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Effective Bloch equations for semiconductors
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Generalized Bloch equations for laser-excited semiconductors are derived applying quantum-

rnechanical projection-operator techniques. The equations include phase-space filling and the

many-body Coulomb effects. The coherent part of the equations is evaluated for the regime of
ultrafast-pump-probe excitation and shown to reduce to the inhomogeneously broadened two-level

Bloch equations for the different momentum states if the proper Coulomb enhancement in the den-

sity of states is taken into account. For the high-excitation quasithermal regime a generalization of
the Elliott formula for the absorption spectrum is derived which is valid not only for bulk semicon-

ductors, but also for quantum-well structures and other systems with reduced spatial dimensions.

I. INTRODUCTION

A resonant laser field applied to a semiconductor gen-
erates electron-hole pairs by exciting electrons over the
energy gap from the valence band into the conduction
band. The electron-hole pairs exist for a characteristic
lifetime before they recombine radiatively or nonradia-
tively. Typically, the electron-hole-pair recombination
time is long compared to the time scale of intraband
carrier-scattering processes which cause a thermalization
of the electron and hole populations within the bands.
The time regime after the quasiequilibration and before
recombination defines the so-called quasiequilibrum or
hydrodynamic regime. The optical properties of semi-
conductors in this regime have been investigated exten-
sively. '

Quite recently, the development in ultrafast laser-pulse
techniques made it possible to study semiconductors also
in states where the dynamics of the excitation is still
relevant, i.e., on time scales which are shorter than or at
least comparable to the carrier-carrier scattering times.
Examples for the observed phenomena are the optical
Stark effect, ' the spectral hole burning and transient
oscillations in semiconductor transmission spectra. '

It is known from the spectroscopy of atomic systems
that the optical Bloch equations are well suited to de-
scribe the interaction between light and matter, including
coherent effects and relaxation phenomena. A similar
description for semiconductors has been obtained recent-
ly by Haug et al. " These authors present a set of equa-
tions which can be considered as a generalization of the
optical Bloch equations for semiconductors. The equa-
tions contain the most important many-body effects
which renormalize the band gap of the unexcited system,
they contain the effects of electron-hole attraction giving
rise to excitonic effects, and they include the contribu-
tions of phase-space filling. Haug et al. " derive these
effective Bloch equations with the help of nonequilibrium
Green's-function techniques.

In this paper, we show how these equations can be de-
rived and generalized in a simple way by using quantum-
mechanical projection-operator techniques. ' Further-
more, we discuss some limiting cases and applications of

the effective Bloch equations. After the Hamiltonian for-
mulation of our problem (Sec. II) we derive the equations
of motion in Sec. III. In Sec. IV we show how the equa-
tions can be used to study ultrafast effects in semiconduc-
tor pump-probe spectroscopy. For the case of not too
strong excitation, when screening and band-gap renor-
malization can still be neglected, but Coulomb attraction
between electrons and holes is important, our equations
for the population and polarization of the different
momentum states become formally identical to the inho-
mogeneously broadened Bloch equations known from
quantum optics. However, when we compute the total
polarization and sum over the continuum of states, the
Coulomb attraction of electrons and holes gives rise to a
weighting factor (Coulomb enhancement) which is re-
sponsible for the replacem. ent of the square-root absorp-
tion shape of noninteracting particles by the more or less
structureless continuum absorption in the case with
Coulomb attraction.

In Sec. V we study the high-excitation quasiequilibri-
um regime where the carrier distributions are assumed to
be quasi-Fermi functions within the bands. The con-
sistent inclusion of phase-space filling factors makes the
problem non-Hermitian. We derive a generalization of
the Elliott formula for the excitation-dependent absorp-
tion coefficient, which is valid independent of the dimen-
sionality of the studied semiconductor system. For the
case of bulk semiconductors, when it is justified to neglect
phase-space filling terms in the Wannier equation, we
show how the generalized Elliott formula reduces to the
result obtained in Ref. 13.

Some mathematical details of the quantum-mechanical
projection-operator technique are summarized in the Ap-
pendix.

