
PHYSICAL REVIEW B VOLUME 38, NUMBER 5 15 AUGUST 1988-I

Configuration dependence of hopping matrix elements in the Anderson model
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In ab initio calculations of the hopping matrix element V in the Anderson model, it is found
that V may vary by a factor of 2-8 for Mn, Ce, and U compounds when different relevant
configurations are used. We give a prescription for which configuration to use in an ab initio cal-
culation of V, and we make a corresponding modification of the hopping term in the Anderson
model, which can easily be implemented in methods for solving the model. We discuss how this
influences the calculated properties of Ce compounds.

The Anderson model' has frequently been used for
describing systems with localized states interacting with
extended states. Examples of such systems are rare-earth,
actinde, and many transition-metal compounds. Tradi-
tionally, the parameters of the Anderson model have been
treated as fitting parameters to be determined from some
experiment(s). Recently there have, however, been a
number of calculations of the parameters for 4f systems,
dilute magnetic semiconductors45 and high-T, supercon-
ductors, s using the local spin-density approximation. 7 In
this approach, one is then confronted with the question of
which configuration to use in the calculation of the local-
ized wave function. As an example, we consider an Mn
impurity in CdTe, where the Mn 3d orbital is the local-
ized state. In the ground-state calculation the d 5

configuration dominates, but the d6, and possibly the d,
configurations also play a role. In valence photoemission,
a 3d electron may be removed, making the d4 configu-
ration important and in core-level photoemission a core
hole is created. The localized orbital (here 3d orbital)
strongly depends on the number of localized and core elec-
trons used in generating the potential for which the orbital
was calculated. This orbital strongl~ influences the hop-
ping matrix element, V. Actually, V can be related to a
potential parameter, h, in the linear muffin-tin orbital
(LMTO) method

V -iL= —[pt(C,s)]

of core holes is a conserved quantity, and it is clear how
many core electrons should be included in a given calcula-
tion. This is, however, not obvious for the number of 3d
electrons. If, for instance, we are interested in a hopping
matrix element involving the d" and d"+' configurations,
should the localized orbitals then be calculated for the d",
d"+', or some intermediate configuration?

To discuss this issue, we introduce a simple model with
two orbitals. By forming a linear combination of these or-
bitals, we can obtain a localized solution with a radial ex-
tent which is adjusted as the configuration is changed.
We then discuss the calculation of the relevant hopping
matrix elements within this model and map it back onto
the normal Anderson model. This gives us a simple
prescription for how to choose the appropriate configura-
tion in the calculation of 6 for a given matrix element.

The localized orbital pt (r,ni) is determined by the radi-
al Schrodinger equation with the potential v(r, ni). The
potential is calculated for the occupation number, ni, of
the localized orbital, and we use the boundary condition
that the logarithmic derivative at the Wigner-Seitz radius
is —I —1. The wave function pt(r, nt) is normalized. We
now choose some reference occupation nto and denote the
corresponding solution

47—=4t(r, nt ) .

Here pt(C, s) is the value of the localized orbital at the
Wigner-Seitz radius s. The localized orbital with the an-
gular momentum I is obtained by solving the radial
Schrodinger equation for the energy C, the "position of
the resonance, " corresponding to the boundary condition
that the logarithmic derivative at s is —I —1. Results for
6 for Mn in CdTe, a-Ce, and metallic U are shown in
Table I. The table illustrates that h depends strongly on
the configuration used in calculating p. For Mn, we find
that adding one 3d electron increases 5 by about
50%-70%, and creating a core hole, keeping the number
of 3d electrons fixed, reduces 6 by more than a factor 2.
For U, the dependence is slightly weaker, while it is even
stronger for Ce. It is, therefore, crucial to find a prescrip-
tion for how to choose the appropriate configuration in the
calculation of d,. In the generalization of the Anderson
model normally used for core spectroscopies, the number
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0.0072
0.0091
0.0112
0.0053
0.0069

TABLE I. The potential parameter b, for different
configurations of Mn, Ce, and U in non-spin-polarized calcula-
tions. The localized orbital is 3d (Mn), 4f (Ce), and Sf (U),
and we consider a core hole in the ls (Mn), 3d (Ce), and 4f (U)
orbital. The occupancy of the localized and core orbital is n(
aud n„respectively. We have introduced nto, which is 5 (Mn), 1

