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Larmor clock reexamined

J. P. Falck and E. H. Hauge
Institutt for Fysikk, Norges Tekniske Htigskole, Universitetet i Trondheim, N 70-34 Trondheim, Norway

(Received 22 October 1987)

The Larmor clock, a thought experiment designed by Baz' to measure scattering times, is reexam-
ined in the context of one-dimensional tunneling by wave packets, narrow in wave-number space,
through arbitrary static barriers. It is shown that the Larmor clock is, in general, inaccurate when
used on a single Fourier component, i.e., on a stationary state. A reliable Larmor clock depends for
its operation on properly designed wave packets. Precise conditions for its reliability are given.
Thus, the apparent conflict between previous Larmor clock results for tunneling times, and results
arrived at by other methods, is removed. When properly set, the Larmor clock shows the classic
phase times. Stationary-state calculations of Larmor and dwell "times" are shown to represent
coherent superpositions of, in general, widely different collision events. The relative merits of the
Larmor clock and the center-of-gravity clock are discussed. Finally, it is shown that, for an arbi-
trary symmetric potential, the reflection and transmission times coincide.

I. INTRODUCTION

With the prospect of fast electronic devices based on
the principle of resonant tunneling, ' the old question of
the time needed to complete a tunneling process has ac-
quired new urgency. Reliable answers can, of course,
only be found after the circumstances have been more
precisely specified. However, even the simplest case con-
ceivable, that of a wave packet, narrow in wave-number
space, tunneling coherently through (or being reflected
from} a static potential barrier in one spatial dimension,
has been controversial in recent years. ' In particular,
there is an apparent conflict between results ' that one
way or another converge on the classic phase times'
(to be defined in Sec. V} as appropriate for the process at
hand and di8'erent expressions for tunneling times based
on the Larmor clock concept. ' '

The Larmor clock was first introduced by Baz' and is
an appealing thought experiment designed to measure the
time associated with scattering events. The mechanism
basic to the clock is the constant Larmor precession of a
spin in a uniform magnetic field. Shortly after its intro-
duction by Baz' Rybachenko used the Larmor clock to
study the case of primary interest to us, that of tunneling
in one dimension. Buttiker has recently taken up the
Baz-Rybachenko idea and based further developments on
it.

In the present paper we reexamine the Larrnor clock
and remove, for the restricted class of tunneling problems
considered here, the apparent conflict alluded to above.
One of the reasons for the controversy that has raged
over tunneling times is, in our opinion, the proliferation
of fast, plausible, and clever arguments. In contrast, we
sha11 be slow, careful, and elementary throughout. This
strategy will reveal the source of confusion related to
Larmor times, as an incorrect mode of calculations
adopted in Refs. 3, 4, and 7. We show that, for the Lar-
mor clock to be properly set, it is necessary to consider
wave packets and their evolution in time. The conditions

to be put on a reliable Larmor clock will be discussed
qualitatively in Sec. II, and substantiated quantitatively
in subsequent sections. The elements that go into quanti-
tative calculations are collected in Sec. III. In Sec. IV we
check that the Larmor clock is a reliable one. More pre-
cisely, we check the conditions discussed qualitatively in
Sec. II, in a more quantitative setting. The results of a
properly set Larmor clock are read off in Sec. V. In that
section our previous work' on tunneling times (hereafter
referred to as I) will provide a useful backdrop. In fact,
we show in Sec. V that a good Larmor clock gives results
in essentially perfect agreement with those of I. In par-
ticular, the classic phase times' ' are read olf to lowest
order. Section VI is devoted to a closer scrutiny of the
stationary-state strategy used in Refs. 3, 4, and 7. We
rederive the general results for spin rotations found by
Rybachenko, using relations between inverse and direct
collisions developed in Appendix A. This rederivation,
the details of which are relegated to Appendix B, graph-
icly demonstrates why the calculations of Refs. 3, 4, and
7, although correct, cannot, in general, be interpreted in
terms of tunneling times. The problem of clocks and the
relations between the results of the present paper and
those of I are, finally, summed up in the discussion of Sec.
VII.

II. QUALITATIVE DISCUSSION
OF THE LARMOR CLOCK

We first discuss qualitatively the Larmor clock in the
context of tunneling through a one-dimensional barrier,
as shown in Fig. l. The static barrier V(x), the form of
which is left unspecified, is confined to the x interval
(b,a}. For simplicity, we assume that the constant poten-
tial energy is the same, V =0, for x & a as for x & b. Gen-
eralization is straightforward and will be briefly men-
tioned in Sec. V. An infinitesimal, homogeneous magnet-
ic field (or, rather, magnetic induction) B=z80, pointing
in the z direction, fills the x interval (x „xz ). Outside this
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FIG. 1. The Larmor clock configuration for one-dimensional
tunneling. The static barrier V(x) is confined to the x interval

(b, a). The homogeneous magnetic field 8=z80 spans the x in-

terval (x ),x2).

interval, the magnetic field vanishes. The field interval
(x, ,xz) is always assumed to cover completely the inter-
val ( b, a ) of the barrier, V (x ).

