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From quasicrystals to icosahedral glass
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In the present work, a model of glass is constructed by relating the order in metallic glasses to
that of an ideal structure, the icosahedral quasicrystal. The Landau theory of this model leads to a
ground state which is an ordered array of solitons. There are many stationary states corresponding
to different soliton networks. It is argued that topological constraints lead to finite barriers separat-

ing these states. The system can therefore be effectively frozen into one of these metastable states.
It is suggested that the excitations in one of these metastable states are related to the orientational

degree of freedom of the order parameter. The mode) provides an attractive framework for under-

standing the physics of metallic glasses.

The dominant theme in the theoretical study of metal-
lic glasses has been the understanding of the connection
between local icosahedral order and the occurrence of a
glassy phase. ' The recent observation of icosahedral
quasicrystals has raised the obvious question of the rela-
tionship between such phases and icosahedral or metallic
glass. In fact, the concept of an icosahedral quasicrystal
arose in connection with the effort to construct a refer-
ence structure for glass. However, most of the subse-
quent activity has been concentrated on understanding
the nature of the quasicrystalline phase.

The purpose of this paper is to present a model of glass
based on a generalization of the density-wave description
of quasicrystals. In this picture, the quasicrystal is
viewed as a particular three-dimensional (3D} cut of a
periodic structure in six dimensions (6D}. The extended
icosahedral order of the quasicrystal can then be defined
in terms of order parameters which correspond to the
Fourier transforms of the periodic 6D density. Modeling
glass as an imperfect icosahedral quasicrystal, the order
in glass can be described by generalizing the above
description to define local order parameters. A Landau
theory of glass can then be formulated in terms of these
local order parameters. At low temperatures, the impor-
tant degree of freedom is expected to be associated with
translations in 6D space. The model free-energy func-
tional then leads to the appearance of planar soliton
configurations in the stationary states.

The appearance of solitons is a common feature of
models like the Frenkel-Kontorova (FK}model which de-
scribe incommensurate structures. In a one-dimensional
FK model, the solitons are the spatial analogs of a classi-
cal particle moving in a one-dimensional periodic poten-
tial. The motion being one where the particle sits in one
potential minimum for a relatively long time and then
makes a swift move to a neighboring potential minimum.
The description of a one-dimensional quasicrystal as a cut
through a two-dimensional lattice leads to a similar mod-
el, except that the solitons correspond to paths connect-
ing neighboring mjnima on a square lattice. There can,
therefore, be two types of solitons corresponding to the

two primitive lattice vectors. Similarly, the solitons in
the icosahedral crystal correspond to paths on a 6D lat-
tice. The quasicrystal models are, therefore, similar to
FK models with more than one set of periodic potentials.

A useful and convenient way of classifying these soli-
tons is by using topological arguments. This
classification scheme can then be used to analyze the na-

ture of the various stationary states which correspond to
different arrangements of the solitons. It can be shown
that, in icosahedral media, there can be many topologi-
cally distinct soliton networks. It can also be argued that
these networks are separated from each other by finite en-

ergy barriers. This provides an appealing picture of
glass; each distinct network being thought of as one of
the metastable states that the system can freeze into.

A complete description of the model requires the for-
mulation of a free-energy functional which includes both
the amplitude variations and the orientational degrees of
freedom of the order parameter. The construction of
such a generalized functional is briefiy discussed in this
work. A gauge-invariance property, arising from the
embedding in 6D space, leads to an interesting structure
of the functional. This functional is expected to become
relevant when defects are present in the system.

Most of the existing work on metallic glasses has been
based on the notion that icosahedral glass can be viewed
as a mapping into flat space of a perfect icosahedral tiling
in curve space. ' Mappings from spaces of both posi-
tive and negative curvature have been considered. ' The
mapping that has received most attention is that of a 12-
coordinated lattice of icosahedra on the surface of a
four-dimensional sphere. Mapping from curved to flat
space can be accomplished only by the introduction of
defects like disclination lines which decurve space. These
defects are, therefore, an essential ingredient of the
curved-space description of glasses. ' A Landau
description of this model of glass is suggestive of a
ground state consisting of an ordered array of disclina-
tion lines. It has been argued that strong topological
constraints render this ground state inaccessible to a rap-
idly cooled system like metallic glass, and glass is there-
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g= pm, q, .

