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We present a quantum theory of collective excitations in a two-dimensional array of quantum
dots. The collective excitations are induced by Coulomb coupling of the quantum dots, and can
have energies significantly higher than the energy-level splittings in individual quantum dots.
These collective excitations should be experimentally detectable.

Recently, it has become experimentally possible to fa-
bricate zero-dimensional quantum structures—quantum
dots.' 7 In such structures, electrons are confined in all
three spatial dimensions and electron states are discrete.
In light of the remarkable richness of physical phenomena
which has been uncovered since electron confinement to
two dimensions was made possible, it is expected that elec-
tron confinement to even lower dimensions will create a
new exciting field both for basic physics research and de-
vice applications.

Discrete energy levels in quantum dots have been ob-
served in a recent experiment by Reed etal.! A typical
quantum dot in their experiment is a disklike structure
embedded in a column of semiconductor materials. Elec-
trons are confined in a thin layer (about 50 A) of
In,Ga)—,As in between two Al,Ga;-,As barrier layers.
The diameters of the columns are in the range of
1000-2500 A. Thus, the confinement in the direction
along the columns is much stronger than in the lateral
directions. Energy-level splittings in such quantum dots
are of the order of 25 meV. In order to obtain enough sig-
nal strength, it is common in experiments to fabricate ar-
rays of quantum dots. Although the quantum dots are
electrically insulated from each other in the sense that
electrons cannot transfer from one quantum dot to anoth-
er, the long-range Coulomb force couples the quantum
dots and this Coulomb coupling can lead to collective ex-
citations in the system. This is analogous to the situations
in multiwire superlattices and multilayer superlattices. In
multiwire superlattices, the Coulomb coupling of excita-
tions between one-dimensional (1D) subbands of the wires
leads to collective intersubband plasmons.®° In multilay-
er superlattices similar intersubband plasmons occur!%!!
and have been observed experimentally.!? In this Rapid
Communication, we propose a quantum theory of collec-
tive excitations in a system of quantum dots which form a
rectangular lattice.

First we consider a square lattice of quantum dots. The
results will be extended to the rectangular lattice later.
We choose the array of quantum dots to be in the xy
plane, and the z axis to be along the columns. Since elec-
tron confinement in the z direction is much stronger, it is
only necessary to consider the lowest-energy level in the z
direction. In the x and y directions, quantum dots are
periodically spaced and wave functions of electron states
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for different quantum dots do not overlap. Thus, in x and
y directions, tight-binding wave functions are perfectly
suited for describing this system. The fabricated quantum
dots have a disklike shape; thus, for a single quantum dot,
the x and y directions are equivalent. This implies that
the excited states in a quantum dot will be degenerate
(not counting spin degeneracy).

In light of the above discussion we can write the wave
functions of the system as

| kx,ky,i, ) =& vk, (X yjn, () (1)

where &, is the wave function of the lowest state in the z
direction and

ik, (x) =Y %y (x —nd) , 2

ik, () "Zeik’"d(pj(y —nd). 3)

In the above equations d is the period of the square lattice
and i and j label the states in the x and y directions. The
energy of the Lth level E(L) depends on both i and j. If
the confining potential of a quantum dot is parabolic, then
we can write L =i+ j. The first excited energy level has
L=1 and is doubly degenerate, corresponding to states
with i=0, j=1 and j =0, i =1. This degeneracy exists as
long as the quantum dot has xy symmetry, irrespective of
the detailed form of the confining potential.

To study collective excitations of the system we use the
self-consistent-field formalism of Ehrenreich and
Cohen.!3 We start from the integral form of the Poisson

equation
12 (=t

v = [4ren)
elt—7|

where e =4repep, and ¢, is the background dielectric con-
stant. Taking Fourier transforms in the xy directions we
get

_ 2re? =glz=2'| (5
= z 4
V(@q,z) fdx e n(g,z"), 4)

where § is a 2D vector (gx,g,) and ¢ =|q|. The density
response is given by
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n(g,z)=2|¢&,|? Z’(a V(@) |a'Xa'| e |a)

EWL)-EWL)tho’

In (5) a,a’ are composite quantum indices, with a = (k,,k,,i,j), and f is the Fermi function. We combine (4) and (5)

and integrate out the z degree of freedom, and get

2
V(g = 4:; 1@) X a| V)| a'Xa'| 7| a)

where

v@=fd:v@lel?,

and
I(q)-ffdzdz'e_qlz_zll|§z|2|§z'|2. )

Using the tight-binding wave functions (2) and (3) and
assuming that the Wannier wave functions for different
quantum dots do not overlap, the matrix element
(a'| 7| a) is particularly easy to calculate. This matrix

EWL)-EWL)+ho’

|
G is the reciprocal wave vector 2z/d and

A;i(gx) _fdxeiqxx¢;5 (x)¢i(x), (10)

B(g)) = [dye®61(3)0;(p) . an

The other matrix element {a | V(F) | a’) can be written as

element can be decomposed into x and y components and (alv@®|aY=Xv@)a'le @ T|a). (12)
. g
Chaoi' | €T ki) =840 1 —0 woAi(@x) s ®)
. . ke ke mgunG T Combining (8)-(12) and (6) we get
(ky,j' | €9 Ky ) =8ys— -, n6Bji*(@y) - ©
J
2
V(g) = 4’:; 1(g) Zm V(gx+nG,q,+mG) E A1 (qx+nG)B; (g, +mG) A;(qx)B;;(q, )11 (@) , (13)
n i
JJ'

where the polarization

S —f(L)

“LL'("’)',(E, E(LY-EWL)+ho 14
Let us denote ¥, to be ¥ (gx+nG,q, +mG), gum to be the absolute value of the wave vector (g5 +nG,q,+mG), and
define

Unm =1(qum)/qnm - 15)
Then, from (13) we have

2
Vm = 4": Unm 2111 (@) A;;: (g +nG)B (g, + mG) X VA (g +n'G)B (g, +m'G) . (16)
i’ n'm'

i’

Equation (16) serves as the basic equation for deriving all
collective excitations of the system. For a rectangular lat-
tice, the G associated with g, should be replaced by 2z/d,,
and the G associated with g, should be replaced by 2x/d,.
If individual quantum dots do not have xy symmetry then
the labels L, L' should be replaced by ij and i'j’, respec-
tively.