Imagine now a particle impinging upon the field region
from the left. Prior to entering this region, the spin (of
the spin one-half particle) was polarized in (say} the x
direction. Inside the field, the spin should precess at a
constant, infinitesimal, Larmor rate, coL ——gq80/2m.
[Here g is the gyromagnetic ration, q the charge, and m
the eff'ective mass (for simplicity, assumed constant) of
the particle. j By assumption, only a fraction of a full ro-
tation of the spin has been completed when the particle,
after having tunneled through. the barrier with some
probability, leaves the field region at x =x2. An ideal
measurement of the y component of the spin, s~z, after
the particle has moved beyond xz, should therefore re-
veal the time, t& ——lim o(2/iiicor )!s~r!, spent in the

field region and, in particular, the transmission time ~z
through the barrier. Basic to this conclusion is the asser-
tion that, in the limit coL -Bp~0 the magnetic field does
not disturb the tunneling process itself.

The language of the above simple minded presentation
of the Larmor clock is basically classical. When applied
to an essentially quantum mechanical problem like tun-
neling some care must be exercised. First of all, the mov-
ing point particle must be replaced by a wave packet. '

For the notion of time spent in the field region to make
sense, the wave packet must be well localized on the scale
set by the width, xz —x &, of this region. One can only ex-
pect the Larmor clock to run smoothly for the period
when the entire packet is inside the field. Secondly, for a
Larmor clock interpretation to be possible, the quantum
mechanical process must also (like the classical one) be
reducible to three sequential steps:, (1) The packet enters
the field, (2) the tunneling process (transmission or
refiection) is completed, and (3) the particle leaves the
field region. For a Larmor clock calculation, one should
not solve the stationary problem, in which a11 three steps
are treated as one coherent process. That procedure will,
in general, lead to incorrect results, as will be shown in
Sec. VI. In other words, the Larmor clock argument
does not apply to each Fourier component separately&

In order to make contact with our previous work' on
tunneling times in I we shall sharpen the above condi-
tions somewhat. We have shown in I that, with packets
narrow in k space (i.e., with width, a, small) the tunnel-
ing times for transmission and reAection are, to lowest or-

der, the classic phase times. ' ' (We also calculated ap-
propriate corrections to those lowest-order results. )
Basic to those calculations was the assumption that the
entire tunneling process could be treated coherently.
Roughly speaking, this requires that the width in x space
hx of the wave packet is much larger than that of the
barrier a-b. To prevent interference between the process-
es of entering and leaving the field region on the one
hand, and the tunneling process on the other, we must
therefore require that

b —xi »ax &o-')ga —b .
x2 —a (2.1)

Fortunately, thought experiments come cheaply, and
nothing prevents us from fulfilling conditions (2.1). The
qualitative picture given in this section will be basic to
the calculations of Secs. IV and V.

III. THE PARTS OF THE CLOCKWORK

In this section we establish the basic elements that, ac-
cording to the qualitative discussion in Sec. II, are needed
for a Larmor clock calculation. First, the dynamical
equation is given and the initial packet characterized.
Next, the process of entering or leaving the field region is
discussed. Finally, the formal description of the tunnel-
ing process is established.

A. The dynamica) equation

(3.1)

where m is the (effective) mass of the particle, V(x) the
(arbitrary) potential barrier confined to the x interval
(b, a), 1 is the unit 2X2 matrix, S(x}is unity on the x in-
terval (x „xz) and zero outside (xi,xz), aiL —gq80/2m is
the Larmor frequency in the infinitesimal field B=zBp,
and o, the Pauli matrix. We write the two-component
wave function in the form

(3.2)

Note that (3.1) implies that the effects of the infinitesimal
field B on the orbital motion of the particle have been
neglected, reducing the problem to a one-dimensional
one.

The expectation value of the spin is

(s(t)) = Jdxqi (x, t)cr%(x, t),
2N

(3.3)

where 4 is the Hermitian conjugate of
O' = I o „,o ~, cr, I are the Pauli matrices, and N the nor-
malization

N= dx% x, t %' x, t (3.4)

The two-component Schrodinger equation (the Pauli
equation) defining the dynamics of our problem reads

fi i) 'AcoL

+ V(x) 1 —S(x) o,21'
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B. The initial wave packet

The initial wave packet is assumed to fulfill the follow-

ing conditions. (i) It is located entirely to the left of the
field region. (ii) The two spin components are described

by the same function:

y+( xt)= f y(k}e ""—= f ~
y(k)

~

e'~~"'+'"" (3.5)

C. Transitions into, and out of, the field region

Entering the field region, the spin-up and spin-down
components see different constant potential energies,
+ ,'Picot —(The.upper sign always refers to the component
with the spin in the +z direction. ) In a Fourier decom-
position of the incoming packet, the two components
which had the common wave number, k, for x &x, , will
be characterized by different wave numbers, k+, for
x gx„where

(iii} The wave number spectrum contains positive wave

numbers only, ' P(k &0)=0. (iv) The wave packet can be
considered as narrow in k space in the context of tunnel-

ing (see I, and below}. The form (3.5) ensures, when used
in (3.3), that the spin initially points in the x direction,
i.e., (s„(0)) = —,'A and (s (0}) = (s, (0) ) =0. Since the in-

terval ( b, a ) is, by assumption, covered by (x &,x 2 ), the

potential energy V(x) vanishes outside the field region.
Thus the Fourier component with wave number k in the
distribution

~
P(k)

~

/2m. carries an energy,

E=A k /2m. This total energy is a constant of the
motion, and the time factor associated with P(k) is thus
exp( —iEt /fi ) =exp( i haik t /2—m ) throughout.

the right, rather than from the left, are included in the
discussion of general relations in Appendix A.

e' +B(k)e ', x &b
X(x;k}= Xy(x;k), b &x &o

A (k)e'"", x &a.

