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We consider the effects of an external magnetic field on plasmons propagating in finite n-i-p-i (n-
doped material-insulator -p-doped material—insulator) superlattices. The magnetic field is applied
parallel to the interfaces and we consider propagation perpendicular to the applied field. We find
that the magnetic field can have two effects: (1) the dispersion relations can become nonreciprocal,
or (2) the excitations can become (nonreciprocally) localized. The particular effect depends critical-
ly upon the number of layers; for a structure composed of an unequal number of n- and p-doped lay-
ers, the modes can be strongly localized, while in a structure composed of an equal number of n-
and p-doped layers the dispersion curves become nonreciprocal.

I. INTRODUCTION

Collective excitations of artificially layered media have
been the subject of a wide range of theoretical and experi-
mental studies in recent years. These investigations have
included magnons,' 3 plasmons,*~8 and phonons,”~!! to
name a few.

Many of these studies have been aimed at uncovering
the effects of various symmetry lowerings on the
collective-mode spectra. In previous papers, we have
demonstrated that (1) surface plasmons propagating in a
symmetric structure consisting of metallic films separated
by (initially) vacuum-filled gaps, with the whole structure
surrounded by vacuum, will be dramatically localized by
a small perturbation in the dielectric strength of the gaps,
and (2) plasmons propagating in the same symmetric
structure (vacuum-filled gaps) are basically unaffected by
severe variations in the thickness of the constituent lay-
ers. Other investigators have discussed collective
plasmon modes in quasiperiodic structures.'>!3

In addition to the lowering of symmetry caused by
physical perturbations in the layering of superlattice, one
may also lower the symmetry by the application of a
magnetic field. Both magnetic fields parallel'* and per-
pendicular’® to the surfaces of the superlattice have been
considered. The case where the field is parallel to the sur-
face and propagation is perpendicular to the field is par-
ticularly interesting since nonreciprocal surface wave
propagation [w(k)#w(—k), i.e., a reversal of the wave
vector k can lead to a different frequency ] is possible, a
very dramatic consequence of the lowering of symmetry
due to a magnetic field.'®

In this paper, we present a brief theoretical study
demonstrating the effects of an external magnetic field on
the collective plasmon modes in n-i-p-i (n-doped-
material -insulator-p-doped-material -insulator) super-
lattices with different symmetries. Both nonreciprocal
propagation as well as nonreciprocal localization are dis-
cussed. An explicit dispersion relation is not derived;
however, a theoretical development is presented which is
valid for any number of layers (or layer thicknesses), in-
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cluding the magnetic field, and some numerical studies
are presented which illustrate the symmetry-lowering
effects of the applied field.

Precedent for this paper comes from the study of ap-
plied magnetic fields in antiferromagnetic films'’ and in
superlattices.'® It has been shown that the effect of an
external magnetic field on thin-film antiferromagnets de-
pends upon the symmetry of the sublattices. If we as-
sume the film consists of alternating layers of oppositely
directed spins, labeled 4 and B, it turns out that for an
equal number of layers 4 and B ( AB AB AB, for instance)
the magnon dispersion is nonreciprocal (i.e., the allowed
energy for a given wave vector is not the same for +k as
for —k). On the other hand, if there is one more layer of
A spins than B spins (ABABABA), the propagation
remains reciprocal. Similar results have been found for
superlattices composed of ferromagnetic films, where the
magnetizations of alternate films are oppositely directed.

To understand these effects, consider the following
symmetry argument. In order for the propagation to be
reciprocal, there must exist a set of symmetry operations
which will take the wave vector from +k to —k while
leaving the structure in its original configuration. If no
set of operations can be found, then the propagation need
not be reciprocal. Therefore, the symmetry of the struc-
ture becomes a critical feature. In the first case men-
tioned above, ABAB AB with the propagation direction
defined by the x axis, and with a magnetic field applied
along the z axis, there is no symmetry operation which
takes k to —k and leaves the structure and field direction
unchanged. In contrast, the structure ABAB A can be
taken into itself and take k into —k by a simple rotation
of 180° about an axis parallel to z centered in the mid-
point of the central film. Thus this structure has recipro-
cal propagation.

