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Finite-size scaling calculations are performed for the critical dynamics of the ferromagnetic Ising
model on fractal lattices. We confirm the predictions of Henley’s heuristic theory of singular dy-
namic scaling and compare our results with those recently obtained by Kutasov et al. using Monte
Carlo methods. It is found that fractal lattices which have odd coordination have an exponentially
large number of metastable states but that these states do not necessarily play a significant role in

the critical dynamics.

I. INTRODUCTION

It is fairly well established that there is a violation of
standard dynamic scaling theory! in the Glauber? dynam-
ics of Ising spin models on critical percolation clusters
and regular fractals. The first work suggesting the break-
down of standard dynamic scaling was a simple heuristic
theory by Henley® which predicted a new “singular” dy-
namic scaling in which 7« £? as in standard dynamic scal-
ing but with z~1/T instead of z=const. Here, 7 is the
relaxation time, £ the thermal correlation length, and z
the dynamic critical exponent. His calculations were
more intuitive than exact, but relied on the convincing
idea that the dynamics of systems with zero temperature
phase transitions could be described by energy barrier ac-
tivation processes using the Arrhenius law. Subsequent
Monte Carlo (MC) simulations by Kutasov et al.* demon-
strated that Henley’s theory was qualitatively correct but
seemed to be incorrect in some of the qualitative details.
An approximate real-space rescaling study by Harris and
Stinchcombe® on dilute Ising systems near the percola-
tion threshold also confirmed the essential correctness of
the new “singular” dynamic scaling form of the relaxa-
tion time. However, a more formal real-space rescaling
calculation by Achiam® on regular fractals predicted
standard dynamic scaling. Experiments have been per-
formed on dilute magnets near the percolation threshold
but the situation is unclear as low enough temperatures
to detect the 1/T dependence of z have not yet been used.
Presently available data do not exclude the new “‘singu-
lar” dynamic scaling.

Our approach to this interesting problem is to use a
form of finite-size scaling based on an idea of Kinzel.
The starting point of these calculations is the Glauber
master equation for the probability P({s;}) of the spin
configurations and can be written as

dP({s;}) =N
j=1

—P({—s; DW;({—s; ], (1)

where W;({s;}) is the spin flip probability per unit time
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for the jth spin which depends on the configuration of the
surrounding spins. We shall use the conventional
Glauber form [1—s; tanh(E; /kT)]/2a for this transition
rate where E; is the local field on site j and a is the relax-
ation time of an isolated spin. N is the number of lattice
sites while { —s;} denotes the spin configuration with the
jth spin flipped. Taking these probabilities to be the
components of a vector and assuming an exponential
time dependence, this equation becomes a 2" % 2" matrix
eigenvalue problem for the relaxation times. By explicit-
ly diagonalizing this matrix we can find the temperature
dependence of the slow modes (i.e., those modes which
have a divergent relaxation time at the phase transition
and hence are responsible for the critical slowing down.)
By repeating the calculation for a larger system the
length scaling of the relaxation time can be found and
therefore z. We confirm in detail Henley’s result for the
length dependence of 7 in the regime L <<&. In addition
we investigate the relationship between the number of
slow modes and the number of metastable states. The
basic advantage of our approach over, say, Monte Carlo
simulation is that we can probe the regime L <<§
without excessive computer time. On the other hand, our
method is limited to smaller clusters than MC simulation
because of storage problems.

In the next section we review the work of Henley and
Kutasov et al. in more detail for the case of the
Sierpinski gasket (SG) and the Mandelbrot-Given (MG)
fractals. Section III introduces Kinzel’s dynamic real-
space renormalization transformation and we apply it in
lowest order to the SG and MG fractals to recover the re-
sults of Henley’s theory. We then go on to present our
numerical results, which can be regarded as an applica-
tion of the Kinzel idea to higher order. The role of meta-
stable states is then discussed with reference to odd coor-
dinated fractal lattices. We finally present a conclusion.