(Ce), or 3 (U), and n, , which is 2 (Mn), 10 (Ce), or 14 (U).
All energies are in Ry.
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We also introduce the derivative e& 1.68 Ry, for ~p ) and ~p'), respectively. We intro-
duce the derivative of the potential

pi (r,nt )
nl n 0 v'(r) —= v(r, n() (4)

where A is chosen so that p' is normalized. From the nor-
malization of pi(r, ni) it follows that pp and p' are orthog-
onaL In Fig. 1, we show these orbitals calculated for the
Mn d5 configuration, i.e., n(d 5. The orbitals pp and p'
will be used as basis functions for our two-orbital model.
For the potential used in Fig. 1, the expectation values of
the corresponding Hamiltonian are ep

—0.45 Ry and

nl ni nI
0

For Mn in CdTe, we have the matrix element

(y' (
v'

(
yP&=U-O. I6. (5)

We now temporarily introduce a simple, generalized
Anderson Hamiltonian with two localized orbitals pp and
~l

where

1 1

Zeknke+ Z eini+ Z Z (Vikmitrimoitikcr+H c )+ 2 Uppnp(np
k, cr i 0 i 0 k, m, cr

+ —,
' Ullnl(ni —I)+Uplnpni+Ug(itrj myp m+H c )(n.p.+ni —1),

(7)n; g n; —(nP —I )6;p.
m, e

Here ek are the energies of the extended states
~
ko), where k is some quantum number and er is the spin. The energies of

the localized states are e;, and nt is the azimuthal quantum number. Vk are the hopping matrix elements between the

extended and the localized states. For simplicity, we assume that

Vikm &kmP'(&) (8)

where we have used the observation [see Eq. (I)] that V;k is approximately proportional to p'(s), and Bk is the con-
stant of proportionality. U;J are the Couloumb integrals between the localized states UJ -F (ii,jj .), where

QOO l+OO II +k
Fk(ij, kl) e2 r2dr (r') dr' k+, p;(r)pj(r)pk(r')pi(r'), (9)
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FIG. 1. The orbitals rt$q(r) and pjd(r) for Mn in CdTe. We
used the configuration 3d and the Wigner-Seitz radius
s 3.015 a.u. and all the core levels were filled.

and r & (r & ) is the larger (smaller) of r and r'. Since pp
and pi are orthogonal, the integrals of the type F (ii,jj )
are normally the largest ones. We have also included
U-F p(ijjj ), where for simplicity we have assumed that
FP(01,11)=FP(01,00) The co.rresponding terms in (6)
are particularly interesting, since they will allow pp and pi
to mix in a way which is coupled to the number of local-

ized electrons. Because of the factor np+ n 1
—

1 in the last
term, there is no mixing of

~ p ) and
~
p') for configura-

tions with ni localized electrons. This is the desired re-
sult, since

~
pp) was constructed to be the solution of the

radial Schrodinger equation for np localized electrons.
The Coulomb matrix elements of the type Fp(01,01) are
neglected, since we expect these to give smaller contribu-
tions than terms involving F (01,00). We have also
neglected terms containing Fk, k 2,4, which give multi-
plet effects, but are not of any particular interest for the
issues discussed here. In the actual calculation of U;J one
has to take into account that there are strong renormaliza-
tion effects. ' This has already been included in the
last term, by using the result (5) for U.

To obtain the model (6) we have made several sim-

plifications. It still includes, however, the strong depen-
dence of the radial extent of the localized orbital on the
occupancy of this orbital, which is observed in ab initio
calculations (see Table I), and which is the issue of this
paper. To see this, we calculate the localized orbital for
the occupancy ni in the atomic limit (V;k =0), using the
Hartree-Fock approximation and perturbation theory

( yi(ni) &
-

(
y'& —U ( y'),

- (n( —np) (io)
si —

ap

where we have neglected the difference between Upp and
Upi. This difference should not be very important, since

2.13 Ry for Mn, while (p ~
v '

~ p ) —(p'
~

v
'

( p')
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&P,n(IHI v n( 1&
'

o &(4 n(IHI v n(
y((s, n()

y((s, n(')
(13)

0.13 Ry. For n( 6 and n( 5 the numerical coefficient
of y' is —0.08. From Fig. 1, we deduce p'(s)/p (s)
= —3, and from Table I we obtain 6 0.0085 for
n3d 5. We then predict A (1+0.08 x 3) 0.0085

0.013 [see Eq. (1)] for n3p 6 in agreement with the
full calculations, illustrating that the model (6) properly
describes the radial relaxation of the localized orbital.
This calculation also illustrates the validity of perturba-
tion theory, which follows both from the relatively large
energy separation of p and p' and from the relatively
small matrix element U. Both these results are conse-
quences of the fact that p and p' by construction are or-
thogonal. This reduces the matrix element U, since v ' has
a rather smooth variation. It further forces p' to have one
node more than po (see Fig. 1), which leads to a rather
high energy. We expect this to be true also for other sys-
tems.

