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Electron mobility in quasi-one-dimensional conductors: A theoretical study
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We present a calculation of the temperature dependence of the electronic mobility in quasi-one-
dimensional conductor systems due to scattering by longitudinal-acoustic phonons, using the
memory-function formalism. We expect that the theoretical results here obtained can be applied to
quantum-well wires, to linear chain mercury compounds such as Hg3 &AsF6, and to some organic
compounds that behave like one-dimensional electron-gas systems.

I. INTRODUCTION

In recent years much attention has been focused on
one-dimensional (1D) metals, mainly due to the fact that
some 1D conductor materials present a peculiar instabili-
ty called the Peierls transition. A gap opens at the Fermi
level and a sharp maximum appears in Blnp/BT at the
transition temperature, where p is the resistivity of the
system. This decrease in the conductivity and the lattice
modulation was explained, at first, by the Peierls mecha-
nism, ' based on the electron-phonon (EP) interaction,
which leads to the appearance of a charge-density wave
(CDW) and an associated lattice modulation of wave-
length n /kF (where kz is the Fermi-surface wave vector)
in the one-dimensional electron gas (1D EG). This CDW
state has been seen in many 1D metallic materials, e.g. ,
the organic conductor tetrathiafulvalene-tetracyano-
quinodimethane (TTF-TCNQ). However, several ma-
terials seem to be 1D metals and yet do not exhibit a
Peierls transition. For instance, Hg3 &AsF6 is an inor-
ganic compound where the incommensurate linear Hg
chain structure in the AsF6 host leads to one-dimensional
lattice dynamics and to highly anisotropic electronic
properties. Other examples of quasi-one-dimensional
systems are the organic compounds (TMTSF)2PF6 and
(TMTSF)2AsF6, which consist of planar stacks of
TMTSF molecules with PF6 or AsF6 complexes stacked
separately.

On the other hand, some interest has recently arisen in
understanding the electronic transport properties of the
1D GaAs/Ga, „Al„As quantum-well-wire (QWW) sys-
tem, which consists of an electron gas tightly confined in
ultrafine semiconductor wire structures. ' A calculation
of 1D mobility limited by ionized donors has been report-
ed for zero temperature by Sakaki and several works '

have also appeared in the literature, thus illustrating an
increasing interest in these 1D systems.

In this work we are interested in examining more close-
ly this kind of 1D material with a quantum-wire-like
structure that do not have a Peierls instability. We use
the memory-function (MF) projection-operator formalism
to describe the temperature dependence of their electron-

ic transport properties. As shown in a previous work,
this technique becomes very convenient in the case of
longitudinal-acoustic (LA) phonon scattering systems for
both high- and low-temperature regimes. Besides, it al-
lows one to include the presence of high magnetic fields
without further formal diSculties. In Sec. II, we exhibit
the Hamiltonian model of the problem, as well as the MF
formalism, in order to derive a formal expression for the
conductivity through the calculation of the 1DEG dielec-
tric function. This section is also devoted to the numeri-
cal analysis of the temperature behavior of the electrical
mobility. Finally, in Sec. III we summarize the main
conclusions and make supplementary comments concern-
ing systems that also exhibit 1DEG character.

II. THE MODEL HAMILTONIAN,
MF FORMALISM, AND NUMERICAL RESULTS

Since the number of thermally excited optical phonons
in the temperature range of our interest is quite small, it
is not expected that they will play a fundamental role in
the scattering process of the 1D EG. Therefore, we shall
consider in this work only the acoustic-phonon scatter-
ing, using the deformation-potential method at long-
wavelength limit. In this way, we use the Frohlich Ham-
iltonian describing the interaction between a one-
dimensional electron gas and a 1D LA acoustic phonon
as

and

D(q)=[(A/2m;N'co )]'i qg,

p(q)=X Ck C
k

(2)

=(a +a ). (4)

Here Cz (C|, ) and aq (aq) are the electron and phonon
creation (annihilation) operators with momentum k and

H =g e„C„C„+g A~qaqaq+g D(q)p(q) Aq, (1)
k

with
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q, respectively. The third term in Eq. (1) is the
electron —LA-phonon interaction potential where p(q) is
the Fourier transform of the electron-density operator
and g is the deformation constant due to lattice dilation.
N' is the number of lattice cells and m, is the ionic mass.
The LA-phonon frequency is represented by the Debye
model, i.e., m&

——C,q, C, being the velocity of sound and x
the unique electron (phonon) propagation coordinate.
Since we assume a 1D model for the phonon system, only
phonons with wave vectors along the x direction contrib-
ute to the scattering and hence to the resistivity.