II. HAMILTONIAN FORMULATION

The optical properties of a semiconductor are mainly
determined by the conduction band and the uppermost
valence bands. To make the analysis as simple as possible
we assume a nondegenerate situation described by the
Hamiltonian
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H = g e, (k)a, ka, k+ g s„(k)a, ka„k+ V,

where

(la) scribed in the rotating-wave approximation

Hf g [P'k«t)a, ', ka, k +PkE (t)a, ka, k ]
k

(2)

k, k';q (&0)
V(q)(, k +q, k' —qa, k'a, k

+a k+qa k qa„k a

+2 a,uk+q u, k' —qauk'auk ) (lb)

It is often convenient to transform the Hamiltonian
H+Hf into the electron-hole picture. Using the nota-
tion

a k Qk

The energies e, (k) and E„(k) are defined for a single elec-
tron in the lattice. In addition, we have assumed that the
Coulomb interaction conserves the number of carriers in
each band. The dipole coupling to a laser field is de-

a„
where ak and b k are the electron and hole annihilation
operators, respectively, and introducing normal ordering
of the new operators, we obtain

V(q)(ak+qak, qak. ak+bk+qbk qbk bk —2ak+qbk qbk ak )H+Hf g[e',——(k)akak+e'k(k)b kb k]+ —,
'

k, k', q (&0)

—g [pkE(t)akb k+pkE*(t)b kak]+ g s„(k)——,
' g V(q),

k k k;q (~0)
(4)

where the effective single-particle energies are

e', (k) =e,(k),
e'k(k}= —E,(k)+ g V(q} .

q (~0)

These energies are often approximated in effective-mass
theory, assuming the bands to be parabolic near the ex-
trema. The transformation of the Hamiltonian into the
electron-hole picture shows that the low-intensity inter-
band excitation spectrum, which is determined by the en-
ergy difference between the states with zero and one
electron-hole pairs, is given by

be'(k)=e, (k) —e„(k)+ g V(q) .
q (~0)

giving the total energy of the full valence band. They
have no dynamical consequences and are left out.

III. EQUATIONS OF MOTION

In this section, we derive the equations of motion for
the expectation values (akak) =n, k, (b kb k) =nkk,
and (akb „)=pk". The first two expressions are simply
the populations of the electrons and holes at the wave
vector k and the third gives the polarization of the medi-
um, which becomes macroscopic because of the applied
external field. The Hamiltonian equation of motion for
the expectation value of operator A in the density-matrix
formalism is (R—:1)

—( 3 ) = i tr([ A, H„,]—p) .a

The last two terms in the Hamiltonian (4) are constants Straightforward operator-algebra manipulations yield

Pk' i [E',(k——)+e'k(k)]pk +iPkE'(t)(n, k+nk k
—1)

+i y V(q)(&ak —qak'+qak'b —k & &akak'+qak'b —k —q &

k', q (~0)

+ & akb k qbk'+qbk'& —&a—k+qbk' qbk—'b k»— —

a
nu k

= —2 Im[pkE(t)pk ]+i g V(q)(&akak' qak qak' & &—ak+q—ak' qakak' &—
at k', q (&0)

+ & akak qbk' qbk' & &ak+—qakbk—' qbk' &-»—t t t t

(8a}

(8b)

and

a
nk k

————2Im[JLtkE(t)pk ]+i g V(q)((b kbk qb k qbk. ) —(b k+ bk b kbk )
k';q (&0)

+ & ak'+qak'b —kb —k+q & & ak'+qak'b —k —qb —k & } (8c)
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As usual, the equations of motion include couplings to
higher-order correlations. In this paper we derive sys-
ternatic approximations to these correlation terms using
projection-operator techniques. ' As a result, the equa-
tions of motion are separated into two parts. In the Ap-
pendix we briefly summarize the main steps of the projec-
tion method. Here we only notice that the basic idea is
that —without approximation —the density matrix of the
system can be projected into two parts, cr and 5p, describ-
ing the "coherent contributions" and the "scattering con-
tributions, " respectively,

—( A ) = i tr—([A,H„, ]p)

= —i tr( [ A, H„, ]o ) i tr(—[ A, H«, ]5p)

=—(A),.„+—(A)„„.