Solving (16) is equivalent to solving a multidimensional
matrix equation and in general can be quite involved nu-
merically. In the following, we solve (16) for a simple
case for which analytical solutions are obtainable. This is

f

the case where each quantum dot has only two energy lev-
els. Although real systems should be more complicated,
solving this simple case demonstrates how Eq. (16) can be
solved and provides a picture of the basic physics involved.
Generalizations to the more complicated cases will then
be straightforward.

Since the system is dispersionless the polarization
I;;(®) is nonzero only when L=L’'. In our notation,
L =0 corresponds to the ground energy level and L =1
corresponds to the first excited energy level. If there are
only two energy levels in each quantum dot, (16) becomes

1
Vom = (47€*/€)UpmI1(@) [400(qx +1nG ) Boi (g, + mG)g1(gx,qy) + A01(qx +nG) Boo(g, + mG)g2(gx,q,)]1 a7
where
£1(qx,9y) -,,z.:n Vum Ao (gx+nG)BS (g, +mG) , (18)
' (19)

£24x,9y) =X VamA8 (gx +nG) B (g, + mG) .
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The (w) in (17) is given by 1403
NM(w) = (@) + 1 o(w) L
- Z [F(0)—f(1)I12E - (ns0—n51/2)E 10
ky ky (flw)z_Elzo (hw)2._E120 ’ 1.401 L
(20) .
where E | is the energy difference between the two energy o
levels and ngo, n;; are average areal electron densities of S

the two energy levels. We multiply (17) by either
A% (g, +nG)Bi (g +mG) or A (gx+nG)BR(qy
+mG) and then sum over n and m, and get the following
two equations:

£1(gx,qy) =N(w)c1181(gx,q,) + T w)c1282(gx,9)) ,
Q1)

22(gx,qy) =N(w)c2181(gx,qy) +(w)c2282(gx,g9,) ,

with (2)
ci1=(4ne?/e) nz':”U,,m | A0o(gx+nG)Bo1 (g, +mG) | 2,
c2y=(4rme 2/e)"ﬁ",”U,,,,, | Ao1(gx+nG)Boo(g, +mG) | 2,
c12=(4re?/e) 'gnUnmA&(qx +nG)Bg (g, +mG)

’ X Ao1(gx+nG)Boo(q,+mG) ,

and cy; =c. From (21) and (22) we have

N(w)cy1 —1
N(w)cy

n((l))clz

MN(w)cyp—1 =0. (23)
Equation (23) is quadratic in IT(w) and gives two collec-
tive excitation modes. Their frequencies are given by

E10Q2ns0—ns1) (eyicaa—leiz| D
enten*lle—cn)i+4|cn| 127
(24)

The two collective modes given by (24) are nondegen-
erate except for some special cases. At first it seems
surprising that although the first excited single-particle
energy level is twofold degenerate, the collective excita-
tions associated with electron excitations from the ground
level to the first excited level have two nondegenerate
modes. The lifting of the degeneracy is due to the fact
that the system can support both longitudinal and trans-
verse collective modes and excitation energies for these
two modes are different except for some special wave vec-
tors.

(hw)?=E}H+

1.399

1.397

r X M r

FIG. 1. Dispersions of collective modes for a square lattice of
quantum dots. Each quantum dot is assumed to have two ener-
gy levels. Parameters used are (Ref. 14) E o =25 meV, € =6.5,
m* =0.041m,, d=1000 A, zo=50 A, and n,o—n:/2=2x10"
cm "2 L and T represent longitudinal and transverse modes, re-
spectively.

Figure 1 shows the dispersion of the two collective
modes as given by (24). In producing Fig. 1 we assume
that the confining potential of the quantum dots takes the
parabolic form (m*/2)(Eo/h)*(x*+y?), and that the
z-component wave function is the “particle in a box” wave
function &, =(2/z0) V*sin(nz/z¢). These assumptions are
appropriate for systems studied by Reed etal.' T, X, and
M are points in the wave-vector space that correspond to
(0,0), (z/d,0), and (x/d,n/d), respectively. Along the
lines of I'X and MT, we can explicitly identify the longitu-
dinal and transverse modes. Deviations of the frequencies
of the collective modes from the energy-level spacing of
quantum dots can be significant. Raman-scattering ex-
periments should be able to detect the collective modes.
Indeed, since optical experiments are much easier to per-
form on quantum dot systems than transport experiments,
the prospects for the experimental observation of the col-
lective modes in quantum dot systems should be good.
However, the dispersions of the longitudinal and trans-
verse modes and their splittings are very small, making
the experimental resolution of the two modes difficult.

In conclusion, we have developed a quantum theory of
collective excitations in a 2D array of quantum dots. The
collective modes should be experimentally detectable and
can have energies significantly higher than the energy-
level spacings in quantum dots.
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