Then, the conductivity tensor of Kubo's expression can
be expressed as

o '(0) = '

ImM(0), M(co+iO+) =M, (co)+iM2(co) .
Ne

M' '(0)= — lim II (ci)ko
1

Nm' ~-0

where

II"(co)= i8—(t)f ([U'(t), U'(0)])e' 'dt,

(14)

(15)

(13)

In the zeroth-order approximation the MF can be ex-
pressed in terms of retarded farce-force correlation func-
tion II"(co),

o„„(co)=— +—f dt Q„„(t)e""',
m Q) —oo

(5) U' being the generalized force along the x direction:

where m ' is the electron effective mass (m '=0.067 a.u. ,
in GaAs), N is the number of carriers with charge

i
e i,

and Q„„(tj is the retarded Green function associated with
the current-current correlation function J(t):

(6)

where 8( t ) is the usual Heaviside step function.
[8(t)=1 if t )0 and 8(t)=0 if t (0.] For simplicity, we
shall omit the subscript x throughout this work.

The dynamical conductivity o(z) can be expressed in
terms of a memory function M(z). ' Let us introduce the
spectral function X(z), given by

X(z)= —f dcoX "(co)/(co —z) =i f dt e"'X"(t),
77 —00 0

U'=i gqD(q}p(q)A e'~" . (16)

The retarded force-force correlation function can be
written in terms of the electron-density correlation func-
tion and phonon propagator:"

II"(ice)=—g q ~

D(q)
i

—g S(q, ip„)D(q, ice ip„) —.
IP

S ( q, ip„)=—g gg (k+ q, o, ik„ip„)g—0( k, o,ik„),
k, a ik„

We use instead, in zeroth order, S (q, ip„ ) and
D (q, ice ip„), resp—ectively, the noninteracting electron
density and free-phonon propagator, defined as

where the spectral function X"(t) can be expressed in
terms of the current-current correlation function

—2cOq
D (q, ico ip„)=-

pn j +~q
(19)

After some manipulations, o (z) can be written

o (z) =i — X(z) .
m*z m' z

The Laplace transform C(z) of the correlation function
C(t) = (m ' /e ) ( J(t)/J(0) ), can be related to X(z) as

After some algebra, using the finite-temperature for-
malism in the Matsubara representation, we can express
the imaginary part of 11"(co) in terms of the imaginary
part of the dielectric constant ez(q, %co) in the random-
phase approximation (RPA):

1m[II"(co)]=—gq i
D(q)

~

z

C(z) = i [X—(z) —X(0)], P=(k T)
z

(10)

where X(0) is the static limit of X(z). Assuming the
boundary condition that the system is a normal conduc-
tor, i.e., the conductivity tends to a finite value as z ap-
proaches zero, we get from Eqs. (9) and (10) the value

ftPCO gp

e2(q, kcoq+ Rco)
X

q

—T(co~ —co) (20)

C(z)=iP 'X(0)/[z+M(z)] . (12}

The dc electrical conductivity can be obtained in terms
of the memory function as

Then, C(z) obeys the following memory-function equa-
tion:

where V is the Fourier transform of the Coulomb poten-
tial and 7' represents the term preceding co replaced by
—co. According to Eq. (14), in the static limit co~0, the
imaginary part of the MF is given by

e~(q, ficoq)
M2(0)= gq iD(q) i

~

(21)
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The 1D dielectric function calculation turns out to be

e2(q, fico)

Vq

(2m* '
eq

' '[f(E ) f—(E+)], (22)

and

f2q 2

2m*

(eq+ A'coq)
+1

4&q 2m 'C,

'2

(23)

(24)

with

E'p = m 4C2
S

(25)

So, considering only scattering by 1D phonons, with a
maximum momentum transfer (q~ =2kF ) one has

f(E) being the Fermi-Dirac distribution function, e and

E+ being, respectively,

where

G(E}=f g(E')dE' .
0

(30)

Using this method, after some change in variables, we
obtain a formal expression to the dc conductivity as a
function of the temperature [cf. Eq. (13)]:

m'( (ks8 )
cr '(T)=

m.N e N'm;A C,

(E )1/2

X J2 4peo 1+
E0

(E )1/2
—J2 4peo —1+

6'p
(31)

The temperature 8 can be associated to the max-
imum momentum transfer at the low-temperature re-

gime, i.e., ksT«EF. For a GaAs/Ga, „Al„As quan-
tum wire, one has 8 =4.4 K whereas J„(y) is the Debye
integral:

M2(0)=, (I I+ ), — (26) J„(y)= f dx x"
(e"—1)

(32)

where

fiPC, q

I+(p)= f dq q s f(E+ ) .
0 (e ' —1)'