(3.10)

The complex am litudes 8(k}=
~

8(k)
~

e'@"' and
A (k) =

~

A (k)
~

e' ' ' are taken as known functions of k
and so is the wave function Xz(x;k) in the region where
U (x)&0. This implies that the transmission and
refiection probabilities, T(k)=

~

A(k)
~

and
R(k)= ~B(k)

~

=1—T(k), are taken as known func-
tions.

When the field steps at x
&

and x2 are disregarded, and
the definition of X(x;k) in (3.10) is extended to the entire
x axis these stationary solutions of the tunneling problem
obey the orthogonality relation

fdxX'(x;k)X(x;k') =2m5(k —k') (3.1 1)

when it is understood that k and k' are both positive.
We can now formulate more precisely what we mean

by a packet, narrow in k space, namely,

D. The tunneling process

ik~xIn the coherent tunneling process, plane waves e
impinge on the static potential, V(x). We treat the sta-
tionary solution of the tunneling process as exactly
known. When the field steps at x, and x2 are disregard-
ed, we can write the exact stationary solution (with k &0)
a~

k+ =k +m a)t /fi .
The corresponding plane-wave solution is

e'""+Bt(k,k+)e '"", x &x&

ik+x
A~(k, k+)e +, x &x&

(3.6)

(3.7)

o —=[((k—(k)) )]'~ &&k, —:(k)

odT(k, )/dk «T(k, ),
where ( ) refers to the initial wave packet.

IV. CHECK ON THE CLOCKWORK

(3.12)

when the tunneling process further down the line is disre-
garded. Continuity of g„(x) and dg„(x)/dx at x =x,
gives

2k i(k —k+)x)

k+k+
k —k+

8)(k, k+)= e
k+k~

(3.8)

Similarly, the process of leaving the field region at x =x2
is described by

T

1kyx —ik+x
e +82(k+, k}e —,x &xz

61,(x)= '

A2(k+, k )e'"", x & xz,
(3.9)

where A2 and 82 follow from A, and 8, of (3.8) by the
operations x& ~x2 and k~+k+. Inverse collisions, when
the incoming particle impinges on the potential step from

2t /2mXX(x;k+)e '"" ' (x, &x &x2), (4.1)

where X(x;k+) are the exact eigenfunctions (k+ &0) in
the field region (with refiections from x2 and x

&
appropri-

In the next section we shall use the Larmor clock to
measure tunneling times. However, confidence in the re-
sults requires that the smooth operation of the clockwork
has been checked. In particular, the conditions under
which the clock runs at a constant rate should be
clarified. That clarification is the purpose of the present
section.

We assume, as discussed in Secs. II and III, that the
field region x, &x &x2 is suSciently wide that there is a
sizable time interval when the transmission past x =x&
has been completed, but no part of the packet has yet
reached the far end, x =x2. The two components of the
wave function in the field region can then be written as

f+(x, t) = f P(k) A, (k, k+ )
dk
2'
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(Subscript B indicates the field region. ) In general, Ntt(t)
depends on time. However, in the time interval when the
packet is (for all practical purposes) completely within

the field region, we can with impunity let x& ~—00 and

xz ~+ ac in (4.2). The resulting Ntt is time independent,

since we can now appeal to the orthogonality relation
(3.11) for X(x;k):

dk'dk
1 f dx f ye(k )y(k)e

—iR(k —k' )(/2m

(2n )2

X g A;(k', k+)A, (k, k+)

XX'(x;k' )g(x;k )

k~
,' f —/P(k)

/ g ) A, (k, k+)
)

(4.3)

In (4.3) we changed integration variables, and used Eq.
(3.6) so that k'dk'=k~dk+. Since T, (k, k+) =(k+I
k)

~
Ai(k, k+)

~

is the transmission probability into the
field region at x =x „(4.3) reads

Ntt = ,' f —~P(k)
~

2[T, (k, k+ )+T, (k, k )] . (4.4)

From (3.8) it follows that both transmission probabilities
in (4.4) are unity within corrections of O(coL ). Normali-
zation of the initial wave packet then gives

I

ately neglected), and A, (k, k+ ) picks that part of the ini-

tial Fourier decomposition, P(k), which has been

transmitted past x =x, .
The time-dependent spin, (s(t) &, is given by (3.3), with

g+ of the form (4.1). We start by calculating the normali-

zation N~ appropriate to this region. This calculation al-

ready contains the essential element of our line of
thought. From (3.4) one has

z2
Ne(t)= ,' f -d x[g+( xt)f +( xt)+P" (x, t)f (x, t)] .

Z)

(4.2)

Nz ——1 —O(cot ). Constant terms of O(coL) will be con-
sistently neglected henceforth, and we can therefore put
X~ ——1.

The numerator in the expression for (s, (t) &e has pre-
cisely the same form as that for N~, except that

g+ ~ ,'fig—+(+). The resulting spin component can
therefore be read off from (4.4) as (to leading order)

(s, (t) &e 2'——f i
P(k)

i [Ti(k, k+ ) —T, (k, k )] .

