
1 JULY 1988NUMBERVOLUME 3

m o~"rjgm con uctjvjtyo cThermal con

PHYS ICAL REVIE

timent 51o, gUer

er 1987)

k of the

~

es golides, B
d 28 Decembe

the framewor

d Pgysique d
(Receive

puted in t e
and the

atoire e

tivity is comp
character

mal conductlv
nt-scattering , ents«

- heory therma
the resona

t measu rem

rt
h'hd A

e thermal co

The third-or
iltonian w ic

Si.

geffective exc

d d d agre ticerium compoun s

B Coqblin,
9g405 Orsay Fran«

charjee and B.
Centre d'Ors y.

K. Bhattac a . Paris-Sud, ensiteLa&or

I. INTRODUCTION res. On thet mperatu
C'Cz number of C

Ref. 12). In a30 to 300 K

1Eq. (1) the o o
h "'n'"d'hboth the phonon., including o h non

al conductivi-
ns.

1 o d
the therma co

d Th th
d LaCu6 is6

o cerium compes of these two c
f th

resistivities o
e two equiva

re
ger than

in the low-etic lanthanumm corn
r wee

sistivity o cen

0.2

0.1

I( pL=

close tnsively stu
'

dudied in
erties have bef their prop

d d

Hamil-
K'"d"fr"t

y
'

e framewor o
'b h 1

unt tec
1

0 ic

ed for are67 have been perforrneand relaxation
'vit, mag

rate '

oun s,m) Kondo a or tter iu
aer is

ram

eb-
b

f h pre t pp
ctrons in r

re
o

' '
due to eleconductivity

or
'

have

thermal co
work.

1 conductivitycon
' '

and the or
ondo cerium

s th' te
B (Rf. 8), C'fcan

nducttvtty o
10 d 11), CCe. , 1 (Refs.

onductivi yThe thermal co y n

Ko do 11o„,h case of

t'1
rature, with el

h experimenta

CC dec
' 'nt between 50 and

r broad maximumr even a very r

mber

CeCu2 or

a e d Lorenz num1 1 ftha e reduce
com-

erimenta va
ed for cenumalso measure

he Lorenz num er
'

e

(1

Pounds. T e

the electric
'

altherma c1 onductivi yt and p
of the oLorenz num-

e K is the

1 toL0 ——2. W
ststtvtty. T e

d C

large value, o o ats a very
num er er

""'"' -.'S-l-l, , h'L
e La, Cu6a, t

t mperatu
than L in CeAlz ( e.

50 150100

al con1 nductivity Ef the therm 1 n E
1

FIG.
(in W/cm K) plotte
pounds.

38 338 merican Physical Society1988 The American P ys



THERMAL CONDUCTIVITY OF CERIUM COMPOUNDS 339

same as the thermal resistivity itself of the equivalent lan-
thanum compounds, although this approximation is cer-
tainly less valid in principle for the thermal resistivity
than for the electrical resistivity. Thus, in contrast to the
previous idea of Peysson et al. ' that the thermal con-
ductivity was mainly due to phonons above 5 K in CeB6
and CeCu6, we assume that the thermal conductivity of
cerium Kondo compounds has a magnetic origin arising
from the Kondo effect of cerium, as previously estab-
lished for the electrical resistivity or the thermoelectric
power.

We will, therefore, compute in this paper the thermal
conductivity in the framework of the effective resonant-
scattering Hamiltonian appropriate for the study of the
Kondo effect in cerium compounds.

II. THK THKORKTICAL MODEL

+ g ViirMCk'MCkM ~

k, k', M
(2)

with the usual notations and definitions of Refs. 2 and 5:
CkM represents the creation operator of a conduction
electron of energy sk in the partial-wave state M (defined

by the quantum numbers I =3, s =—,', j=—'„and j,=M),
while CM represents the creation operator of a localized
4f electron in the state M of the Ce atom. M denotes, as
usual, the quantum number characterizing an eigenstate
of energy E~ in the presence of the crystalline field (CF),
i.e., either any state of the doublet I 7 or the quartet I,
for cubic symmetry (as in CeAlz), or any eigenvalue k —,',
k —'„or 2—,

' for hexagonal or tetragonal symmetry (as in

CeCu2Si2). The energies ek and Esr are defined with
respect to the Fermi energy. The exchange integrals are
given by

I vkF I

'
+

EM
(3)

defined with a cutoff D. In Eq. (3), Vkz is the hybridiza-
tion parameter between 4f and conduction electrons.
The VMM parameters, which represent pure direct
scattering, are all taken equal to a common value V.