I1I. SINGULAR DYNAMIC SCALING

Dynamic scaling is a generalization of static scaling fa-
miliar in thermal critical phenomena. Here, it will be
taken to mean that the time-dependent magnetization
obeys the following functional equation:
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M(L,K,t)=M(L/b,K',t/Q) , (2)

where a renormalization-group (RG) transformation with
scale factor b has been carried out and both the thermal
variable, K, and time have been appropriately scaled.
The above equation can be shown to imply both the usual
thermal scaling properties and also 7« £’ where Q=547
Conventional dynamic scaling occurs when (0 is a finite
constant at the critical point while singular dynamic scal-
ing occurs when the eigenvalue, (), is divergent at the
phase transition. Henley discovered a simple intuitive ar-
gument for 7 £4/T+8 which we shall now describe, as
applied to Ising dynamics on the SG and MG fractals.
The construction of these fractals is shown in Fig. 1.

The nearest-neighbor ferromagnetic Ising model has a
zero temperature phase transition on both the MG and
SG fractals. This suggests that the most divergent part of
the relaxation time 7 is due to thermal activation over en-
ergy barriers. In particular, since at very low T the sys-
tem will prefer to lie in phase space somewhere near one
of the two degenerate ground states C and C,
min{E, (C—C)}, the minimal maximum energy on the
phase-space trajectory connecting the two ground states
will be the crucial energy scale in the problem. On the
two fractal lattices which we consider here

E ax/2J=Z InL +const , 3)

with Z =1/1In3 for the MG and Z =2/In2 for the SG. It
is this logarithmic scaling of the energy barrier which
leads to singular dynamic scaling. The origin of this log-
arithmic scaling is particularly easy to see in the case of
the MG fractal by considering the motion of a Bloch wall
through the lattice. The energy required to progress
through a part of the lattice which is merely a scaled
down version of the whole lattice is just 2J. This can be

—o—@-o—

(a) (b)
FIG. 1. The first stages in the construction of the (a)
Sierpinski gasket and (b) Mandelbrot-Given fractal.

seen by realizing that the energy to flip the entire scaled
down-version is simply zero and thus the energy required
to reverse its magnetization is related to the energy of
flipping the connecting spin. Hence, for the MG, the
Bloch wall needs 2J for each new level of the hierarchy
which it enters, so that AE /2J=n +1. But L =3" giving

AE/2J=InL /In3+1 , 4

and Z=1/In3. In addition to this logarithmic scaling,
Henley assumes that 7(L,T)=7yexp(AE /kT) which is
the Arrhenius law for thermally activated processes. By
substitution we obtain

L, T)=1,LPX, (L «<£), (5

where B=2Z. The above form is only valid in the low-
temperature region. At higher temperatures it can be
shown® by using the dynamic scaling assumption and the
thermal scaling equation that

HL,K)<EPK2, (L >>¢). (6)

So, by the combination of two convincing assumptions, a
temperature-dependent critical exponent is found. A
similar result has been derived for critical percolation
clusters using a heuristic scaling theory.’ This theory
considers the dynamics to be controlled by the motion of
Bloch walls and involves a rate suppression factor origi-
nating from branching of Bloch walls reminiscent of the
calculation of AE for the MG fractal. Recent Monte
Carlo simulations of Ising critical dynamics on regular
fractals by Kutasov et al. confirm the validity of this
form and show that () has an exponential dependence on
K. However, they disagree in their quantitative predic-
tions and obtain a different value of 8 from that of Hen-
ley. In the next section we show that a divergent eigen-
value ) can be obtained from a simple block-spin
analysis.