The scattering parts of the equations of motion have to
be computed from

tr([a, , H]5p),

where [a;]= [akak, b kb k, akb k, b kak I. Using the
definitions of H and 5p we see that

tr( [a;, H]5p ) = tr( [a;, V]5p ),
where V is the Coulomb interaction part (lb) of the Ham-
iltonian. To get explicit results we have to approximate
5p. Following the argumentation in the Appendix, we
find that the properties of H, Q, and 5p give the Eq. (A12)
in the form

i 5p=—[H, 5p] —g tr([a;, V]5p)+Q([H, o]) .
ao'Bt,. Ba;

(14)

—
pk „h i e', (k——)+e'k(k)

V(q)(n, k+q +nk k+, )
'
pk"

q (&0)

i pkE'—(t)+ g V(q)pk'+q
q (&0)

X(1 n, k nk—k),—
a

kn, coh 2 lm PkE (t)+ X V(q»k +q pk
q (&0)

(1 la)

(1 lb)

and

a a—n ——nh, k, coh at e, k, coh (1 lc)

Since there are no scattering contributions in Eqs. (11),
Eq. (11c)gives the constant of motion

n, k
—nI, k

——0 for all k, (12)

showing that the electron and hole distributions remain
equal.

In the following, we first compute the coherent contribu-
tions by taking the expectation values with the part o. of
the density matrix,

( A )„h——tr(Aa) .

It turns out that the coherent part of the equations of
motion is equivalent to the result obtained in time-
dependent Hartree-Fock approximation, since the four-
operator expectation values simply factorize into pro-
ducts of two-operator expectation values. With our
choice of o, Eq. (A6), we keep only those products in the
factorization which contain "macroscopic" expectation
values, i.e., which are diagonal in wave-vector indices
such as

(akak'apap') oh (5k,p'5k', p 5k,p5k', p'), k, k'

As a result we obtain the coherent part of the equations
of motion in the form

The last term on the right-hand side (rhs) of Eq. (14) is a
source term which is known. To be able to solve Eq. (14)
we have to make some approximations. First, we neglect
the second term on the rhs and, in the first term, we re-
place H by the effective Hamiltonian H,z. This effective
Hamiltonian is linear in the operators a; but it is also a
functional of the expectation values a;. It is determined
such that it yields the coherent Eqs. (1 la) —(1 lc) as result
of

i a;=—tr([a;, H, ]pit) .. 8
(15)

In our case the effective Hamiltonian has the form

= g [e', (k)akak+e'k(k)b kb k]
k

rt [V(q)(nek qak, ak+—nh, k —q —kb —k
k;q (&0)

+Pk —q —k ak +Pk —q ak —k ) l

(16)

The Coulomb interaction is responsible for the shift of
the single-particle energies. Additionally, the last two
terms on the rhs of (16) represent an effective dipole in-
teraction of the material with its own macroscopic polar-
ization (self-field coupling of the polarization). The
effective Hamiltonian is time dependent. The analysis
shows that keeping this time dependence of H, tt, Q, and
0. causes the solution to depend on the history of the ex-
pectation values a;. In the following, we therefore as-
sume that only the rapid time dependence at optical fre-
quencies is important in H, tt, Q(t), and o(t). This as-.
sumption is equivalent to neglecting the memory effects.

We then have to solve the equation

i 5p=[H, tt, 5p]+—Q([H, o ]) .a

We furthermore assume that the polarization is small so
that we are justified to neglect the self-field terms propor-
tional to pk in H, z and in the final scattering terms we
keep at most terms linear in pk. This leads to the situa-
tion that the scattering rate of the populations will be in-
dependent of the polarization components. The general
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X[V, o(t')]e (18)

case can also be solved but is slightly more tedious. We
want to emphasize that the scattering takes place be-
tween states which have as energies the Hartree-Fock en-
ergies which are shifted as a consequence of the Coulomb
interaction between the particles.

As a consequence of our approximations, the effective
Hamiltonian is diagonal and independent of time. In the
adiabatic limit, when initial conditions become irrelevant,
the solution of Eq. (17) therefore has the form

e

5p= i—f dt'e "" ' 'e ' Q(t')

Since the memory effects are neglected, it is now straight-
forward to evaluate (18} and we suppress the details of
the algebra.