With the Hamiltonian (2), we follow the Kondo ap-
proach of calculating the scattering amplitude in the

We shall compute here the thermal conductivity K in
the third order of perturbation with the effective
resonant-scattering Hamiltonian. We shall use, there-
fore, the third-order calculations and, in particular, the
relaxation time, which have already been derived in Ref.
2 for the resistivity and in Ref. 5 for the thermoelectric
power; in the following, we use the same notations as in
Refs. 2 and 5.

The effective resonant-scattering Hamiltonian for a
cerium impurity in a metallic host can be written as

H = y eknk~+y E~n~
k, M M

—g Jsrsr Ck'~ Cksr(Cia CM 5~~.—(nor })
k, k'

M, M'

second Born approximation. The scattering probability
is then calculated up to the third order in J~~. and V.
This calculation has been presented in Refs. 2 and 5 and
here we simply give the main results. The relaxation time
rk of a conduction electron is given by

k

mkv0c
«k+Sk»

mR (2j+1)
(4)

where m is the mass of the electron, k its wave number,
v0 the sample volume, c the concentration of cerium
atoms, and 2j+1=6 the degeneracy of the 4f'
configuration of cerium. Rk and Sk, respectively, denote
the second- and third-order terms and are given by ex-
pressions (38) and (39) of Ref. 2.

In the usual third-order approximation where the
third-order term Sk is assumed to be much smaller than
the second-order one Rk, we write, as in Refs. 2 and 5,
the relaxation time as

mR'(2j+1)
mkv0c

Sk

Rk Rk
(5)

(6)

while the thermoelectric power S and the electrical con-

Indeed, the approximation of inverting 1/~k, i.e., of
passing from Eq. (4) to Eq. (5), is valid only if the third-
order term Sk is much smaller than the second-order one
Rk, in other words, the approximation is valid for tem-
peratures higher than the corresponding Kondo tempera-
ture. The ratio of the third- and second-order terms,
which has been computed in the case of the magnetic
resistivity, was there found smaller than 1, although not
really much smaller than 1, except at very low tempera-
tures for zero or small V values. But, Guessous and
Matho' have recently computed the transport properties
up to fourth order in JMM by using a different approxi-
mation which consists in taking an analytical form for
the relaxation time and adjusting it by comparison with
numerical calculations. They have shown that the ap-
proximation of inverting 1 i7.

k is questionable in the cal-
culation of the thermoelectric power when V=O.

However, the essential physical features are well de-
scribed in most cases by this approximation of passing
from Eq. (4) to Eq. (5), even if Sk is smaller than Rk, but
not always much smaller. We shall, therefore, use this
approximation in the following calculation of the thermal
conductivity by taking care that the third-order term is
clearly smaller than the second-order one.

According to the previous calculation of the resistivi-

ty, the validity of the perturbation theory is, indeed, ex-
tended when the Kondo temperature decreases, which is
obtained here in the presence of a crystalline field, for a
larger V value or a smaller effective degeneracy of the oc-
cupied levels (for example, the perturbation theory is
much more valid for a doublet ground state than for a
quartet).

Let us now write the classical formulas for the trans-
port properties. The thermal conductivity K is given by

(K, )K=—E2—
0
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ductivity a = 1/p are given by

K,
Tlto

'

o=e Ko,2

where the integrals K„are given by

(8)

where

A =pa; V,, +aJ;;(n, ) 1—
a,

are the roots of the equation Rk(fk)=0 with the
coefficients JM, , as explained in expressions (60)—(66) of
Ref. 2, and the energies 6,-. are defined by

kFK„= eke(ek )
3K m

dfk
dek

~ek
1

Al p 0IJ pg
(18)

In the perturbation theory up to third order in J~M.
and V, the lowest terms of S and p= 1/a are, respective-
ly, of the third and second order, so that the second term
of Eq. (6) is at least of the fourth order and can be com-
pletely neglected in our present calculation. Moreover,
when we compute the integral K2, we take the value kF
for k, which is slowly varying around the Fermi energy
with respect to the other functions entering v k.

Thus, it results that the thermal conductivity K can be
written as

Then, the calculation of W3 is strictly similar to that of
eTo' 'S given by expression (20) of Ref. 5, except that ek
is changed to c.k in the integra1 on ck.