The set I q; I is the incommensurate set made up of the
six vertex vectors of an icosahedron. They are linearly
independent on the space of integers: g; m;q;&0 for any
set of integers Im, ). The density function p(r) is a cut
through a function which is periodic in 6D space, and the
3D cut is defined by the three 6D vectors
Q =(q, , . . . , qs ), a=x,y, z. The set Ip )

figures

a the
set of order parameters in the Landau theory of freezing
from a liquid into an icosahedral quasicrystal (IQ).
The minimal set which can describe the symmetry of the
IQ is I p, I corresponding to the set of vectors I q; I.

Viewing glass as an imperfect IQ, the order in glass can
be described by the local order parameters I p, (r) I. In or-
der to be able to identify the important degrees of free-
dorn of the order parameter, it is convenient to think in
terms of the 6D periodic structure. This periodic density
can be written as

p(R)= g pomxp(iG R) . (2)

Here, IG( is the set of 6D reciprocal lattice vectors.
Comparing Eq. (2) to Eq. (1), it is clear that Ip; I can be
identified with I po ) corresponding to the six smallest 6D
reciprocal lattice vectors.

The free energy that one mould like to construct from
the po+r) should be invariant under all translations and a
subset of rotations in 6D space. The subset of rotations is
defined by the requirement that they leave the orientation
of the 3D cut with respect to the 6D lattice invariant.
The latter restriction applies because changing the orien-
tation of the cut leads to a completely different physica1
system whose free energy can be very different. The im-
portant degrees of freedom are therefore the order-
parameter amplitude and the order-parameter phases
corresponding to 6D translations and rotations. At low
temperatures, the amplitude variation can be neglected
and the orientational degree of freedom gets locked to the
translational freedom. An adequate description of the

fore characterized by a disordered network of disclina-
tion lines. '

The present model is similar to the curved space
description of glasses in describing the ground state by an
ordered array of defects. The defects here are the soli-

tons, in contrast to line defects of the curved space mod-

el. It will, however, be shown later that the two are relat-
ed closely and that most networks of solitons are also
forced to have line defects. Metastable states exist in the
present model as a consequence of topological barriers
which separate states with different soliton patterns. This
is reminiscent of the line-defect entanglement
phenomenon. '

The starting point of the Landau theory is the density-
wave description of quasicrystals. ' The quasicrystal is
described by the density

p(r}= g psexp(ig. r},
Igl

'

low-temperature properties can then be given by a set of
slowly varying displacement variables, U(r). The order
parameters can be written as

p~dr) =p~mxp[iG. U(r)],

p;(r)=poexp[iU;(r)] .

Under these conditions, the free-energy functional be-
comes identical to the one which has been used to ana-
lyze the local stability of the IQ. "' Measured with
respect to the energy of the perfect IQ, this functional is

f = g ~

VU;
~

—g Asrpo cos g m, (q, .r+ U, )
I M

=~VU~ —g A p cos G. QQ r, '+G.U
a

The sum of the moduli of the components of G defines M,
the order of a local term.

This free-energy density describes a frustrated system.
The frustration arises from the competition between
the gradient terms favoring a uniform U and the local
terms favoring a spatially varying U. The frustration can
be relieved only by the introduction of defects. In order
to analyze the nature of these defects, it is helpful to
define a new displacement vector

W(r}=U(r)+ g Q r
a

It is seen from Eq. (4} that the W field feels a periodic po-
tential defined on a lattice given by the vectors 0

f = VW —gQ e —g Vocos(G. W} .
I

Here e denotes a unit vector along the direction a. The
stationary states of the system can be obtained by func-
tional minimization of the above free-energy density.
The appearance of solitons is a general feature of all such
model free-energy functionals, and can be understood in
terms of an analogy with particle motion in a periodic po-
tential. '3 The analogy is not exact because here one is
dealing with three spatial dimensions as opposed to one
time dimension in the particle problem, and therefore can
be used only as a quantitative tool. The model of a 1D
quasicrystal would map onto the particle problem, and
the local minima of f would correspond to paths which
satisfy Newton's equation for a particle moving on a
square lattice. There are many such minima, each corre-
sponding to an event in which the particle sits at one lat-
tice site for a long time and then swiftly moves into a
neighboring lattice site. In the 3D problem, the spatial
configurations of the W field which minimize f are pla-
nar solitons. These are singularity free configurations
which are subject to the constraint that sufficiently far
away from a given plane, the field is uniform and corre-
sponds to a minimum of the potential given in Eq. (5).