(27)

Figure 1 shows the behavior of the energies E+ (q) as a
function of the momentum transfer q. Performing a
q~E variable change in each integral equation given by
Eq. (27) we have in general form

I(p)= f dEg(E}f(E), (28)
a

which has a simple solution given by taking the leading
term in a Sommerfeld expansion

}1c(T)=A
T

8

' —2

(E )1/2

x J, 4pe, 1+
Eo

(E )1/2
—J2 4peo —1+

60
(33)

with

Finally, the static mobility p(T), obtained directly
from Drude formula, can be expressed as

I(p) = [G(EF ) G(a ) ]e(EF——a )

—[G(EF ) —G(b)]6(EF—b ), (29)

AN'em;A C,A=
m'g (ks8 )

(34)

E, (2 kF)

E(q) E( )

E (Zt, )

2kF

FIG. 1. Energies E+(q) and E (q) as a function of the
momentum transfer q. According to Eq. (24) one has
E (2kF ) (E~ (E+ (2k~).

Thus, the temperature dependence of the mobility for a
1D electron gas interacting with an 1D LA-phonon sys-
tem, described by Eq. (33), is valid over the entire temper-
ature range where the material is metallic.

The temperature dependence of the mobility has been
calculated for a Ga1 Al„As/GaAs QWW from
T/8 =0. 1 to T=Tz, TI; being temperature which is
about 15 K in this case.

One notes from the log-log plot of Fig. 2 that the
theoretical results for the mobility [in units of A, cf. Eq.
(34)] as a function of the temperature show difFerent
power law in T/0 along the temperature range of in-
terest. One observes that in the high-temperature limit,
i.e., T &8, the curve has a slope equal to —1, which is
representative of a resisitivity which has a linear increase
with T, as is expected for 3D metals. Besides, at low tem-
peratures, i.e., T &8, the negative slope of the curve
p/A versus T/0 increases rapidly as temperature de-
creases, from T around T/0 =0.25 to higher powers
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p/A

600

present work instead of an electron-phonon coupling
characteristic of a tight-binding chain as employed in
Ref. 13, leads to quite similar results.

III. FINAL REMARKS

I20

25

O. t 0.3 1.0
T/e

FIG. 2. Temperature dependence of the electrical mobility

p( T) in units of A at the temperature range T &&0 and
1 & T/8 & TF =15 K for a GaAs QWW. A is a constant given

by Eq. (34).

for very low temperatures.
It is interesting to compare the numerical results ob-

tained in our model of 1D LA-phonon mobility in the en-
tire temperature range with some experimental data and
previous calculations to some 1D metals. In particular,
Conwell et al. ' performed a tight-binding calculation of
the resistivity in order to describe the (TMTSF)zPFs com-
pound, based on the Boltzmann-equation approach, giv-
ing rise to a temperature dependence which is propor-
tional to I/sinh(8~ /T), with 8 =60 K. In Ref. 13, the
calculation is performed in the metallic range, from the
Peierls transition temperature Tz ——14 K up td T & 8

We notice that the numerical results in our model for
this same temperature range, i.e, T/8 -=0.25 up to
T)8 show a similar power law in temperature and are
in good agreement with the experimental data. Thus, we
suggest that using a deformation potential as done in the

In this work we have calculated the temperature
dependence of the static transport properties of a 1D EG
due to scattering by 1D LA phonons using the memory-
function formalism. The model is suitable to be applied
to materials like Ga, „Al„As/GaAs quantum-well-wire
systems as well as to Hg3 &AsF6 or (TMTSF)2PFs sys-
tems in the metallic temperature range, above the Peierls
transition, taking into account in each case their charac-
teristic 8 values.

The theoretical results have shown a complex variety
in power law for the temperature dependence of the elec-
trical mobility. At high-temperature limit, i.e., T)8
the mobility is inversely proportional to T, whereas at
low temperatures (T &8 ), the inverse power law in T
increases rapidly as temperature decreases, passing from
a power law T at T/8 =0.25 to higher negative
power for very low temperatures.

Finally, it is worthwhile to mention that our theory
can be generalized in order to obtain dynamic transport
properties and to include magnetic field erat'ects on these
1D systems. ' Besides, many-body eft'ects can also be in-
troduced in our formalism. In fact, the approximation in
Eq. (17), i.e., using "simple bubble" noninteracting elec-
tron density correlation S (q,ip„) instead of the complete
S(q,ip„), implies neglecting all "quantum corrections" to
the conductivity. However, these e6'ects do not seem to
play an important role for the LA-phonon scattering in a
simple 1D metal in the temperature range we are interest-
ed in.
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