In addition to the nonreciprocity induced in the disper-
sion relations, the symmetry-lowering effects of the mag-
netic field can also serve to localize certain spin waves. If
one examines the amplitude of the excitations for surface
magnons as a function of depth, two distinct cases again
emerge, depending upon the symmetry of the structure.
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For the even case, AB AB AB, there is reflection symme-
try about the midplane—even though at first glance this
does not appear to be the case. Recall that in this
geometry, when spins are reflected about a mirror plane
parallel to the axis of ths spins, not only does the position
go from y to —y, but the directions of the spins are re-
versed as well. Because of this, the excitations which had
a definite parity in the absence of an applied field retain a
definite parity with an applied field, independent of prop-
agation direction. For the odd case, AB AB A, there is no
midplane symmetry, and as a result the surface modes
which had definite parity without a field can be
significantly localized by an applied field. The localiza-
tion, either to the top surface or the bottom surface, de-
pends upon the direction of propagation.

Based on this, one might expect that a superlattice con-
sisting of alternating films composed of materials contain-
ing charge carriers of opposite sign would display a simi-
lar character, since the sense of rotation of positively
charged particles about a magnetic field is opposite to
that of negatively charged particles. Such a structure
could be realized with a so-called n-i-p-i superlattice, a
structure with a unit cell of an n-doped material, an insu-
lating material, a p-doped material, and an insulating ma-
terial. In this paper, we will consider an n-i-p-i superlat-
tice consisting of layers of GaAs. We find that a super-
lattice of this type displays the nonreciprocal behavior
discussed above.

II. THEORY

In this section we only outline the theoretical develop-
ment of the dispersion relations for magnetoplasmons
propagating in a finite n-i-p-i superlattice since the re-
sults are a straightforward generalization of earlier work.
At first we assume a two-constituent superlattice with al-
ternating layers of material 1 and material 2. Material 1
is assumed to carry free charges and to occupy layers
n=1,3,5,..., while material 2 is assumed to be an insu-
lator occupying layers 2,4,6,. .. . Furthermore, the free
charges in material 1 are assumed to change sign from
one region to the next. Thus the unit cell consists of four
layers. Throughout the paper, we assume the thickness
of the films with free charges (n =1,3,5,...) is twice that
of the insulating layers (n =2,4,6,...). The geometry is
shown in Fig. 1.

It is possible to solve this problem analytically and ob-
tain an implicit dispersion relation for the finite structure.
Recently Djafari-Rouhani and Dobrzynski have devel-
oped methods for dealing with superlattices with unit
cells containing N layers.lg However, for the small num-
ber of layers we deal with here, numerical methods are
much simpler and provide all the necessary information.

In the films containing free charge carriers
(n=1,3,5,...), the application of a magnetic field along
z gives us the following dielectric tensor:
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FIG. 1. The geometry considered in this paper. The odd-
numbered layers are doped alternately n and p type, while the
even-numbered layers are insulating. We consider only propa-
gation along the +x and —x directions.
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and where €, is the background dielectric constant, w, is
the plasma frequency, and o, is the cyclotron frequency
eB/mc. We note a sign change in the gyrotropic (off-
diagonal) elements depending upon the sign of the charge
carriers in the film. In the insulating layers, the dielectric
tensor is isotropic and given by e=¢€ 1.

If we assume the long-wavelength static limit, we can
use the static form of Maxwell’s equations. This allows
the introduction of the electrostatic scalar potential
E=—V¢. We use the constitutive relation D=¢E, and
find the following equation for the scalar potential ¢:

€,(02/3x%+3%/3y*)p+€5(3%/9z2)p=0 . (5)

This is the analog of the Walker equation for magnetic
systems. If we now assume propagation only along the x
direction (perpendicular to the applied field), we then
have nothing which depends on z and we reduce Eq. (5)
to the simpler two-dimensional Laplace’s equation which
is valid in all regions:

(82/0x2+8%/3y)$=0 . (©)
This equation has solutions

D(x,1)=( A, " 4 Aje " e itkr e %)
in film n,
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above the superlattice (y <0),

D(x,1)= Ape |k rpithx—an) ©)
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below the superlattice, where 3,, measures the distance
along the y axis inside a single film n and 4,, 4,, 4,
and A are, as yet, unknown amplitudes.

