T is watched. The overlap with its initial

implying that large-domain sizes are possible just below
T, . In random-exchange magnets, these domains will be
qualitatively similar to the up and down domains far
below T, so that once large domains are formed on slow
cooling through T„ they will persist for all T (although
they will grow only extremely slowly at lower tempera-
ture). For spin glasses, by contrast, the sensitivity of the
states to temperature means that the large domains
formed near T, will become small domains separated by
networks of domain walls once temperature is decreased
much further. Thus the underlying cause for the lack of
large scale equilibrium in spin glasses below T, is the sen-

sitivity of the states to temperature, a feature that might
at first have seemed rather esoteric.

Note added. While the writing of this paper was being
completed, we received a paper by Koper and Hilhorst
which presents a somewhat similar domain picture of ag-
ing effects in spin glasses. However, they proceed more
phenomenologically, assuming a power-law growth of
domains, in contrast to our logarithmic growth law (2.1),
which is based on activated dynamic scaling. They also
have an exponential relationship between the long-time
remanent magnetization and the domain size, while we
find a power-law relationship (2.6).

Recent work by one of us shows that, in the presence
of a remanent magnetization, the domain size R, can, in
principle, be measured by neutron scattering.

configuration is

qo(t)= —g (S,(0)S,(t)),1
(A 1)

where the average here is over initial configuration,
thermal histories, and, for random systems, realizations
of the disorder. The sum in (Al) is over all N spins of the
system. The remanent magnetization m (t) after a
quench from infinite-magnetic field is the special case
where the initial configuration is fully magnetized with
S;(0)=+1. For a spin glass with no ferro- or antiferro-
magnetic bias in the distribution of the exchanges t J,")
we should have m(t)=qo(t), because the fully magnet-
ized configuration is not special in any way, the system
being statistically invariant under random gauge transfor-
mations. Thus we can introduce the exponent A, for any
random or nonrandom system via

1
qo(t)

R ~(t}
(A2)

where R (t} is the domain size at time t
For the infinite-range spin glass (the SK model) we

must use a slightly different definition of A, , since a linear
domain size R (t) cannot be simply defined. However, we
might hope to define something analogous to the number
of spins in a domain which scales as R "(t}and then we
would expect

1qo(t—
R (t}

A. /d

(A3)

We can then define (A, /d) for the SK model which can
presumably be viewed as some kind of realization of the
limit d ~ oo. We define R (t) as follows: The Hamiltoni-
an is

(A4)

where the exchanges are independently distributed with
mean zero and variance one. (J =+1 was used in the
simulations. } Let us make two replicas a and P of the
same system (with the same t J; ) ). Start the two replicas
in different random initial configurations [S; (0)) and
[SP(0)). Then define

f,~))) (zs')))s=p()—) ') , .

For t ~ oo (and finite N) the two replicas are at equilibri-
um and fso(t) becomes the (untruncated} Edwards-
Anderson or spin-glass susceptibility Xso. For T&T,
and large N, XsG-¹ For finite times XsG( t) is a measure
of the number of correlated spins in each domain, "thus

(A5)

+SG q EAR

Thus we will define (A, /d) for the SK model via

(A6)

q ( )-X (t)

Numerical results for qo(t) versusf so(t) at tempera-
ture T = T, /2 are presented in Fig. 1. For each realiza-
tion of the ( J;1 ] we have made six replicas and run them
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FIG. 1. Monte Carlo simulation results for the overlap with
the initial spin configuration qo(t) defined in Eq. (Al) vs the
"domain size" iso(t) defined in Eq. (A5) for SK models of N
spins at T =0.5T, . The straight line has slope A/d =0.75 [Eq.
(A6)]. The finite-size effects enter in the smaller lattices at
XsG-N/5.

in parallel, measuring qo(t) for each replica and Xso(t)
from the various overlaps. For N =50 we have run 5400
realizations, the final data point in Fig. 1 being an aver-
age over 50—70 Monte Carlo steps per spin (MCS) at in-
tervals of 10 MCS. For N = 160 we ran 1000 realizations,
and the final data point is an average over 240—420 MCS
at 10 MCS intervals. For N =512 we ran 600 realizations
and the final data point is for 430-740 MCS. The earliest
data point in Fig. 1 is a measurement at 2 MCS. We have
used the Metropolis algorithm and selected spins to fiip
at random. The measured statistical errors range up to
3% for qo(t) and 2% for Iso(t) and are thus always less
than or of order the size of the points in Fig. 1. The
straight line drawn on the log-log plot in Fig. 1 has slope
(A, /d) =0.75. The data for N & 512 show that the finite-
size effect becomes significant around Iso(t) =N/5 so the
data for N =512 is probably not finite-size affected. Note
that the result for the SK model

(A, /d}=0. 75 (AS)

is precisely midway between the bounds (2.7} and (2.10).
The statistical error on this estimate is about +0.02; of
course systematic errors could be larger.

It has been suggested that the equilibrium spin auto-
correlations in the SK model decay with a temperature-
dependent exponent. The nonequilibrium exponent we
are measuring here may also be temperature dependent,
in which case (AS) applies only to the particular tempera-
ture we simulated, namely T = T, /2. Preliminary simu-
lations at T=0.ST, indicate a possibly larger (A, /d};
more careful simulations at various temperatures are un-
der way in order to examine this question.