We now discuss how the model (6) can be approximate-
ly mapped back onto the normal Anderson model, by us-

ing the observation that the state
~
p') is much higher in

energy than the state
~
po) (about 2 Ry 27 eV for Mn),

and that
~
p') is only weakly mixed into low-lying states.

Assume we have a state
~ ((,n(), built up from n( electrons

in states [ ~
Omcr)j of the type ~ y &, and some combination

of extended states [~ kcr)j. These kind of states span the
whole space of states for the normal Anderson model.
From one of these states we can construct a number of
states

~ p, n(, a), by transferring zero, one or several local-
ized electrons from states ~0mcr) to states

~
Imcr). The

space [(((,n(, a), (( 1,2, . . . n( 0, 1, . . . a 1,2, . . .j
s ans the two-orbital model above. For the space
j pn(, a),a 1,2. . .j generated from one state ~(4,n(), we
diagonalize the Hamiltonian (6). All the new states, ex-
cept possibly one, are high in energy. Thus, we only keep
the lowest state in each space, which allows us to make a
one to one mapping back onto the normal Anderson mod-
el. By calculating the hopping matrix elements between
the states which are kept, we obtain a prescription for how
to calculate the matrix elements in the Anderson model.

Using the first-order perturbation theory, we obtain

I(4,n(& Ip n(& gU ' '
yt yo o(p n(&

m, o

where we have neglected the differences between the U;(
in the denominator. To first order in U/(a~ —ao) the state
~P, n() is normalized and its energy is equal to the energy
of

~ p, n() We now. calculate the hopping matrix element
between two states with different number of localized
electrons

&p, n()H ) v, n( —
1&

&(( n( I H I v, n( —1), (12)'(s) n( n(—
p (s)

which is correct to first order. From (10) and to the accu-
racy we are working with here, it then follows that

To obtain the matrix elements between states with n( and
n( —1 localized electrons, the calculation of A in (1)
should therefore be performed for n(o n(, i.e., for the
larger of the two occupation numbers. A simple way of
seein this is to note that ~P, n() is equal to

~ p, n.(), while

~P, n( —1) takes the form of (11).The Hamiltonian (6)
connects the first term in the expansion of p~, n(o —1) to

~ (4,n( ), but not the second term, and only Vok enters the
calculation.

We can now write down the proper hopping term, H~,
in the Anderson Hamiltonian

0) g [Vk (n)y yk +yj yr Vk~(n)], (14)
k, m, e

where n g, n, and Vk (n() has been calculated for
n( localized electrons. The rest of the Anderson model
remains unchanged. The term (14) can be included in cal-
culations2 for the Anderson model without any complica-
tions. In calculations using the Anderson model it is often
assumed that only two configurations are important. The
Hamiltonian (14) then introduces no additional parame-
ter compared with the normal Anderson model, but it
gives a prescription for how to calculate the hopping ma-
trix element.

For Ce compounds the fo and f ' configurations are im-
portant for the thermodynamic properties and the valence
photoemission spectrum. The corresponding matrix ele-
ments should then be calculated for n4f 1. In particular,
for valence photoemission, the f2 configurations are, how-
ever, of importance as well, which also leads to matrix ele-
ments calculated for n4f 2. In the core-level photoemis-
sion (XPS) spectrum and in the 3d x-ray absorption
(XAS) spectrum the hopping matrix elements in particu-
lar influence the peaks related to f ' and f states. This
influence is both via the ground-state and final-state prop-
erties. In the final states, the matrix elements, most im-
portant for the weights of the f ' and f2 peaks, should be
calculated for n4f 2 in the presence of a core hole. In
the XPS (XAS) the weight of the fz peak also depends on
the f2 (f ') weight in the initial state, which is related to 5
calculated for n4f 2 (n4f 1). The net result of these
effects is that an effective matrix element

~
V

~

2 (used in a
Hamiltonian without configuration dependence) appears
somewhat larger (-20%) in core-level XPS and smaller
in 3d XAS compared with the

~ V~
2 calculated for n4f I

in the absence of a core hole. In core-level XPS, multiplet
effects have usually been neglected, which should tend to
reduce the apparent size of V~ . In the bremsstrahlung
isochromat spectroscopy (BIS), we are often interested in

the relative weights of the f' and f peaks. In the final-
state calculation, the corresponding important matrix ele-
ments should be obtained for n4I 2, while the important
ground-state matrix elements should be obtained for
n4f 1. An effective

~ V) should then appear larger than
the

~ V~
2 calculated for n4f 1. Thus we expect an

effective
~ V) to be similar for the thermodyanic proper-

ties and the valence and core-level photoemission spectra,
while it should be larger for BIS and smaller for 3d XAS
spectra.
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