In deriving the explicit form of the Coulomb matrix
element entering the scattering rates we only take the
most divergent contribution of the unscreened Coulomb
potential. This approximation is equivalent to ignoring
the exchange term V(q) V(k —k') from the Born approx-
imation' of the scattering matrix element
V(q)[ V(q) —V(k —k')].

The scattering term for the electron population n, (k) is

given by

n, „—„=— g 2m. V (q)5(X,(k)+'E, (k'+q) —Z, (k') —Z, (k+q))
k', q (~0)

X [n, kn, k +q(1 n, —
k )(1 n,—k+q ) n, k

—n, k+q(1 n, k
—)(1 n, k +q

—)]
2n V'(q)5(Z, (k)+Ek(k') —Z, (k +q)=e„(k'+q))

k', q (~0)

X [ne knk k'(1 —n, k+q )(1—nk k +q ) —n, k+qnk „.+q(1 n, k
—)(1—nk k )], (19)

where we have denoted the shifted single-particle ener-
gies by

8—p„„„=—A (k)p„+ g B(k,q)pk+q,
q (&0)

(21)

Z;(k)=E';(k) — g V(q)n;(k), i =e, h .
q (~0)

(20)

The scattering term for the hole population nk(k) is ob-
tained from Eq. (19) by changing everywhere e~h.

Finally, we have to compute the scattering terms enter-
ing into the dynamic equation for the polarization.
Keeping again only the contributions which are linear in

pk, we find that the resulting scattering rate is of the gen-
eral form

where A and 8 are complex functions. Inserting (21) into
(1 la) shows that the imaginary parts of these terms give
rise to additional energy renorrnalizations in the first
term and to potential corrections in the second term on
the rhs of Eq. (1 la), both of which are proportional to the
square of the Coulomb potential. We neglect these
higher-order corrections and evaluate only the contribu-
tions proportional to the real parts of A and B. This way
we find the decay rate of the polarization as

ReA (k}=I(k)= g m V (q)[5(Z, (k' —q)+f, (k+q) —Z, (k') —Z, (k))
k', q (&0)

X[n, k qn, k+q(1 n, k. )+n,—k (1 n, k q)(l —n, k+q)—]

+5(Z, (k' q)+Zk(k——q) —Z, (k'}—'Ek(k) )

X[n, k, nkk (1 n, k )+n, k(1——nkk q)(1 n, k q)]]—

+same terms with e~h . (22)

The coefficient Re8 (k, q) describes the rate of polarization transfer between the states k and q due to the carrier-carrier
collisions. Our result for B is

Re8 (k, q) =A(k, q) =nV(q) g [5('E, (k. '+q)+'E, (k) —Z, (k') —Z, (k +q) )

X[n, k+qn, k(1 n, k )+n, k (—1 n, k+q)(—1 n,k)]-
+5(Z, (k' —q)+Zk(k) —Ek(k +q)+Re(k') }

X[ne k' —qn'I k(1 ne k')+ne k'(1 ne k' —q)(1 nh, k )]l

+same terms with e~h . (23)
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Adding the scattering terms (19) and (21) to Eqs.
(1 la) —(1 lc) we have a set of equations which describes
both the coherent and incoherent processes taking place
in laser-excited semiconductors. Our approximations re-
strict the validity of the equations to situations where it is
justified to neglect higher-order terms of the polarization.
Our approximation scheme shows that the coherent
effects, like frequency shifts, contribute in first order in
the Coulomb interaction potential, but the incoherent
effects contribute in second order. In both cases, these
are the lowest orders where these effects contribute at all.
Equations (1 la) —(1lc) plus the scattering terms (19) and
(21}are the egectiue Bloch equations Th.e coherent parts
of the equations have also been derived by Haug et al. "
As limiting cases, the effective Bloch equations reproduce
well-known results which will be discussed in the follow-
ing sections of this paper together with some generaliza-
tions.