(4.5)

It is easy to see, from (3.8), that (s, (t) &it is of O(coL ).
This is consistent with (s,(t) & =0 being in a constant of
the motion: A fraction of O(1) of the initial packet is
transmitted into the field region with (s, (t) &e

——O(cot ).
The remaining small fraction of O(cot ) is reflected at
x =x, , with a z-component spin of O(cot ). The total z
component is the weighted sum of the two, and remains
zero.

The essential premise for arriving at (4.5) is the state-
ment: For the time interval of interest to us, that part of
the initial packet which is transmitted past x =x, is en-
tirely inside the region x

&
& x & x2. As a consequence,

the orthogonality relation (3.11) could be used. The
essential message from (4.5) is seen by comparison with
(4.10) and (4.11) below, and is the expected one: No time
infortnation is contained in (s, (t) &e. (Stateinents to the
contrary are found in Ref. 7.)

Calculations of the x and y components of the spin can
be. carried out along the same lines. We sketch the
derivation of (s„(t)&e, which is given by

(s (t)&e= f dx[P+(x, t)P (x, t}

+P' (x, t)g (x, t}] . (4.6)

Based on the same philosophy as before, we introduce
(4.1) and extend the x interval to the whole line:

&. (t) & = ' y f """"
y (k }y(k)e

— "'- ' -A «(k k ) A (k k }f dx X (x k )X(x k )-
4N, (2~)'

(4.7)

The orthogonality relation (3.11),and (3.6), give, after suitable transformations of the integration variables

k2
(s„(t)&ti= g f P*(k+ )P(k+)e +— + A;(k+, k)A, (k+, k) .4' + 2m. k~k+

Drop terms of O(cot ), write P(k) =
~

P(k)
~

e'~ "', and use (3.8) to get

(s„(t)&it ———g f ~
P(k)

~
expIi[ —g(k~ )+g(k+)+(k —k~ }xi+(k~—k)x +ice tt] I.

dk

(4.8)

(4.9)

Keeping only terms of O(cot ) in the exponent, and using
(3.6) one finally arrives at

&.„(t)&, =—", f ",
'

~
q(k)

~

'

where f(k) =dgldk S—imilarly .one finds

(;(t}&,= ——,f

Xcos cot t — [x, +g'( k) ] (4.10)

Xsin coL t — [xi +g'(k))
Ak

(4.11)
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Strictly speaking, consistency requires that one should re-
place cos[ . ] by unity in (4.10) and sin[ . ] by its ar-
gument in (4.11). However, the time dependence is exact,
and even for cot small, the parentheses in (4.10) and (4.11)
can be arbitrarily large. A good case can therefore be
made for retaining the trigonometric functions as they
stand.

From (4.10) and (4.11) it is clear that the spin, averaged
over the entire field region, precesses at a constant rate,
tot. Some smearing will result from the averaging over
initial phases. In the extreme case, when

~
(P(k)

~

is a
sufficiently narrow distribution around k, that one can
replace (m /flak ) by (m /flak, ) =u,

' and g'(k) by
P(k, )= —(x(0)) (see I), (4.11) reduces to

(sr(t))tt = ——sin{tot [t —[x,—(x(0)) ]iu, ] } (4.12)

and similarly for (4.10). This shows, as expected, that
precession only begins at the time when the free initial
packet starting from x = (x(0) ) has reached the field re-
gion at x =x &.

The results (4.10) and (4.11), which apply to the entire
wave function in the field region, are still not sufficient to
show that the precession rate is constant during the tun-
neling process. The point is that, in addition to (4.10}
and (4.11), we need similar results for the packets tunnel-

ing through, and reflected from, the barrier V(x) sepa
rately. With V(x}=O(1), the transmitted and reflected
packets develop z components (s,(t)) r and (s,(t})z that
separately are of O(cot } whereas they combine to give
(4.5}:

T(s, (t) ) T+ R (s, (t) )„=(s, (t) )s ——O(tot ) =0 . (4.13)

One must therefore face the possibility that the preces-
sion is disturbed during the tunneling process with the re-
sult that the transmitted and reflected packets acquire
separate precession phase shifts, but in such a way that
the combined average, (s(t) )s precesses at a constant
rate throughout. This would render the Larmor clock
quite unreliable.

We must therefore repeat the arguments leading to
(4.10} and (4.11) but this time restricted to that part of
the wave packet which is transmitted through the barrier.
The same type of reasoning again applies, except that the
condition for appeal to the orthogonality relation is now
that the (for all intents and purposes) entire transmitted
packet is located on the line between the far side of V(x),
x =a, and x =x2 (see Fig. 1). With this restriction, cal-
culations go through as before, with the results

and similarly for (s„(t)) T. The normalization NT is now
less than unity, due to the finite transmission probability
T(k) for the barrier V(x). The result for (s, (t) ) T shows
that, for the time interval when the premise for the calcu-
lation is valid, (s, ) T is time independent and is clearly of
O(cot ), as stated above, in the context of (4.13). Al-
though "large, " (s, ) does not have the essential property
of a clock: uniform motion. The crucial message of
(4.14) follows from the fact that the constant part of the
phase in sin[ ] is precisely the same as in (4.11}. (The
x component tells the same story at this point. } The con-
clusion is immediate: Under the conditions basic to the
results (4.10},(4.11},and (4.14), the Larrnor clock runs at
a constant rate, unperturbed by the tunneling process.
Analogous results hold for the reflected packet.