We are now ready to impose boundary conditions.
These demand that ¢ and the normal component of D be
continuous at each interface. Matching the potentials
across each boundary yields

Ag=A,+ A4}, (10)
Ay ale ™= 4,4 4, (11
A"y At = 4,4 4y, (12)
Aye ¢ Afe V=4, (13)

etc., d, is the thickness of the nth film and there are a to-
tal of N films. The normal component of D is given by

. d ¢
Dy.:—lezgf__fl"a; . (14)

Matching normal D gives us
€mAdo=0[(—€;+€)A,+(—€,—€)A4]], (15)
kd| —kd, , ,
(—‘62+61)e Al+(—€2—61)€ Alzeﬁlm(AZ—Az) ’
(16)
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FIG. 2. The dispersion curves for a superlattice composed of
five layers of doped GaAs separated by insulating GaAs gaps.
The dotted lines represent the dispersion without a magnetic
field, while the solid lines are for the same structure with a 1-kG
field applied along the z axis. Note the frequency shifts with the
field.
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kd —kd €,
(e4+€)e” M dy+(ey—e)e N Af = _":; A, (18)

etc., where €, is the dielectric constant valid outside the
structure and €g,, is the dielectric constant valid inside
the gaps. o is | k | /k and takes into account the match
of the equations on the interior of the structure to those
on the exterior. Note that Eq. (18) is written with the as-
sumption that the final film contains charge carriers of
opposite type to the first film and is in contact with the
same material as the first film. Changes to include a sub-
strate or different final films are straightforward.

At this stage we may put the entire set of boundary
condition equations into matrix form. Setting the deter-
minant of the matrix of coefficients of 4, A, 4,and 4’
to zero yields the dispersion relations. In Sec. III, we
solve these equations numerically and obtain the disper-
sion curves for a few example geometries.
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FIG. 3. The electrostatic potential as a function of depth for
the five-layer structure of Fig. 2. The bottom picture represents
a bulk mode with kd,=1.5, ®=0.03335 eV. The upper two
pictures are the same mode with an applied field (v =0.0327 eV
for the +k case and w=0.0323 eV for the —k case). The top
picture represents propagation along + k while the center pic-
ture represents propagation along —k. Note that the localiza-
tion depends upon propagation direction.
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FIG. 4. The dispersion curves for a four-layer ideal structure
with an applied field of 1 kG. Note the nonreciprocal behavior
produced by the field. The upper two modes on both sides ( + &
and —k) are too close to be resolved on this scale, as are the
second-highest modes on the + k side.

III. RESULTS AND DISCUSSION

In this section, we will focus on numerical results of
the previous section, demonstrating the symmetry-
lowering effects of applied magnetic fields on plasmons
propagating in finite semiconductor n-i-p-i superlattices.
We consider two broad types of n-i-p-i geometries: (1) an
“ideal” GaAs superlattice, which is surrounded on all
sides by vacuum, and (2) a GaAs superlattice which rests
on a semi-infinite insulating GaAs substrate. In all cases,
we take €,=13.13, and €,,,=1.0. We assume further
that the doping concentrations of the conductive layers is
the same for both n- and p-type layers, and that these ac-
tive layers respond according to Eq. (1). The assumed
doping level is n =10'® cm 3, a fairly high value, which
gives a plasma frequency w,=0.04075 eV.

We begin by examining the ideal geometry, consisting
of five active layers (three n type, two p type) separated
by four insulating gaps. Under a field applied along the z
axis, this geometry is analogous to the AB AB A odd-spin
geometry discussed in Sec. I, and therefore the dispersion
relations are reciprocal. In Fig. 2 we have interposed the
dispersion curves in zero field (dotted lines) and the
dispersion curves for Hy=1 kG (solid lines). We note
that significant shifts can be obtained by application of a
magnetic field with the largest frequency shifts on the or-
der of the cyclotron frequency, w,.=0.004 075 eV, a rela-
tive shift of about 10%. Lower doping levels (with a re-
sulting smaller w,) would allow for significantly larger
relative shifts.
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FIG. 5. The electrostatic potential of a bulk mode for the
four-layer geometry of Fig. 4. Again the bottom picture
represents the mode in zero field (w=0.03633 eV), while the
upper two pictures represent the mode with an applied field
(w=0.03657 eV for the +k case and w=0.03753 eV for the
—k case). Note that the mode retains its definite parity regard-
less of the field or propagation direction.

Figure 3 shows the evolution of the electrostatic poten-
tial for a bulk mode in the five-layer ideal geometry. The
lower picture shows the mode in zero field, while the two
upper pictures show the mode in an applied field of 1 kG.
The top picture corresponds to kd,=+1.5 while the
middle picture corresponds to kd,=—1.5. The zero-
field case has a definite parity (even) while the modes for
+k and —k show localization to the opposite surfaces of
the superlattice, as discussed in Sec. I.

The next set of figures are studies of the ideal geometry
with four layers of doped GaAs (two each of n and p dop-
ing) separated by three insulating gaps. This corresponds
to the even-spin geometry of Sec. I, ABAB, and as a re-
sult the dispersion relations are nonreciprocal while the
potentials retain a definite parity. Figure 4 displays the
dispersion curves, for positive and negative k, for the
four-layer geometry with a field of 1 kG. We note the
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nonreciprocity, particularly for the surface modes, the
lowest- and highest-frequency bulk modes. The upper-
most modes are surface modes, and show the highest de-
gree of nonreciprocity.