IV. LOW-EXCITATION COHERENT REGIME

and

—
p/,'=t[e;(k)+e/, (k)]pk" —i y V(q)p/, ', qt

q (&0)

ipt', E(t)—'( I n, „—n„k ), —
a
at
—n, k i[pkE(t——)p&" pi, E*(t)pk]—,

(24a)

(24b)

(24c)

To study the situation of not too strong ultrafast opti-
cal excitation, we assume that it is justified to neglect the
effects of phase-space filling and band-gap renormaliza-
tion. Hence, from the Coulomb interaction we only keep
the mutual attraction between electrons and holes. These
approximations are best justified if the density of generat-
ed electron-hole pairs is well below the Mott density.
Under this condition the coherent equations (11) reduce
to

Note that under the present conditions the equations
yield local charge neutrality, i.e., n, ( x) =n„( —x) = n (x).
In the following we use the notation

f dx g»(x}P(x)=P»,

f dx lij»(x}$'( —x)=P»,

x &xn x=n&,

where f»(x) are the eigenfunctions of the problem

[H, ( x}+Hz(x) V(x—}]f»(x)=e»f»(x) . (28)

With the help of Eqs. (27) and (28) we obtain from Eqs.
(25)

and

dt » isa——» i p'—E'(,t)[|t'»(0)—2n»],

a-
at »P»+'pE (t)[f»(0)—2n»],

(29a)

(29b)

tt»=tpE(t)4» 'p E —(t)4»
at ' (29c}

'(0)P»,

n, =y;(0)tt»,
(30)

we obtain the simplified equations of motion

P» t'e»P—» i p——'E "(t)(—1 —2h» ),
t

This set of equations is closed for each A, . The source
terms in (29a) and (29b) are proportional to f»(0), i.e., to
the wave function in the origin. From the Coulotnb
problem of two oppositely charged particles we know
that g»(0}&0 only for s waves. In this case g»(x) is a
real function and depends only on

I
x

I
. Hence, P»

——P»
and n z ——n z. If we now introduce

As initial conditions we assume

n/„k =n„k =Pk =o ~

—&» i pE(t)P» i p——'E'(t—)P» .

(31)

and

—i pE*(t}[5( ) —x2n (x)] (25a}

For the following analysis, it is advantageous to work in
real space. Fourier transformation of Eqs. (24a) and (24b)
yields

—P(x)=i [H, (x)+Ht, (x) V(x)]$(x)—a
at

These equations are identical to the well-known Bloch
equations for the off-diagonal, P», and diagonal, it», ele-
ments of the density matrix of a two-level atom. The to-
tal polarization is obtained as

a=pe (a„'b' „&+c.c.
k

Pp( )0+c.c.
n(x) =—i pE(t)$(x) i p'E*(t)P*( —x—),a

at

where we have defined

(25b)
,(O}

I
'4»+c. c. , (32)

P(x) = g e'""p&*,
k

n(x)= pe'""n, „=pe' "n~ „.
k

(26)

where we have used the completeness of the functions
f»(x).

Equations (31) and (32) show that for the case of not
too high excitation, when phase-space filling, screening,
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and band-gap renormalization can be neglected, the opti-
cal response of the semiconductor can be computed as
solution of an inhomogeneously broadened two-level sys-
tem. The inhomogeneous broadening in semiconductors
is an intrinsic consequence of the energy dispersion.
However, when summing over the energies, the density of
states has to be weighted by a factor

~
Pz(0)

~

. This fac-
tor is known as Coulomb or Sommerfeld enhancement
and is responsible for the replacement of the square-root
absorption shape of noninteracting particles by the more
or less structureless continuum absorption in the case
with Coulomb attraction.

In Ref. 15 we have used the two-level Bloch equations
to model the individual k states of a semiconductor for
our analysis of the coherent transients and optical Stark
effect. Even though we do not consider Coulomb attrac-
tion explicitly in Ref. 15, we still use a constant effective
density of states when summing over the continuum of k
states. Equations (31) and (32) provide the microscopic
justification of this approach and the explicit results and
figures of Ref. 15, as well as the comparison with fem-
tosecond experiments in Ref. 10 may serve as illustra-
tions.