We have thus shown the Larmor clock to be a reliable
one, prouided that the field region is chosen su+ciently
wide that it accommodates the incoming packet, the
complete tunneling process, and the outgoing transmitted
and reflected packets. Under this condition, the three
processes, transmission into the field, reflection or
transmission from the barrier, and transmission out of
the field, can be treated sequentially. It is only under
sequential conditions that the Larmor clock can be trust-
ed. We return to a completely coherent calculation in
Sec. VI where the pitfalls of this approach will be explic-
itly demonstrated.

V. READING THE LARMOR CLOCK

After having checked that the Larmor clock runs at a
constant rate in the Geld region, we are now in a position
to read off the total time spent there. This must be done
separately for reflection from, and transmission through,
the barrier. We concentrate on transmission here.

What is needed is a calculation of (say) the y com-
ponent of the spin ( s ) T for the wave packet transmitted
through V(x), and subsequently, out of the field region at
x =x2. After the packet has passed x =x2 precession
stops. The two components of the wave function (sequen-
tially calculated) are in the field free region

P~(x, t)= f $(k)A((k, k+}
k

2'
Xg(k )g (k k)eikx —ihk &/2m

(5.1)

The three sequential processes are represented by the
three amplitudes in {5.1). The normalization is

(sr {t)) T = — f ~
P(k)

~

'T(k) NT(t)= ,' g f dxg—+{x,t)P+(x, t)
+ 2

(5.2)

X sin cot t — [x &
+f(k)] and asymptotically, one can replace x2 by —~, to get

the time independent NT in analogy with (4.3) and (4.4):

(s, (t) ) T = f ~
y(k)

~

' T'(k), (4.14)
2NT 2m NT= ,' g f ~

p(k)
~

T—,(k, k+ }T(k+}T2(k+,k) .
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In the symmetric combination (5.3) one makes an error of
O(col ) by deleting all subscripts +. To O(1), therefore (&~ ) r= g (+)f dxg~(x, t)g+(x, t)

T + "2
(5.5)

Nr ——f i
P(k)

i
T(k)

in agreement, up to corrections of O(coL ), with (4.14).
The y component of the spin is

(5.4) with f+ given by (5.1). The orthogonality condition of
the plane wave in (5.1) which follows from letting
x2~ —00 in (5.5) simply gives 5(k' —k } in this case, in
contrast to 5(k + —k + ) which results when the final state
is inside the field region, as in (4.3). Thus

(sy), = — '" f ""
iy(k) i'y(+)A;(k, k, )A, (k, k+)A'(k~)A(k+)A f(k, , k)Az(k+, k) .

4Nr 2m.
(5.6)

The absolute value of the product of amplitudes reduces
to

i
A(k)

i
=T(k), within corrections of O(ruL ). The

phase picks up a term of O(coL ) from every amplitude,
with the result [use (3.8), (3.10},and (3.6)]

with A
&

the amplitude for the inverse transmission at
x =x, and A, (k~, k)=A;(k+, k) (see Appendix A).
The resulting reflection time is

(s ) r —— f i P(k) i
'&(k)

coL m
Xsin [xz —x, +a'(k)] . (5.7)

(rs)R=
k R v k —2x&+ k

f i
P(k)

i
R(k)

(5.11)

In (5.7) a(k) is the phase of the transmission amplitude
A (k}. Since (5.7) is calculated according to the proper
Larmor clock prescription, we can interpret the result as
an average time of transmission tr from x, to x2 (divide

(s~ ) r by ——,'AcoL and go to the limit coL ~0):

T v x2 —xi+a

f ,
""

i
y(k)i'r(k}

(5.8)

Here u(k) =fik/m is the group velocity of the free parti-
cle.

The expression (5.8) can be generalized in a straightfor-
ward fashion to the case when the constant potential en-
ergies differ by hE on the two sides of the barrier V(x),
i.e., when an incoming wave number k leads to an outgo-
ing one k with k =k +2mbE/A . We shall not give
the detailed argument, but be content with stating the re-
sult: T(k)=

i
A(k)

i
is replaced by its proper definition

for this case, T(k}=(k/k)
i

A(k)
~

and x2u(k) ' is re-
placed by xzu(k) '. Here u =A'k/2m and a'(k) are both
considered as functions of k. As shown in I, the resulting
transmission time at given k

tz.(k) =x2/u(k) x, /u(k)+a'(k)/—u(k) (5.9)

is invariant with respect to the choice of x origin.
Similarly, the argument leading to (5.8) is modified to

the case of reflection in a straightforward manner. The
reflected wave packet to the left of x =x

&
is given by

P+(x, t)= f P(k)A, (k, k )B+(k )+dk
2'
)&A (k, k)e '"" '"" ' (x (x ) (510)

Here P(k) is the phase of the reflection amplitude 8(k).
The Larmor clock argument leading to (5.8) and (5.11)

presupposed a wide field region, i.e., x, ((b and x2 g~a.
However, the results (5.8) and (5.11) imply the obvious
fact that the motion undisturbed by the tunneling process
is that of a free packet. We can therefore, by extrapola-
tion, let x&~a and x2~b+ in (5.8), (5.9), and (5.11),
and thereby identify the times associated with the tunnel-
ing process through the barrier V(x) confined to the x in-
terval (b, a). The result of this identification is the
transmission and reflection times for tunneling:

(rr)r= f i
P(k)

~

'T(k)[a b+a'(x)]/u—(k),
Xz- 2m

(5.12)