II1. FINITE-SIZE SCALING CALCULATIONS

Our approach to Ising spin dynamics is based on an
idea by Kinzel.” It is a block-spin method similar in spirit
to that of Niemeijer and van Leeuven’s® for statics.
Kinzel associates 7', the rescaled relaxation time, with
the slowest mode of an isolated block. He applies the
method to the triangular lattice and obtains a reasonable
(finite) value for z. For the fractal lattices which we con-
sider (MG and SG) his method is straightforward to ap-
ply as at their lowest stages of iteration they are small
clusters and, by construction, directly related by a scale
transformation. To see how this works for the SG con-
sider a triangular cluster, which is its building block.
This has eight modes with the slowest having a relaxation
time given by r=a/[1—tanh(2K )] where a is the time
scale for the relaxation of an isolated spin. This can be
written as a scaling equation

T'z%e“(T, K>1. (7)
At the (zero temperature) phase transition ek is diver-
gent. This is the origin of the ‘“‘singular” dynamic scal-
ing. Writing the scale factor as Q=2*K/"—1 we see that
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Henley’s value for 3 is recovered. We can carry out a
similar calculation for the MG fractal where we compare
the ratios of the longest relaxation times for the first two
structures shown in Fig. 1(b). This gives

7, K>1, (8)

so that B=2/In3=2Z again in agreement with the Hen-
ley prediction. It therefore seems that at the lowest order
this rescaling calculation gives a temperature-dependent z
in agreement with Henley and Kutasov et al. However, it
sharply disagrees with a calculation by Achiam® for the
SG which produces a finite value for € at the critical
point resulting in z=2d, where d, is the fractal dimen-
sion of the lattice. Of course, calculations such as the
ones given above are not exact and the result may be an
artifact of the approximation. To show that this is not
the case we consider scaling with larger clusters.’

Kinzel identifies the 7 scaling as the ratio of the longest
relaxation times of an isolated “block” to that of an iso-
lated spin. We extend this method to higher order by us-
ing larger blocks and comparing their longest relaxation
times. For an N site lattice this involves diagonalizing
the 2¥x 2" master matrix numerically. Glauber’s equa-
tions do not specify the spin-flip rate uniquely; it is, how-
ever, convenient to use the conventional choice
[1—s; tanh(E; /kT)]/2a as it results in the eigenvalues
of the master matrix lying in the bounded range ( —N,0).
The longest relaxation time is —1/A, where A, is the
smallest (in magnitude), nonzero eigenvalue of the master
matrix, A. Due to the conservation of probability A al-
ways has a trivial zero eigenvalue. Using the up-down
symmetry of the Ising model A can be split into two
blocks of order 2¥~!. The slowest mode was always
found in the antisymmetric subspace which is reasonable
as it would be expected to couple strongly to the magneti-
zation. Using this symmetry reduction the eigenvalues
for lattices of sizes up to 12 sites could be calculated. By
using sparse storage mode and direct iteration it was pos-
sible to find the slowest mode of the 15 site SG.

We now present our results for the SG. Figure 2 shows
that the slowest relaxation time for the six and fifteen site
SG has a simple exponential dependence on inverse tem-
perature. By comparing the slopes of these two gr l?hs a
direct check on Henley’s prediction 7(L,K)=L??X can
be made. It is found to hold to very high accuracy and is
presumably exact. A similar plot is shown in Fig. 3 for
the MG fractal to confirm that 7(L,K)/m(L /b,K )=e*X.
Kutasov et al. were unable to provide this confirmation
because the excessively long relaxation time makes com-
putation with the MC algorithm very expensive.

More interesting is to plot Q(b,K)=7(L,K)/7(L/
b,K') where K’ is the scaled K found from the static RG.
The results for this are shown in Figs. 4 and 5 and corre-
spond to the plots in Kutasov er al. Both graphs show
curvature near the region L ~§. Taking the slopes of
these graphs in the region £ >>L we confirm the value of
[ predicted by Henley, namely, 1.82 for the MG and 5.77
for the SG fractals. It appears to us that the results of
Kutasov et al. (=2.1%£0.1 for the MG and $=4.210.2
for the SG) which are respectively higher and lower than
the predicted values, can be explained by the fact that

e %32K/ln3
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FIG. 2. A plot of InT against K for the 6 site (dotted curve)
and 15 site (solid curve) Sierpinski gasket.
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FIG. 3. A plot of Int against K for the 4 site (dotted curve)
and 12 site (solid curve) MG fractal.
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FIG. 4. Dependence of InQ) on K for the SG obtained by
comparing the 15 site system with the 6 site system.
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FIG. 5. Dependence of InQ on KX for the MG fractal obtained
by comparing the 12 site system with the 4 site system.

their calculations were performed in the regime L ~§&.