V. HIGH-EXCITATION QUASIEQUILIBRIUM
REGIME

In the following we show that Eqs. (11a)—(1 lc) p/us the
scattering terms can be used to derive a generalization of
the Elliott formula' for the absorption spectrum of a
semiconductor to include screening, phase-space filling,
and band-gap shifts. All these effects become important
when the system is near the quasithermal equilibrium.
Typically this situation is reached in resonant pump-
probe experiments on the time scale of a few hundred
femtoseconds up to a few picoseconds. On this time
scale, the carrier-carrier scattering caused the evolution
of the originally nonthermal distributions of electrons
and holes within their bands into quasi-Fermi distribu-
tions. However, the respective chemical potentials are
defined within each band and the carriers are at an elec-
tronic temperature which is generally higher than the lat-
tice temperature. The chemical potentials are deter-
mined by the numbers of excited electrons and holes and
the plasma temperature is mainly determined through the
electron-hole excess energy with respect to the band gap.
The details of the electron-hole excitation process are
considered unimportant, and the optical nonlinearities do
not depend on the exciting light field directly, but only on
the number and distributions of the generated carriers.
The semiconductor state is probed with a spectrally
broad low-intensity probe beam.

For the considered quasi-steady-state high-excitation
situation it is important to include the effect of plasma
screening of the Coulomb interaction between the
charged particles. The screening may be described in a
self-consistent way by replacing the unscreened potential
V(q) by a screened one, V, (q), which has a reduced in-

teraction strength especially at long distances. Because
this replacement must be done in the original Hamiltoni-
an (1) and (2), the single-particle energies are in this case

e,"(k)=e, (k) = e', (k),
e'„'(k) = —e„(k)+ g V, (q)

q (&0)

=e'h(k)+ g [ V, (q) —V(q)]
q (&0)

=e'„(k)+5eo b ~

(33)

P(x) = —[H, (x)+Hz(x)]P(x)
at

+ f dr V, (r)N (r)P(x r) + V, (x )P(x)—
—f drV, (r)P(r)N(x r)—
—p*E "(t)[5(x)—N(x)], (34)

where N(x)=n, (x)+nz( —x) with n;(x), i =e, h, denot-
ing the quasithermal carrier distribution.

The first two terms on the right-hand side of Eq. (34)
are the nonlocal Hartree problem of electron and holes,

(H&y ~ )(x)=E)y[(x), i =e,h

where H~ is defined as

(H&yj, )(x)=H;(x)y&(x) —f dr V, (r)n;(r)y j, (x r) . —

(35)

(36)

In our approximation this problem is linear in y&. How-
ever, since the energy arguments in the quasithermal dis-
tributions in the Hamiltonian (36) are given by the
eigenenergies of (35), the eigenvalue problem is already
nonlinear.

It has been shown in Refs. 1 —3 that a k-independent
(rigid)band-gap shift is a good approximation when deal-
ing with the nonlinear optical spectra of laser-excited

where the last term in e&'(k), which is independent of the
wave vector k, is usually considered as a band-gap shift
due to screening (the Debye shift).

To obtain the explicit form of the screening potential is
a problem in itself. A reasonable encounter is to apply a
self-consistent linear-response theory with Poisson equa-
tion or to use Green's-function techniques. ' If one ig-
nores interband contributions to the screening, the polar-
ization induced by the charge distribution change may be
approximated by the Lindhard formula. This formula is
determined by the populations of the k states. To de-
scribe the dynamics of the screening, one has to consider
the spatial rearrangement of electrons and holes and the
local population fluctuations. These effects are neglected
in our present treatment, but for the discussed situation
near quasiequilibrium, it is a reasonable approximation to
include screening in the dynamic equations simply by re-
placing V~ V, and c'~c".

In order to compute the semiconductor susceptibility
for a given distribution of electron-hole pairs, we solve
the polarization equation in first order in the external
probe field. For the sake of compactness of notation we

again work in position representation. The equation of
motion for the polarization is given by
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i—,I y& = HH—I((&+sv. I
4'& v—'E'(r) If &

where the operator S is defined as

&x Is I
g&=g(x) —fdr((r)N(x r) . —

(38)

(39)

The Hilbert-space vector
I f & in Eq. (38) in position rep-

resentation is given by

&x
I f &=f ( x)=5( x) —N(x) .

The solution of Eq. (34) is complicated by the fact, that
even though both operators S and V, are Hermitian, their
product is not. To be able to continue, we make the fol-
lowing assumptions: (i) the operator HH —SV, has com-
plete sets of both right-hand and left-hand eigenvectors:
(ii} all eigenvalues are real. We have not proved these as-
sumptions but there are cases where a proof can be given.
For example, the problem can easily be mapped to a Her-
mitian problem if no gain occurs in the parameters region
of interest, i.e., if the all Fourier components of f (x) are
positive. A second, less trivial case is when the system
has no bound states.