Figure 5 shows a typical bulk-mode potential in the
four-layer geometry; again the lowest picture gives the
zero-field results, and the upper pictures are with a field.
While the upper pictures illustrate the expected retention
of definite parity under an applied field for the four-layer
ideal geometry, the application of the field does dramati-
cally alter the scalar potential as a function of depth for
+k. Thus even though there is a definite parity in all
cases, there is still a clear nonreciprocity in that the sca-
lar potential is clearly different for +k and —k.

We now turn our attention to the more realizable case
of a GaAs n-i-p-i superlattice resting on a GaAs sub-
strate. In this case, the existence of the substrate is itself
a lowering of the structure’s symmetry, and therefore we
expect the results to be slightly less simple than for the
ideal geometry. For example, the rotation-symmetry
operations presented in Sec. I no longer apply; if we ro-
tate the structure 180° about the z axis (k— —k), this
brings the substrate above the superlattice, and there is
no way to return the structure to its original
configuration. Therefore, the dispersion curves need not
be reciprocal for any layer geometry. Furthermore, the
presence of the substrate changes the symmetry of the
boundary conditions—the top surface is in contact with
vacuum and the bottom surface is in contact with an in-
sulator with high background dielectric constant—and
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FIG. 6. The dispersion curves for the five-layer geometry in-
cluding a GaAs substrate and an applied field. The substrate
lowers the symmetry and therefore the dispersion relations be-
come nonreciprocal for this geometry. We note that the
second-highest mode on the — k side is really an unresolved pair
of modes.
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FIG. 7. The evolution of the electrostatic potential for the
five-layer —substrate geometry. The bottom picture is again zero
field (w0=0.036 56 eV), the absence of definite parity is caused
by the substrate. Here only the +k propagation (0=0.03640
eV) direction is strongly localized by the combination of field
and substrate (top picture). The —k case has a frequency of
©=0.03740eV.

therefore the potentials need not display definite parity.

As a first example, consider the five-layer geometry
with a substrate. Figure 6 shows the dispersion curves
(positive and negative k) for the five-layer structure with
an applied field. Note the nonreciprocity, caused by the
combination of the field and the substrate, which did not
exist for the five-layer ideal structure. Figure 7 shows the
behavior of a typical bulk mode as a function of applied
field. The bottom picture is the mode for zero field; the
absence of definite parity here is a consequence of the
substrate. The middle picture (kd,=+1.5), although
not clearly localized at either the top or bottom surface,
shows a distinct difference from the zero-field case. The
top picture (kd, = —1.5), however, displays a strong lo-
calization of the potential to the upper surface.

In Fig. 8, we see the effect of the magnetic field and the
substrate on the four-layer structure. Once again, there
is relatively strong nonreciprocity, particularly for the
lowest-frequency pair and the highest-frequency pair,
similar to Fig. 4. Figure 9 shows a surface mode for the
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FIG. 8. The dispersion relations for the four-layer geometry H=0
with a substrate and an applied field. Once again, strong nonre- kd; =+15

ciprocity is observed. We note that the upper modes on the —k
side may be resolved, in contrast to Fig. 4.

four-layer—substrate structure. By noting the zero-field
picture (bottom), we see that the symmetry lowering of
the substrate destroys the definite parity of the mode.
The other pictures demonstrate that the field has little
effect. We find this result to be a general trend for the
four-layer geometry —the substrate has a dramatic effect
while the applied field does not.

In summary, the n-i-p-i superlattice structure, consist-
ing of oppositely-doped active layers separated by insulat-
ing gaps, responds to an applied magnetic field in a way
analogous to antiferromagnetic thin films and magnetic
superlattices. Depending upon the symmetry of the
structure, the applied field can cause (1) significant nonre-
ciprocity in the dispersion relations, or (2) strong locali-
zations of the excitations themselves. The presence of a
substrate serves to further lower the symmetry, and the

e
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depth
FIG. 9. The electrostatic potential for a surface mode in the
four-layer—substrate geometry. Here the parity of the mode is
destroyed by the presence of the substrate and the applied field
has little effect. The frequencies of the modes are +k case,
©=0.028 807 eV; —k case, ©=0.029939 eV; and zero-field
case, w=0.027 674 eV.

combination of applied field and substrate has significant
effects on the propagation of plasma oscillations.
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