It results that W3 is equal to

gC C)(bi;, 0)
A

$ [ U„'„C,(bk, h„„.)
fl, Jl l, l

(njn')
(2j+1}A' kF

K =
2

—(W2 —W3),
3m.m voc

with

~fk
W~ —— ck

Bek Rk

~fk
k ~

Rk

(10)

(12)

+ V„"„C2(AI;,5„„.)] . (19)

The coefficients C, U„'„., and V„'„., which are of third or-
der in J;1 and V;;, depend on the different parameters a;,
(n; ), b, ,j, J;J, and V;;. They are, respectively, given by
expressions (15), (33), and (34) of Ref. 5 on the ther-
moelectric power.

Finally, Eqs. (10), (16), and (19) give the third-order ex-
pression of the thermal conductivity that we shall com-
pute in Sec. III.

where fk is the Fermi-Dirac distribution function. The
method to compute the thermal conductivity is similar to
the methods used for the resistivity in Ref. 2 and for the
thermoelectric power in Ref. 5, except that here we have
a sk term in the integrals (11)and (12).

We, therefore, define the following integrals:

+-, ~fk dskB(5)=
[1—fk(1 —e )1

(13)

C„(5,5'}=I
with P= I /(kz T) and

afk g(~k+5)d~k

[1 f (1 eP5 )]N
(14)

g(e)=g
q

(15)

is the usual function appearing in, the Kondo problem.
We use here, as in Refs. 2 and 5, indices representing

the CF energy levels rather than the eigenstates: let i
( = 1,2, 3, . . . , ) denote the energy level E; of degeneracy
a; and of the thermal average of the occupation number
( n; ) for the localized electron in each state M at the en-

ergy E, Also, A,j E Ej Then, from Ref. 2 and ex-
pression (22) of Ref. 5, it results that Wz is equal to

III. CALCULATION OF THE
THERMAL CONDUCTIVITY

Rk(fk ———,')=R = A + g
l7 J

(i&j)

2a, a,J,', (n, &

pg IJ
(20}

Sk(fk ,' }=X r,'g (Ek—+~I » (21)

with

We compute here the thermal conductivity for the
cases of two or three levels split by the crystalline field.
In the case of three levels, the roots A,;. and the corre-
sponding coefficients p;J have to be determined numeri-

cally, and finally the calculation rapidly becomes very
complex. Thus, for the sake of simplicity, we will use in
the following the so-called "fk ———,

' approximation, "
which consists in replacing fk in the denominators of R„
and Sk by its Fermi level value —,'. Moreover, we have

seen, in the cases of the resistivity and thermoelectric
power, that the fk ———,

' approximation does not modify

the temperature variation of the transport properties and
changes their values only a little in the domain of inter-
mediate temperatures.

So, within this approximation, we write

B(0} 1 ~ P() ~0 )2 A A g lJ
ij ij

(i~j)

(16) 4JJJaJ la, a ai(nj).
rI=C,'+ g

j (&i) 1+e
(22)
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A and g (ek ) are given, respectively, by (17) and (15); C is
given by expression (15) of Ref. 5.

After integration, the two integrals W2 and fV3 defined

by, respectively, (11)and (12), are given, within the fk ———,
'

approximation, by

(kti T)
W3 —— n (EF) g y,'I(b,„),R;I

where the function I (5) is defined by

(24)

and

~& (ktiT)
2 3 R

(23)
I(5)=ln +g( —,')+y~2mT, 5

The function y&(x) is given by

(25)

dt
ys(x)= Io . t

2 sinh—
2

3 cosxs

sinh—
2

4 sinht —t (3+cosht)

2t4sinh2—
2

(26)

and

1(( —,
' }=/(l)—21n2= —1.9635 . (27)

It results finally that the thermal conductivity E is
given by

(2j+1)~kFA'kt't zK=
2

—(1—Y),
9m Doc R

(2g)

where the function Y, which is the ratio of the third- and
second-order terms is given by

I(0)=ln +g( —,')+2ln2 ——,',2%T
(31)

and has a logarithmic behavior at low temperatures.
Then, we calculated the asymptotic expansion of I(5)

for T tending to zero and a finite 5 value, i.e., for
ktt T &&5, and we found

where P(1) is given by (27).
Let us now study the low-temperature dependence of

I(ht; ) and Y Firs. t of all, the value I(0) of the function
given by (2S) for 5=0 is equal to

n(EF)Y= gy,'I(b, i; } .
i, l

(29)
2

I(5) 1
5 13 2nT 1

D 60 5 40
27TT +'''

+x(1+4x ) [Ref(1+ix)j, (30)

Indeed, Y must be much smaller than 1 in order that
the perturbation theory be valid. We will study in the
following the temperature dependence of Y, especially at
low temperatures, and we will show that Y must diverge
for T tending to zero. It results that there exists a critical
"Kondo temperature" Tk, below which Y becomes 1arger
than 1, and the present perturbative model must be valid
only for temperatures much higher than this critical tem-
perature defined here for the calculation of the thermal
conductivity.