We now assume that we know the solutions to the ei-
genvalue problems

and

(HH —SV, ) 14&=e,
I 4 (40)

(H„—sv, }=e

The solutions are normalized such that

&n~ I k„&=&~„.

(41}

(42)

Since the operator S commutes with HH, we can rewrite
Eq. (41) in the form

H„SV, )S
I ~„&=e—,S I ~, & . (43)

A comparison of Eqs. (40) and (43) shows that it is possi-
ble to choose the left-hand and right-hand eigenvectors
such that

(44)

Using the completeness of the right-hand eigenvectors,
we can write

14&= X~. I 4&

and

(45)

Inserting (45) into (37) yields

semiconductors. This approximation is equivalent to
making the Hartree Hamiltonians local, i.e.,

f dr V, (r)N(r)P(x —r)= f—dr V, (r)N(r)P(x) .

To obtain a formal solution of Eq. (36) in steady state, it
turns out to be very helpful using a coordinate indepen-
dent representation. We write

i —a = —E„a —p',E*(t)&gz
I f & .

at
(46)

Because the field has the time dependence
E'(t) =E'exp(icot), the steady-state solution of Eq. (46)
1S

P(x)= —p*&'(r) g
l P+ E.g

—CO

(47)

The left-hand and right-hand eigenvectors can be normal-
ized independently allowing us to normalize g such that
1&v& I

S
I q, & I

= 1 and

q, I

s
I q„& =sgn&q,

I
s

I q, &s,„. (48)

+C.C.
l f+Eg —CO

and the absorption coefficient as

a(co)=C+sgn(&g IS I g„&)

(49}

X I &x =OIS
I gg& I 5(ep —co), (50)

where C is a constant. This result can be considered a
generalization of the Elliott formula for highly excited
semiconductors. It is valid independent of the dimen-
sionality of the system. Hence, it can be applied not only
for bulk semiconductors but also for quantum-well struc-
tures and for other systems with reduced dimensions.

Equation (50) has several well-known limiting cases.
For the unexcited situation when the electron and hole
populations are zero, S is the unit operator and the eigen-
functions g& are the eigenfunctions of the pure Coulomb
problem (Wannier equation). Under this condition, Eq.
(50) reduces to the original Elliott formula. ' On the oth-
er hand, when we ignore the Coulomb potential V the
problem is diagonalized in a plane-wave basis, and care-
fully making the algebra of the normalization, one can
show that

a(co)=C g [1 n, (k) ni, —k]5—(c., (k)+—Ez —k —co),
k

(51)

which is the free-particle result.
The absorption formula used by Banyai and Koch' is

obtained by ignoring the phase-space-filling corrections in
the eigenvalue equations (40) and (41). Formally, this ap-
proximation is equivalent to replacing S by the unit
operator without changing the source term f. In this
case Eq. (50) cannot be used because it was derived using
Eq. (51) and the explicit relation between f (x) and the
operator S. To obtain the absorption formula of Banyai

The sign function is necessary because the operator S is
not positive definite. Physically, the sign describes gain
(minus) or absorption (plus) at the corresponding states.
As in Eq. (32), we obtain the polarization as

P =pP(x =0)+c.c.

=- Il I'E'«}Xsgn&n. Is I n~& I
&x =oIs

I ~~& I'
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and Koch, we start from Eq. (47) and replace S by the
unit operator. The population factors are manipulated as
discussed in Ref. 13. We assume that the energies in the
arguments of the 5 function are close to the free-particle
energies. The resulting absorption coeScient is

a(co)=Ctanh (c0—p, —ph)—
2

(NATO) travel Grant (No. 87/0736) is gratefully ac-
knowledged.