(~~ )q —— f i
P(k)

i
R(k)[ 2b+P'(k)]/u—(k) .R R

To the zeroth order in a sharp k distribution around k„
(5.12) gives (with k, ~k)

v' (k)=[a b+a'( k)]/ (uk—),
rg (k) =[ 2b+P'(k)]/u(k—),

(5.13)

VI. CONNECTION
TO RYBACHENKO'S READING

In this section we consider, like Rybachenko, the sta-
tionary problem posed by the configuration in Fig. 1. For
an infinitesimal field (i.e., infinitesimal coL) we calculate

These are nothing else than the classic' ' phase times.
It is interesting to note that for an arbitrary symmetric

potential, V( —x)= V(x), one has b = —a and
P'(k)=a'(k), as derived in Appendix A. In that case,
r&(k) =wz. (k). To our knowledge, the general validity of
this simple equality for symmetric potentials has not been
noted previously.
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FIG. 2. Graphic representation of the collision sequences (a),
(1), and (c) in (6.I).

FIG. 3. Graphic representation of the collision sequences
(d) —(g) of (6.3).

the corresponding ( s~ ) T and ( s~ )a, where superscript c
denotes "coherent. " Our alternative way of arriving at
the coherent results of Rybachenko illustrates clearly
why it does not make sense to interpret them in terms of
tunneling times.

As in Sec. V, we shall only need contributions up to
linear order in coL. Terms of O(coL ) can be neglected.
This was also the strategy used by Rybachenko and, for
the problem of relevance here, by Buttiker. Our alterna-
tive technique is based on viewing the stationary state as
a superposition of different, identifiable collision events.
The restriction to O(coL ) limits the contributing events to
a number which is easily handled explicitly. Details will
be relegated to Appendix B.

The O(coL ) contributions are found as follows:
Whereas the transmission and reflection amplitudes asso-
ciated with the barrier, V(x), both are of O(l), the
reflection amplitudes from the endpoints, x, and x2 of
the field region are of O(coL). This is immediately seen
from 8 &(k, k+ ) of (3.8) and from the corresponding ex-
pressions for B~(k+,k) and 82(k+, k). [Here B&(k+,k)
is the reflection amplitude for the inverse process at
x =x& as discussed in Appendix A.] The terms contrib-
uting to (s~) T of O(coL ) are then characterized by the
following products of amplitudes:

(a) A, (k, k+)A(k+)A2(k+, k),
(b) A, (k, k+)B(k+)B,(k~, k)A(k~)A2(k+, k), (6.1)

(c) A &(k, k+ ) A (k+ )82(k+, k )B(kz ) Az(k+, k),

pictorially represented in Fig. 2.
The term (a) is that used in Sec. V. It is formally of

O(1) but the combination of such terms needed in the
calculation of (s ) T is of O(coL ). The terms (b) and (c)
can be written as correction terms to (a) and need only be
retained to leading order, i.e., O(coL }. As a consequence
of (6.1), the product of amplitudes used in (5.1) for the
Larmor clock calculation must, for our purposes, be re-
placed by

Similarly, the terms contributing to (s ) a of the
reflected particles are

(d) A, (k, k~ )B(k )A+, (k k+),

(e) B,(k, kz),
(f) A, (k, k~ )8(kg )8, (kp, k)B(kg ) A )(kg, k ),
(g) A, (k, k~ ) A (k~ )82(k+, k ) A (k+ ) A ((k+, k ),

(6.3)

pictorially displayed in Fig. 3.
The product (d) was used in Sec. V. It is formally of

O(1) whereas the remaining three terms are of O(coL ).
The product used in (5.10) for a Larmor clock calculation
must now be replaced by

A )(k, k+ )A(k~ )A2(k~, k)[1+B(k~)8)(k~,k)

+82(k+, k)8(k+)] . (6.2)

A, (k, k+ )B(k+ ) A, (k+, k )[1+8,(k, k+ )/A, (k, k+ )8(k+ ) A, (k~, k )

+B,(k+, k )B(k+ )+ A (k~ )8~(k+, k ) A(k+ )/B(k+ )] . (6.4)

Retaining the correction terms of (6.2) to O(coL ) and using the relations between inverse and direct collisions dis-
cussed in Appendix A, one finds from (5.1), (5.5), and (6.2) the coherent (s ) T to O(coL ) as

(s )T————coL
~ P ~

T —(x2 —x&+a')+ [sin(P —2kx&) —sin(2a —P+2kx2)]1 dk, 1

'X, 2~ v 2kv
(6.5)

with &T given by (5.4) and with the k dependence of the various quantities notationally suppressed.
Similarly, for the reflected particles (6.4} gives



3294 J. P. FAI.CK AND E. H. HAUGE 38

iri 1 dk i 1(s„}ii= ——~t,
~ p ~

R —( —2xi+p')+ [sin(p —2kx, ) —sin(2a —p+2kxz)]2 N& 2m U 2kU

1+ —[sin(P —2kx, )+sin(2a —P+2kxz)]2ku&R
(6.6)

T8&+Rex ——Trz+Rta+ sin(p —2kx i ) . (6.7)
&R .

ku

Here tr(k) and tR(k) are given implicitly by (5.8) and
(5.11). The combination on the right of (6.7) is recog-
nized, by an identity proven in I, as the "dwell time, "
tD(k), defined ' as

tD(k)= f dx [X(x;k)
i

(6.8)

with X(x;k) the exact stationary solution (3.10). Thus,

tD=TO~+gg~ .