It is to be noted that the vectors Q do not appear
in the equations of motion. The stationary states of the
system are therefore made up of a superposition of soli-
tons. The ground state being given by that particular ar-
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R =G H SQ(3)SSQ(3)
A(5)

(6)

rangement of solitons which minimizes the total free en-

ergy. It is not possible, in general, to obtain explicit solu-
tions for the stationary states. An explicit solution has
been worked out in Ref. 12 assuming that only one set of
local terms, with a given value of M is important. This
analysis shows that the ground state is a network of soli-
tons which has quasicrystalline icosahedral order. The
free-energy functional has other stationary states which
are characterized by soliton patterns differing from the
ground state pattern. In order to understand the physics
of this model of glass, it is therefore necessary to analyze
the properties of these solitons. The most convenient
framework for this analysis is the topological theory of
defects. ' Although, a more physically intuitive treat-
ment is desirable, the nature of the icosahedral phase
makes this prohibitively diScult. The topological
analysis serves as an efBcient tool for gaining some insight
into the properties of the model, and provides a starting
point for more detailed studies.

Topological defects or textures such as planar solitons
have a one-to-one correspondence with spatial variation
of the order parameter and can be described by mappings
of the relevant physical space into the order-parameter
space. ' ' Given a free energy, its symmetry group G,
acting on a prototype order parameter, generates the
complete set of order parameters. Symmetry breaking
implies that a subgroup H of G leaves the order parame-
ter invariant, and the order-parameter space is identified
with the coset space G/H. Definition of this coset space
for the IQ requires identification of the syminetry group
of f and the group of invariance of the density function
p(r). An analogous procedure based on the projection
technique' ' has been employed for classifying line de-
fects in IQ. ' In the absence of phase-locking terms in
the free energy, the two procedures are equivalent.

The free energy, in the absence of phase-locking terms,
is invariant under all translations in 6D space (R ) and
under those SO(6) rotations which leave the orientation
of the 3D cut with respect to the 6D lattice invariant.
The phase-locking terms are important in the region
where the phases are uniform, and can be neglected in the
regions close to the planes of the solitons where the gra-
dient term dominates, and the phases very rapidly. In
these regions of nonuniformity, the symmetry group 6 is
the group [ SO(3)8SO(3 ) ] A R . The group G consists of
all 6D translations and those rotations which can be writ-
ten as a product of two SO(3) rotations, one in the 3D
space defined by (Q ), and the other in the 3D space
defined by the orthogonal vectors ( Q J. ' The subgroup
H of G which leaves p(r) invariant, consists of discrete
translations and operations of the icosahedral group
A(5). ' In the present work, eff'ects related to the break-
ing of translational symmetry will not be considered. It is
expected that the inclusion of these effects would enrich
the present model but would not alter its essential
features. Consequently, only the rotational parts of the
groups will be retained. The order-parameter space in
the region close to the planes of the solitons is, therefore,

The phase-locking terms dominate suSciently far away
from the regions of nonuniformity. These terms are in-

variant under the symmetry group which leaves the lat-
tice vectors m invariant; the 6D hyperoctahedral group.
The subgroup of the hyperoctahedral group included in

G is the icosahedral group A(5). ' ' The action of this

group on p(r) leaves it invariant. In the uniform regions,
the order-parameter space is therefore restricted to a sin-

gle point in R, and the solitons are characterized by the
constraint that the order parameter approaches a single
value far away from a given plane. Thus, a line drawn
between the two uniform regions of a soliton determines
a closed loop in the order-parameter space. The solitons
can therefore be classified by the homotopy classes of
loops in order-parameter space, and are characterized by
the elements of the fundamental group of the order-
parameter space II,(R). ' '" Since the group H is

discrete, H& is isomorphous to the lift of H into the cover
group of G. The cover group of SO(3) is SU(2) and,
therefore

H, (G/H) =A(5) . (7)

Here, A(5) is the lift of the icosahedral group into SU(2).
The same group describes disclination line defects in
icosahedral media and has been the subject of extensive
investigation. Because of this relationship between line
defects and solitons, the solitons can end in these line de-
fects' and also be generated by the motion of these line
defects. '