APPENDIX

Projector techniques are often used when it becomes
necessary to exactly separate two subspaces. In the fol-
lowing we summarize the steps used in the main part of
this paper. Generally, a projector P and its conjugate
projector Q have to fulfill the equations

(52) P =P, Q'=Q, PQ =QP =0, P+Q =1, (Al)

This result has been used successfully to analyze the non-
linear absorption spectra of many different laser-excited
semiconductor materials. '

VI. SUMMARY AND CONCLUSIONS

Within the Hartree-Fock approximation, we have de-
rived a set of equations for the electron-hole population
and for the polarization of a semiconductor using a Ham-
iltonian formalism. These equations may be regarded as
generalized Bloch equations. They include the important
many-body Coulomb effects, band-gap renormalization,
and phase-space filling. We show how the derived equa-
tions can be used to study semiconductors both under ul-
trafast optical excitation as well as close to quasithermal
equilibrium.

Since our theory is independent of the dimensionality
of the system of electronic excitations, our results are
applicable not only for bulk semiconductors but also for
quantum wells, quantum wires, and the like. We are
presently investigating whether it is possible to obtain a
simplified description of optical nonlinearities in systems
with reduced space dimensions in a similar spirit as the
plasma theory of Ref. 13. This task, however, is consid-
erably more complicated than in bulk systems, since in
lower-dimensional structures it is not justified to neglect
the phase-space-filling terms in the generalized Wannier
equation, and one has to deal with the nonlocal potential
term.
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where 1 is the unit operator. The actual form of P and Q
is determined by the specific physical problem under con-
sideration. Generally, the projector P should be chosen
such that it isolates the subspace which contains the
essential elements of the discussed problem.

In time-dependent problems it is possible to use time-
dependent projectors. An extensive study of the projec-
tor methods both in classical and quantum mechanics is
given by Grabert. ' We basically follow his approach.
The key assumption is that the dynamics of the electron-
hole system can be described with expectation values of a
restricted set of operators denoted by Ia, i. We choose
these operators to be

8'
k
——akak, Sp k ——b kb

I k akb —k Jk b —kak

(A2)

tr(o) =1,
tr(a;cr ) =tr(a;p)—:a,

(A3)

(A4)

To uniquely determine o we additionally demand that cr

is separable in k space and that

tr[R', (k)&h(k)o ]=n, (k)nh(k)+
i
p(k)

i

This gives the relevant density matrix o. the form

O' = CTk

k

with

(A5)

(A6)

The so-called releuant density matrix o is that part of the
total density matrix p which contains the information of
the expectation values of the operators (A2). This
relevant density matrix is parametrically time dependent
through the expectation values of the operators. We as-
sume that, if chosen appropriately, the relevant density
matrix contains the essential part of the dynamics of the
problem under consideration. Hence, we request the fol-
lowing properties:

ok (I n, k nhk+n, knh k+ I pk I
)Ik (I 2n, k nh k+2n, knh, k+2 1pk I

')&,, k

—(1 2nh k n, k +—2n, knh k +2
I pk I )nh, k—+pkP k+pk Pk

+(I—2n, , k 2 kn+h4 knh, kn+41 pk I
)fi'.

, k~h, k . (A7)
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We arrived at the explicit result (A6) by noting that all
operators constructed from an even number of the elec-
tron and hole creation and destruction operators

can be reduced to a linear combination of the operators

k& ~e, k& ~h, k& I k& I k

Hence, o is given as a linear combination of the six
operators with the coeScients determined from
(A3) —(A5), leading to the result (A7}. Chosen this way,
the relevant density matrix has the property that it fac-
torizes all many-operator expectation values in terms of
the expectation values a;.

We now need a projector with the following properties:

Following Grabert' we see that the projector needed is
given by the equation

P(p)=o tr(p)+ g [tr(a;p) —a, tr(o )],Bc7

t)a;
(A 10)

i tr—=P([H, tr])+P([H, 5p]),
Bt

(Al 1)

i 5p—=Q([H, 5p]}+Q([H, a]}, (A12)

where 5p=Q(p). Equations (All) and (A12) yield the
equations of motion for a s in the form

where p is an arbitrary element in the space of density
matrices, With the help of this projector we obtain the
equations of motion

P(p)=o, (A8)
i a—; =tr([a;, H]o )+tr([a, , H]5p) . (A13)

p P
Bt

=—P(p) .
t)t

(A9)

The second property is important because we want that
both p and its equation of motion separate into two parts.

The first term is the factorized, "coherent" contribution
and the second term is the scattering part. The division
in Eq. (A5) is exact and can be used as a basis of approxi-
mations for 5p and hence also to Eq. (A13).
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