(Note that in the symmetric case, Oz
——Hii tD.)——

VII. DISCUSSION

The basic premise for our reexamination of the Larmor
clock has been this: Only truly time-dependent calcula-
tions (and experiments} can give reliable information on
the time aspects of a physical process. Or, conversely: It

Details of calculations leading to (6.5) and (6.6) are found
in Appendix B.

Aside from different notation, the results (6.5) and (6.6}
are identical to the general formulas derived for the sta-
tionary case by Rybachenko. In other words, we are in
perfect agreement with Rybachenko and with Buttiker as
far as the stationary results are concerned. Where we
disagree is on their interpretation The. y do not, in our
opinion, amount to a correct reading of the Larmor
clock. In fact, our rederivation shows Rybachenko's re-
sults to represent a coherent superposition of quite
different physical processes. Clearly it is meaningless, in
general, to interpret (6.5) and (6.6) as transmission and
reflection times (multiplied by , ficol ), r—es—pectively.

There is a trivial exception to this, however. When
V(x)=0, only contribution (a) of Fig. 2 survives, and
consequently, the "transmission" time of a free particle is
correctly given by (6.5). Another, less trivial, exception
should be noted. When a sharp (in k space) wave packet
hits a resonant state in the barrier, the transmission prob-
ability is unity. In that case "nothing" is reflected, only
the contribution (a) survives and (6.5) gives the phase
time (5.8).

If one, nevertheless, formally defines the unphysical
times 8r (k) and 8„(k) (at given k) as the large
parentheses in (6.5) and (6.6), respectively, one easily
verifies that

I

is not sufhcient to study the stationary case, theoretical-
ly~ or experimentally, ' point to a plausible quantity
with the dimension of time, and thus identify the time
taken by the process in question. Not that the result of
such a simplified procedure is necessarily wrong. The
problem is that it is not necessarily right.

Another simple guideline for our work: Before using a
clock one should check that the clockwork runs at a con-
stant rate. This is not quite as trivial as it may seem: It
is not clear a priori that a (in principle) measurable quan-
tity, increasing at a constant rate, exists in the context of
interest. In I, ' we studied the center-of-mass clock.
From our present point of view, that clockwork is based
on the constant group velocity of free wave packets. As
discussed in detail in I, problems arise with packets of
finite width, o, in k space, due to the fact that the
transmitted and reflected packets move faster or slower
than the initial one. In other words, the clockwork is
influenced by the tunneling process itself. As a conse-
quence, cross-correlations in the initial packet, which
have nothing to do with the tunneling times per se, inter-
fere with the reading of the center-of-mass clock.

In this sense, the Larmor clock is superior. We showed
explicitly in Sec. IV that when the field region is
suf6ciently wide to allow the three processes inherent in
the Larmor clock to occur sequentially rather than
coherently as in a stationary calculation, the Larmor
clockwork remains undisturbed by the tunneling process.

This does not imply, however, that the Larmor clock is
always superior to the center-of-mass clock. In computer
studies " of moving wave packets it is precisely the
motion of the center of mass (or, alternatively, the peak)
of the wave packet which is monitored. Clearly, the cal-
culations of I, including the cross-correlation effects, are
of direct relevance here. Those effects of O(0 ) are
missed by the Larmor clock.

To O(o ) the center-of-mass and Larinor clocks agree
completely: The transmission and reflection times for
tunneling processes are the classic phase times. '

Even to O(o i), most of the correction terms following
from (5.12) agree with those calculated in I. However,
aside from the missing cross-correlation terms, which
correct for an intrinsic "weakness" in the center-of-mass
clock, there are other subtle differences. They reflect the
fact that (5.12), roughly speaking, involves (U '(k)),
whereas for the center-of-mass clock, one calculates the
average position involving (U(k)) and subsequently in-
verts, to find time through (U(k) }

It is worth noting that a reliable reading of both the
center-of-mass and the Larmor clock is asymptotic. The
readings themselves should be made far from the barrier,
and the tunneling times inferred from this by linear extra-
polation return back to the tunneling barrier (based on
the simple motion of free wave packets). In both cases
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this is necessary in order that the results are not dis-

turbed by the interference effects characteristic of a
coherent stationary state.

Finally, a comment on the distribution of tunneling
times: For the center-of-mass clock, this distribution is
clearly wide. The uncertainty principle gives
k7 5x ) cT

' with o small. For the Larmor clock,
however, one can argue that the width of the ~ distribu-
tion is limited by cr not by 0. . In other words, there is
no uncertainty principle which forces a wide distribution
onto the intrinsic tunneling times of a wave packet nar-
row in k space. We leave this as an unproven proposition
here.

Subtleties aside, the following simple statements sum

up the results of this paper: We have considered tunnel-

ing times for a restricted class of problems only, that in

which wave packets, narrow in k space, impinge on an

arbitrary, static barrier in one dimension. For this class
of problems, the Larmor clock seemed to give tunneling
times in conflict with the classic phase times, and with
numerical experiments. We have removed this conflict:
When properly set, in wave-packet fashion, the Larmor
clock shows the phase time. Stationary calculations of
Larmor times correspond to coherent superpositions of
widely different scattering events, and cannot therefore
be interpreted as tunneling times. Finally, for an arbi-
trary one-dimensional potential with reflection symmetry,
the transmission and reflection phase times coincide.