Let us compute now the function y&(x) defined by Eq.
(26). In our paper on the thermoelectric power, we have
computed four similar functions called q&, (x) (with i =1,
2, 3, and 4). Using, as previously, some judicious in-
tegrations by parts, we express y5(x) in terms of the di-
gamma function g(z) as follows:

y5(x)= 21n2 —f(l)——,
' —4x +Ref(1+ix)

(32)

In the limiting case kz T~o, i.e., kz T is much smaller
than the lowest crystalline-field splitting, only the ground
state, labeled by i =1 with a degeneracy a, and a thermal
average (n, ) =1/a, , is occupied. If we take all the
direct scattering parameters V;; equal to a common value
V and call J„the exchange integral for the ground state,
the low-temperature limit of R, given by (20) in the
fk ———,

' approximation, is equal to

, (ai —1)
R =(2j+1)V +

~ J„~ a)
(33)

The different excited levels (labeled by the index j) lie
at a distance 6-, above the ground state. a. and J., cor-
respond, respectively, to the degeneracy of the level j and
the exchange integral (3) with M in the ground state and
M in the level j. Since the function I(5 ) is an even func-
tion of 5, we obtain for the low-temperature limit of Y

n (EF ) 3 z 2irz'Y= 2Jii(ai —I) ln +P( —,')+21n2 ——,
' +2+ Jii

~
Ji

~
(ai —1)ln (34)

Thus, Y has a logarithmic behavior at low temperatures and Y becomes larger than 1 at a critical temperature Tk
defined by
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(2j+1)ai
k Tk ——Do e"p 1+ P+la (EF ) I J» (35)

The cutoff Do is a function of the previously defined
cutoff D and of the parameters used here, and is given
b 17

2

ln 2.49 =g ln
~) J~)

2mDo . a) J) )

(36)

IV. THEORETICAL RESULTS
FOR THE THERMAL CONDUCTIVITY

We now present in Figs. 2 and 3 some typical theoreti-
cal curves for the thermal conductivity EC of cerium com-

Let us now compare expressions (35) and (36) to the
similar expressions previously obtained for the resistivi-
ty. If we take the same definition of TI„ i.e., the temper-
ature corresponding to equal values of the second- and
third-order terms, the ratio ks TI, /Do of the Kondo tem-
perature to the effective cutoff is exactly the same as the
similar value obtained for the resistivity. Moreover, after
correcting a minor error in Ref. 2, ' the dependence on

a;, J&;, and 6;& of the effective cutoff Do is the same as
that given for the resistivity, except for a small change of
the numerical coefficient in front of D /Do.

pounds. In Fig. 2 we show the variation of K with J»
and V, while, in Fig. 3, we present theoretical curves cor-
responding to different crystal-field level schemes.

All the theoretical curves shown in Figs. 2 and 3 are
computed by taking a density of states of the conduction
band at the Fermi energy for one spin direction
n (Ez)=2 states/eV atom, a cutoff D =850 K, and a hy-

bridization parameter Vkf ——0.07 eV. Moreover, in order
to derive the numerical coefficient of K in expression (28),
we take the atomic volume Do=234 a.u. of CeA12 and
three electrons per atom, so that kz ——1.37)& 10 cm ' in
the free-electron approximation. We choose also
(2j+1)=6, m =1 in a.u. and c =1. More appropriate
values of rn and c will be taken in Fig. 6 for comparison
with experiment.