The different classes of II& correspond to difterent
classes of SU(2) rotations. A soliton introduces a shift in
the cut through the higher dimensional space without
changing the relative orientation of the cut with respect
to the lattice. The classes of solitons correspond to the
distinct ways in which this can be accomplished. In the
physical space, a soliton leads to local changes in the ar-
rangements of the icosahedral building blocks. This can
also be visualized as a change in the relative phases of the
six density waves describing the icosahedral structure.
The analogy with particle motion on a lattice can be used
as a tool for visualizing the topological classification
scheme. A particle at a given lattice site can jump to any
of the neighboring sites. These sites are related by
different symmetry operations of the point group to the
original site and the possible paths from this site can
therefore be labeled by the possible symmetry operations.
Identifying the solitons with paths connecting two neigh-
boring points on a lattice with icosahedral point group
symmetry, in the 6D space, leads to a classification
scheme which is identical to the one in terms of the ele-
ments of H&.

The group H, is nonabelian; the individual group ele-
ments do not commute. The properties of media with
nonabelian H, are quite different from those of abelian
media' and this has important implications for the phys-
ics of glass. The properties relevant to the present work
are summarized 1ater.

The class multiplication table usually fails to provide a
unique product class. This implies, for example, that the
product of the combination of two line defects depends
on the path followed in bringing them together. ' In
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connection to soliton networks, this implies that a given
set of solitons can give rise to soliton networks belonging
to diferent topological classes. This follows from the ob-
servation that a soliton network can be characterized by
the sequence of steps followed in its construction. Each
step in the sequence being given by the product of the
classes characterizing the soliton being added, and that of
the existing network. Since the di8'erent networks belong
to di8'erent topological classes, they cannot be continu-
ously deformed into each other. Again, drawing upon
the rough analogy with particle motion, a given soliton
configuration can be identified with a path on the lattice
going through a particular sequence of lattice points.
Any two paths which go through exactly the same se-
quence of lattice points can be deformed into each other
since the paths are pinned only at the lattice sites. But,
because of the discreteness of the lattice, paths going
through diferent sequences cannot be continuously de-
formed into each other.

The crossing of two solitons, characterized by noncom-
muting elements of II&, necessarily give rise to a line de-
fect at their line of intersection. This can be seen by
drawing a contour surrounding this line. The element of
11, characterizing the line would be given by aPa 'P
where a and P are the elements characterizing the indivi-
dual solitons. This belongs to the identity class only if a
and P commute. This implies that most soliton networks
will also contain a network of line defects. These line de-
fects are disclination lines in the sense that the 6D vector
W, associated with each point in 3D space, does not re-
turn to its original value on going around a closed loop
around the line defect. This observation establishes a
closer correspondence between the present model and the
curved space madel of glass. '

The possibility of constructing many distinct topologi-
cal networks from a given set of solitons is indicative of
the occurrence of metastable states in the system. These
states being separated by barriers arising from topologi-
cal constraints. The height of such barriers can be de-
duced only from a detailed study of the energetics in-
volved in creating and destroying solitons. A detailed
analysis of the energetics has not been carried out so far.
However, such a study has been carried out for planar
solitons in He, and it has been shown that the barrier for
destroying a solitan which can end at a line defect is re-
lated to the energy necessary for creating a closed singu-
lar line with ring-radius comparable to the soliton
width. ' Since solitons in icosahedral media can also end
at line defects, a similar result is expected to hold here,
implying that the topological barriers are not infinite.

It would be interesting to see if the barriers separating
form a hierarchical structure. Classification of the states
by the sequence of steps on a lattice does suggest such a
structure. Two paths of X steps which difter only in the
way the Nth step was added can be transformed into each
other by an activation process involving the creation and
destruction of one step (soliton). Similarly, if the paths
branched off at the stage of adding the (N —1)th step,
two activation processes would be required to transform
them into each other. The various X-soliton states can
therefore be grouped according to the number of activa-

tion processes separating them. This defines a distance
between the states, and these distances form an ul-

trametric space. ' Defining a triangle by specifying its
vertices to three possible ¹oliton states, it can be seen
that its sides, which correspond to the number of activa-
tion processes separating the vertices, have to be either
all equal or two of them have to be equal and greater
than the third.