Note added in proof. We would like to direct the
reader's attention to related work by Jaworski and
Wardlaw, ' and thank those authors for illuminating
correspondence.
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for a particle coming from the right (the "inverse" pro-
cess, described by G =1,F =B,U =0, 8'= A ) is related
to the transmission amplitude A for a particle corning
from the left (the "direct" process, described by
U=1, W=B,F = A, G =0) as

~(k k) detM k/k k ~(k k)
Mii Mii k

(AS)

As a result, the corresponding transmission probabilities
are equal, since

a(k, k ) =phase( A ) =phase( A ) =a( k, k ) (A7)

since k and k, related by (A4), are both real.
The reflection amplitudes are similarly connected.

With

T(k)= —
i
A(k, k)

i

=—
i

A(k, k)
i

=T(k) (A6)
k

'
k

and so are the phases, in the sense that

We are grateful to Tor A. Fjeldly who introduced us to
these problems, and contributed constructive comments
throughout.

APPENDIX A

B(k,k)=—,B(k,k)=
M))

' ' M„
one obviously has R(k)=

~
B(k,k)

~

=
~
B(k,k)

~

2

=R (k). Furthermore, from (A8) and (AS),

The consequences of time reflection symmetry and par-
ticle conservation on the stationary problem defined by
Fig. 4 have been considered by Azbel. With the 2)&2
matrix M defined by

B(k,k ) = B'(k, k ) A (—k, k )/A '(k, k )

so that

P(k, k ) = —ir —P(k, k }+2a(k,k },

(A9)

(A 10)

U F=M
M)) M)2

M2) M22 G (A 1)

one easily convinces oneself that time reflection invari-
ance implies

where the check mentioned below has been used to deter-
rnine the sign of vr, which at this stage is arbitrary.

As a simple application of (AS} and (A9) one finds,
from (3.8)

M2) ——M )~, M2~ ——M ))
A, (k~, k)= e — '=A f(k+, k),k+k~

(Al 1)
and that particle conservation gives

det M =M„M22 —M, 2M2, =k lk, (A3)

where (see Fig. 4)

k =k +2mhE/i6 (A4)

Equation (A4) allows one to consider k as a function of k
(or vice versa).

From this follows that the transmission amplitude A P(k) = —m. /2+a(k) . (A12)

k —k~
B&(k+,k)= — e — '=B& (k+, k)k+k+

which can be verified directly.
For a potential with reflection symmetry

V( —x}=V(x} one must have k =k so that
a(k, k ) =a(k, k ) =—a(k} and P(k, k ) =P(k, k )—:P(k).
Also, P(k) =P(k), so that (AIO) gives
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This checks with explicit results for the square barrier.
(See, e.g., the Appendix of I, in which one should let
13~P k—b as a result of shifting the origin to the center
of the barrier. ) The square barrier calculation also fixes
the convenient sign for n in (A10). Note that, as an im-
mediate consequence of (A12), P'(k) =a'(k).

APPENDIX B

In this appendix we fi11 in some of the details of the cal-
culations summarized in Sec. VI.

To O(coL), the square bracket of (6.2) which corrects
the product of amplitudes used in Sec. V to calculate
(sy )r reads

[ ' ]y. =—1+8(k+ )8((k+,k)+82(k+, k )B(k+ )

k+ —2ikx
l

k+ k 2ikx~-'+ e "'8(k ),2k 2k
(81)

where we used (3.8}, (Al 1},and the fact that, to (coL ), we
can replace k+ by k everywhere, except in the combina-
tion k+ —k =+mcoL /2fik [see (3.6)]. Now use (A9} and
(A10) to get

i(P—2kx] ) i(2a —P+2k&&)
[ ]&

—1+ (e ' —e ) .
4Ak2

(82)

To leading order, the real part is 1. Neglect of the O(coL )

correction to the real part (which will not afFect the re-
sults to significant order), allows us to write

R
[ ]T-exp + ttoL [sin(p —2kx, ) —sin(2a —p+2kx2)]

4k@
(83)

This extra factor combined with the product (a) in (6.1) [i.e., the product used in (5.1)] is responsible for the additional
term in (6.5) beyond the phase time of (5.7).

Similarly, the square bracket of (6.4) which corrects the product of amplitudes used in Sec. V to calculate (s )2(

reads, to O(coL )

[ . ]~—:I+8) (k, k~ )/A ((k, k )8+(k )+A ((k k+)+8)(k k+)8(k )++ A (k~ )82(k+, k ) A (k+ )/8(k~ )

k —k+ 2Jkx k —k+ -2ikx k —k+ 2 k.
(k) e '8(k) A (k) e 8 (k)

2k 2k 2k

i(2kx) —p) —((p 2kx) ) 1——R ~ (2cz p+2kx'2)—=1+
2fik &R

e ' + Re '+ —e
&R

&R=exp +i coL [sin(p —2kx ( ) —sin(2a —p+ 2kx 2 ) ]4ku

[sin(p —2kx, )+sin(2a —p+2kx2 }]1

4kv &R (84)

In (84), as in (83), the O(toL ) correction to the real part, 1, has been neglected. The phase factor (84) is, when com-
bined with the calculations of Sec. V, responsible for the additional terms in (6.6) beyond the reflection phase time of
(5.11).
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