Figure 2 shows theoretical curves for a cubic crystal-
line field with a I 7 ground state and a splitting 6=100
K. Four curves are plotted with V= —0.25 eV and in-

creasing values of
~
J» ~, and the last one is plotted with

V= —0.5 eV and J» ———0. 1 eV. We see that the two
curves plotted, respectively, for J» ———0.05 eV,
V= —0.25 eV and for Jii ———0. 1 eV, V= —0.5 eV
behave almost linearly versus temperature; these curves

0.3 0.3

0.2 0.2

0.1 0.1

100 19)

FIG. 2. Theoretical plots of the thermal conductivity K (in
W/cm K) vs temperature for a cubic crystalline Geld with a I 7

ground state and a splitting 5=100 K, a density of states
n (EF )=2 states/eV atom, D =850 K, Vkf ——0.07 eV and
diferent values of J» and V: Curve 1 corresponds to
J» ———0.05 eV, V= —0.25 eV; curve 2 to J» ———0.08 eV,
V= —0.25 eV; curve 3 to J» ———0. 1 eV, V= —0.25 eV; curve
4 to Jl ] = —0. 1 1 eV, V= —0.25 eV, and curve 5 to Jl] = —0. 1

eV, V= —0.5 eV.

100
T (K )

150

FIG. 3. Theoretical plots of the thermal conductivity K (in
~/cmK) vs temperature for a density of states n(EF)=2
states/eVatom, D =850 K, Vzf ——0.07 eV, J» ———0. 1 eV,
V= —0.25 eV, and the following crystalline-field schemes:
Curve 1 corresponds to cubic Geld with a I 8 ground state and a
splitting 6=200 K; curve 2 to a hexagonal Geld with three dou-
blets at energies 0, 100, and 200 K; curve 3 to a cubic field with
a I 7 ground state and a splitting 5=200 K; curve 4 to a hexago-
nal field with three doublets at 0, 200, and 400 K.
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correspond to the case where the third-order term is
much smaller than the second-order one and, according
to (28), K is almost linear in T. On the other hand, the
"inflection" of the curve increases with increasing

~
J» ~,

to finally reach a curve with a maximum and a minimum
at roughly 5/2 for a large value

~
J»

~

=0.11 eV.
This behavior can be mell understood in the preceding

theoretical analysis. The second-order term 8 decreases
when

~
J»

~

or V decrease. Thus, when V increases
with all the other parameters kept constant, both 1/R
and Y decrease, and it results that both K and the
inflection of I(. decrease. On the other hand, when

~
J»

~

is increased, keeping all the other parameters constant,
1/R decreases, Y increases, but Y/R decreases; it results
that the value of I( decreases but the curve has a more
pronounced inflection and departs more and more from
the second-order linear behavior.

Figure 3 shows some other theoretical curves obtained
with fixed values of J» ———0. 1 eV, and V= —0.25 eV,
and different crystalline-field schemes. We see that the
three curves corresponding to a doublet ground state
start together and behave linearly at low temperatures;
then they depart from this law at a temperature of order
6/4, where b, is the distance of the first excited state
from the ground state. Then, at higher temperatures,
there is an important change of slope with temperature
and all the curves again have a linear behavior at high
temperatures. On the contrary, in the cubic case with a
I 8 ground state, the thermal conductivity increases con-
tinuously with increasing temperature and the
crystalline-field effect does not appear to play an impor-
tant role for the thermal conductivity, as theoretically ex-
pected and previously observed for the resistivity. ' We
can finally notice that all the curves have almost a linear
behavior at high temperatures because the third-order
term becomes much smaller than the second-order one in
this temperature domain. On the contrary, we obtain
curves with two extrema when the third-order term be-
comes relatively large, although, indeed, always smaller
than the second-order term.

Figure 4 gives the theoretical plots of Y versus temper-
ature for the sets of parameters corresponding to the
curves of Fig. 3. However, we have not plotted Y at very
low temperatures (typically smaller than 10 K), where Y
becomes rapidly much larger than 1, and where the per-
turbation theory is no longer valid. In all the cases
shown on Figs. 2 and 3, Y, although not always much
sma11er than 1, remains smaller than 1. At high tempera-
tures, Y is very small, which yields an almost linear
dependence of E on temperature, as already shown in
Figs. 2 and 3.

In general, Y increases and consequently the validity of
the perturbation theory decreases when

~
J»n(EF')

~

in-
creases and V decreases, as previously noticed. ' In par-
ticular, the perturbation theory would not be valid for
V=O with the choice of other parameters used, for in-
stance in Fig. 3. The condition Y & 1 is particularly criti-
cal here since the thermal conductivity is proportional to
1 —Y, but the same condition must be checked for the
calculation of resistivity and thermoelectric power. In
particular, we have to note here that the curves of the

05

150
s

TtK)

FIG. 4. Theoretical plots of Y, the ratio of the third- and
second-order terms, vs temperature for the same sets of parame-
ters and the same labels for the different curves as those used in

Fig. 3.