A hierarchical structure of the space of states would
have important consequences for the relaxation process
in glasses. As discussed in Ref. 21, random walk in an ul-

trametric space leads to anomalous relaxation laws. In
the present model, the distance between states is related
to the number of activation processes, and therefore ap-
pears in the entropy contribution to the free energy bar-
rier separating the states. In the absence of any other
distance-dependent contribution, the barrier is therefore
a logarithmic function of the distance. If the space is ul-
trametrie, then it has been shown that random walk in
such a space leads to the stretched exponential law for re-
laxations. '

The free-energy functional, discussed so far, is frustrat-
ed, and has been shown to lead to the appearance of de-
fects in the stationary states. Under these circumstances,
it is not clear whether the original assumption of the
locking of orientational degree of freedom to the transla-
tional degree of freedom is valid. The locking follows
from the minimization of a generalized functional includ-
ing both orientational and translational degrees of free-
dom. ' To include the orientational order, a field of
6D rotation matrices have to be introduced, the free-
energy density has to be generalized to include terms in-
volving the gradients of the rotation matrices and has to
be made invariant under the following transformations:

Q(r)~QOQ(r)Qo ',
po~poexp[i G (QOR R)] . — (8)

Minimizing this term with respect to 0 gives a relation-
ship between A and the gradient of U, and for a slowly
varying field U, justifies the neglect of the VQ term. This
leads to the locking of the orientational order to the
translational order. In the presence of solitons this pm-
cedure is no longer justified, since there are regions of
space where U varies rapidly and VQ is not small com-
pared to

V'U, i Qgg—e
a

The system can therefore be adequately described only by
treating the translational and orientational order in-
dependently.

In constructing this generalized free-energy functional,
it is noticed that the global invariance implied by Eq. (8)

Here the rotation matrix Qo has to belong to the subset of
6D rotations which leave the orientation of the lattice
with respect to the cut invariant. The requirement of ro-
tational invariance leads to a gradient term of the form

VU; i 0 Q—Q e
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has to be generalized to a local gauge invariance proper-
ty. This is due to the fact that the 3D system is defined

by a particular cut of the 6D system. It is seen from the
second equation of Eq. (8) that it is possible, by a simul-
taneous rotation of R and the cut, to keep the projected
density unchanged. This is understandable since the
operation corresponds to the choice of an arbitrary frame
of reference. This implies that the free-energy density
has to be invariant under local transformations Qo(r).
The gauge fields which have to be introduced to enforce
this correspond physically to rotation matrices defining
the orientation of the 3D cut.

The construction of the complete free-energy function-
al and the statistical mechanics of the model will be the
subject of a future publication. In this work we describe
some of the general features of this model free-energy
functional. The soliton configurations and the accom-
panying line-defect configurations are expected to be
frozen for long time scales because of the topological bar-
riers separating different configurations. Under these cir-
cumstances, the free-energy density can be assumed to
have been minimized with respect to the field U, and the
relevant part of the free-energy functional the involves
only the rotation matrices Q(r) and the gauge fields
A (r), a=x,y, z. Over times scales short compared to
the transition times involved in going from one soliton
network to another, the behavior of the system is then ex-
pected to be defined by these rotational matrix fields.
The partition function can be written as

Z = 0 A exp — r r

where f is the complete free-energy functional. The free
energy of the system would be obtained by calculating the
free energy corresponding to a fixed soliton network from
the above partition function, and then averaging over all

such networks.
The ground-state configuration of the rotation fields

can be obtained by minimizing the free-energy functional.
If the variation in the amplitude of the order parameter
can be neglected outside the immediate vicinity of line
defects, and if the line-defect density is not too high, then
one could think of defining a space over which the order-
parameter amplitude is a constant. Such a space has
punctures in it at the locations of the line defects. By im-
posing appropriate boundary conditions, one can then
minimize the free-energy functional to obtain the station-
ary state configurations of 0 and A . It has been argued
in Ref. 24 that the punctured space combined with the lo-
cal gauge invariance of the system leads to the oc-
currence of two-level systems or tunneling states. It
would be interesting to search for such states in the
present free-energy functional.

In conclusion, a model of glass has been developed
based on the concept of icosahedral glass being an imper-
fect icosahedral quasicrystal. The Landau theory has
been shown to lead to stationary states which have de-
fects in them. The topological characteristics of these de-
fects have been used to deduce some properties of the
model. There is scope for much further development of
the model. For instance, the free-energy functional can
be used to construct time-dependent Ginzburg Landau
equations for describing the dynamics of the model. The
nonlinearities of the functional are expected to lead to
slow relaxation processes. This work is in a preliminary
stage of development.
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