In obtaining the results above only the longest relaxa-
tion time was considered, but diagonalization of the mas-
ter matrix results in a whole spectrum of relaxation
times. These additional modes are potentially important
if they are slow. It is, in fact, quite easy to show that the
number of slow modes is equal to the number of states
stable against any single spin flip. Intuitively this result
makes sense because if the system finds itself in one of
these metastable states just above T'=0, then it will only
be able to jump out with some rate depending on
exp( —AE /kT) where AE is the energy barrier. A more
complete proof can be given if we choose the Glauber
weight function. Making the substitution

P({s;})=P({s;})/V Pegm({5;}) 9)

in the master equation, where P, is the equilibrium
(Boltzmann) distribution, is equivalent to a similarity
transformation which symmetrizes the master matrix.
Using the detailed balance conditions for the transition
rate the off-diagonal elements become

V'W;({—s;DW;({s;})=1/cosh(E; /kT) , (10)

which vanish as T—0 if E ﬁéO (which is the case for the
odd-coordinated lattices but not the even coordinated).
The diagonal terms are

j=N
'S [1—s, tanh(E, /kT)] . (a1
j=1
But tanh(E; /kT) becomes sgnE; as T—0. Now the con-
dition for metastability is s;sgnE; =1 Vi so that the diag-
onal terms are zero for all the metastable states and so
the result follows. Because of its even coordination num-
ber only the ground states of the SG are stable against
single spin flips and so there is only one slow mode. Our

FIG. 6. Construction of the 3-simplex fractal lattice.
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approximation of neglecting all the other modes is, then,
quite justified. However, the MG fractal has exponential-
ly many metastable states and so there are exponentially
many diverging relaxation times near the phase transi-
tion. These metastable states have both spins orientated
parallel to each other in all of the elementary “bubbles.”
We find that in the relaxation of the magnetization from
the completely aligned state, the additional slow modes
do not play a role at low temperature. This is because all
of the metastable states have energies far above the
ground state in these finite-sized systems.

In order to clarify the role played by metastable states,
we have also considered the 3-simplex lattice shown in
Fig. 6. This lattice has the same fractal dimension and
statics'® as the SG but in contrast to the SG it has an ex-
ponentially large number of metastable states which cor-
respond to the spins in each elementary triangle having
the same orientation independent of the other triangles.
These metastable states also have a self-similar geomeétry
and this structure suggests that the spectrum of slow
modes of the nth order lattice is closely related to the
whole spectrum for the (n —1)th order lattice. Numeri-
cally we found them to be almost identical but with the
relaxation times of the modes of the (n —1)th order lat-
tice being all scaled by a factor of exp(2K). Thus even if

there are many slow modes, the scaling factor is common
to them all and the magnetization will still have the scal-
ing form as in (2) with a temperature-dependent z. The
presence of the metastable states may change the func-
tional form of the relaxation from exponential to either
power law or possibly stretched exponential but will not
change the value of z. The actual form will depend on
how the distribution in energy of metastable states accu-
mulates near the ground state.

IV. CONCLUSION

In conclusion, our finite-size scaling calculations agree
in both their qualitative and quantitative details with the
heuristic theory of Henley and hence provide strong sup-
port for the new form of “singular’” dynamic scaling. We
also argue that although the odd coordinated lattices
which we consider have exponentially many metastable
states, like a spin glass, they do not play a significant role
in the critical dynamics except to possibly change the
functional form of the relaxation.
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