The time dependence of qo(t) for the SK model is
shown in Fig. 2. The prediction (2.6}for short-range sys-
tems is that qo(t)-(lnt) ' ~' so we have plotted qo(t)
versus log&ot on a double-logarithmic graph where this
would yield a straight line. [Note this prediction is for
finite-dimensional spin glasses and need not apply to the
SK model. ] The times are measured in MCS so our mi-

0.02—
I

0.5

ogio t

FIG. 2. The time dependence of qo(t) for SK models of N
spins at T=0.ST, . The straight line has slope (A, /P), e=1.75
[Eq. (2.6)]. Time is measured in Monte Carlo steps per spin
(MCS). The curvature and finite-size effects suggest that the
true asymptotic slope is significantly larger: A, /f & 1.75.

1. Mattis spin glasses

We have also simulated qo(t) for pure nearest-neighbor
Ising models on square (d =2) and simple cubic (d =3}
lattices. A random gauge transformation on these sys-
tems produces the Mattis spin glass. ' Our simulations
are done at zero temperature, again using the Metropolis
algorithm and random selection of spins to update. At
zero temperature in these nonrandom systems, the total
amount of domain wall left per unit volume (area) is sim-
ply proportional to the excess energy per spin (above the
ground state} remaining in this system, be(t). This pro-
vides a measure of the domain size via

R(r)-[be(r)] (A9)

Our results for qo(t} versus b,e (t) are presented in Fig. 3.
The measurements shown are made at 0 MCS, 1 MCS,

croscopic time is implicitly assumed to be 1 MCS. The
plot shows significant curvature and stronger finite-size
effects than Fig. 1. The slope of the longest time data for
N =512 yields effective exponents (A, /f)dr-1. 75. In
view of the observation that the slope of the data in-
creases both with time and system size this estimate
should be viewed as a lower bound on the asymptotic ex-
ponents: )(,/g & l.75. Kinzel has instead fit qo(t) with a
power-law decay to a lattice-size dependent constant:
qo =q „+At '. Our data also fit this well with
q„=0.012 and a=0.6 for N =512 (Kinzel obtained
a=0.4 at T=0.4T, .) Note that for larger times and
finite N Kinzel's form must fail because qo(t)~0 for
t ~ 00. We do not feel we can draw any conclusion about
the form of the asymptotic time decay of qo(t) in the
N~~ SK model from these data; they represent too
small N and t. Indeed, for N = 00 it is by no means clear,
either theoretically or numerically, whether qo(t) decays
to zero or to a positive residual value for t ~~.
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FIG. 3. Results for the Mattis spin glass on square (d =2)
and simple cubic (d =3) lattices at zero temperature. The
straight lines have slopes A. =1.25 and k=1.50. The linear
domain size is proportional to [he (t)]

FIG. 4. The effective exponent A,,s(t) [Eq. (A9)] vs Lie(t)/d
for the Mattis spin-glass data shown in Fig. 3. For d =2 the ex-
trapolation to our conjectured result A. =1.25 is shown. For
d =3 the data are consistent with our bound [Eq. (2.7)],
A, & 1.50.

log&olio(t) jqo(10t)]t)=
log&o[b, e(t)lbe (10t)]

(A 10)

This effective exponent is shown versus he(t) in Fig. 4.
It is natural to guess that the deviation of A,,s(t) from the
asymptotic A, is due to effects that vanish as the surface-
to-volume ratio of the domains. Thus one expects that

and every —,
' of a decade thereafter until the final measure-

ment at 10 ' =631 MCS. These data represent 80 his-
tories of a N =400 sample for d =2 and 41 histories of a
N =80 sample for d =3. Smaller size lattices were also
run to verify that these data are not affected by the finite
size of the lattices. The measured statistical errors range
up to 3.5% for both qo(t) and he (t) at the latest time in
d =3, and are thus smaller than the points in Fig. 3. The
straight lines in Fig. 3 represent A, =—„which we conjec-
ture (see below) may be the exact asymptotic exponent
for this system in d =2, and A, =Y', which is the lower
bound (2.7) on 1, for d =3. The time dependence of he (t)
is the expected' he-t ' for d =2, while it is some-
what slower for d =3, presumably due to some zero-
temperature freezing effect. In d = 1 the result A, = 1 can
be obtained straightforwardly at T =0 from the exact
solution of Glauber.

There is significant curvature in the data on the log-log
plot in Fig. 3. In order to analyze this data, we follow the
procedure recently introduced for studies of spinodal
decomposition and define an effective exponent for a de-
cade in time via

the deviations may vanish as

A.,N(r) —A, -b,e(t) . (Al 1)

For d =2 the straight line in Fig. 4 represents a reason-
able extrapolation, showing the data are quite consistent
with the conjecture A, =1.25. For d =3 we see the
effective exponent for the times measured is always less
than or equal to our lower bound of 1.50. However, the
trend is such that any asymptotic exponent in the range
1.50 & A, & 1.65 would be quite consistent with both Eq.
(2.7) and our data.

For d =2 this system has the property that only one of
the two Ising domains ("up" and "down") can percolate.
When viewed as a continuum system, both domains are
at their percolation threshold, each occupying 50% of
the area after the random quench. Thus it is natural to
guess that the exponent a in our scaling argument Eq.
(2.8) is just that of percolation. In (2.8) f is the deviation
from 50% of, say, "up" spins, so we may make the
identification f =(p —p, ), where p, =50% is the percola-
tion threshold for the domain. The percolation correla-
tion length scales as g -(p —p, )~~~ for d =2 so the
natural scaling variable to put in (2.8) is fL ~ or a = —,'.
If we then go through the argument following Eq. (2.8)
and assume A, is equal to the bound obtained, we have
A, =d —a = —,'. Considerable caution is in order here since
the process which produces the two incipient percolation
clusters certainly has different statistics from independent
(Bernou11i) percolation and one must assume that these
correlations are irrelevant for the above argument to
work. The agreement with the simulation results sug-
gests however that this assumption may be valid.
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