L/Lo

0.5"

I

150
s

200 250
T(K)

FIG. 5. Theoretical plots of the reduced Lorenz number
L /L p vs temperature for the same sets of parameters and the
same labels for the different curves as those used in Fig. 3.

thermoelectric power computed with V=O in Ref. 5 are
not correct, since the perturbation theory is no longer
valid; this point was also noticed by Guessous and
Matho. '

Figure 5 shows the temperature dependence of the re-
duced Lorenz number L/Lo defined by (1) for the same
sets of parameters as those used for the curves of Fig. 3.
As in Fig. 4, we have not plotted L/Lo at very low tem-
peratures where the perturbation theory is no longer val-
id. The essential result, shown by the plots of Fig. 5, is
that the Lorenz number L remains relatively close to its
Sommerfeld value Lo in the whole temperature domain of
Fig. 5. In particular, L is very close to Lo at low temper-
atures, and we cannot explain large values of the reduced
Lorenz number L/Lo as experimentally observed in
some cerium compounds at low temperatures.
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V. COMPARISON WITH EXPERIMENT
AND CONCLUSION

K(W/crn K)

The thermal conductivity of cerium compounds, for
example CeB6 or CeCu6, is much smaller than that of the
equivalent nonmagnetic lanthanum compounds. As al-
ready explained in the Introduction, we can reasonably
deduce that the thermal resistivity of cerium compounds
has a magnetic origin due to the Kondo effect and can be
accounted for by the present model.

Figure 6 shows a tentative comparison between the ex-
perimental and theoretical curves of the thermal conduc-
tivity for CeA12 and CeCu2Si2 compounds. Both the
theoretical curves are obtained by taking the following
set of parameters: n (EF}=2.2 statesleV atom, D =850
K, Vkf

——0.07 eV, J|i———0. 1 eV, V= —0.24 eV. We
take the cubic symmetry with I 7 ground state, and split-
ting 6= 100 K for the case of CeAlz and three doublets at
energies 0, 140, and 360 K (referred to the ground-state
energy} for the case of CeCuzSiz, as experimentally estab-
lished by neutron scattering. ' Finally, we determine the
value of the effective mass m by matching the theoretical
K value at 100 K to the experimental one; we thus obtain
m =2.72 for CeA12 and m =3.32 for CeCu2Si2. All the
parameters used for the theoretical curves of Fig. 6 are
quite reasonable and agree with previously used theoreti-
cal values, in particular those used to fit the resistivity of
CeA12. However, we must be careful in comparing the
theoretical calculations since we have adjusted the curves
at 100 K. We can see that the fit is very good for CeA12
and good only up to 120 K for CeCu2Si2.

Thus, we have obtained reasonable fits for the thermal
conductivity of CeA12 and CeCu2Siz with roughly the
same parameters as those previously used for fitting their
resistivities. Similar fits could also be obtained for the
thermal conductivities of CeCu6 and CeCu2. However, it
would be rather difficult to fit the large thermal conduc-
tivity of CeB6 by taking the parameters previously used
to fit its large electrical resistivity.

The effective resonant-scattering Hamiltonian includ-
ing crystal-field splitting was used previously to compute

0.08

0.04

FIG. 6. Comparison between theoretical curves (full lines)
and experimental curves (dashed lines) for CeAlz (curves 1) and
CeCu&Si2 (curves 2) compounds. The theoretical curves are
computed for n (EF ) =2.2 states/eV atom, D =850 K,
Vkf 0.07 eV, Jt l

———0. 1 eV, V= —0.24 eV, and different
crystalline-field schemes: Curve 1 (for CeA12) corresponds to a
cubic field with a I 7 ground state and a splitting 6=100 K;
curve 2 (for CeCu2Si2) corresponds to three doublets at energies
0, 140, and 360 K. The effective mass is equal to m =2.72 for
CeA12 and m =3.32 for CeCu&Si2.

the electrical resistivity and thermoelectric power
within a perturbation framework. The same model has
been employed here to calculate the electronic contribu-
tion to the the&mal conductivity. Comparison with ex-
perimental data shows reasonable agreement for all the
three transport coefficients in many cerium compounds
over a wide range of temperature.
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