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The resonant tunneling phenomenon through quantum-well states in one-dimensional double-
barrier single-quantum-well heterostructures is studied with use of the nonequilibrium tunneling
theory of Caroli et al. and a scattering-theoretic Green's-function technique with a simple model
Hamiltonian. The effect of external bias is found exactly in the calculation of the Green's function
for the junction within this model, obviating any restriction on the magnitude of the external bias.
The density of states of the junction, its dependence on the external bias, and the formation of
bound states in the quantum-well region are discussed. Our results for the tunneling current yield
resonance peak-to-valley ratios in reasonably good agreement with experiment, indicating that this
treatment of the tunnel junction, when applied to real materials, can more accurately describe exist-
ing experimental results.

I. INTRODUCTION

Chang, Tsu, and Esaki' first proposed and demon-
strated resonant tunneling through quantum-well states
and negative differential resistance in double-barrier
GaAs/Ga& Al„As heterostructures. Since then, with
the help of progress in molecular-beam-epitaxy growth
techniques, there has been intensive concentration on
these materials, both theoretically and experimentally.

Various experimental observations of electron and hole
resonant tunneling in double-barrier single-quantum-well
heterostructures, such as through ground and excited
conduction states and quantized valence states of the
quantum-well region, and the observation of resonant
tunneling up to room temperature have suggested possi-
ble application to modern devices. It has been reported
that the dc and high-frequency transport in these struc-
tures are important areas, especially the transport phe-
nomena involving negative-differential resistance and
multiple negative-differential resistance regions which
can be employed in devices such as frequency multipliers,
multistate memories, and the high-speed analog-to-digital
converter.

Most of the theoretical approaches in resonant tunne1-

ing through double-barrier heterostructures have been
practically limited to the calculation of the transmission
coefficient through the junctions. However, there exist
some discrepancies between the conventional discussion
and calculation of the transmission coefficient through
the barrier and the experimental observations. One of
the discrepancies between theory and the experimental
observations is the resonant current peak-to-valley ratio
in the current-voltage (I V) characteristic c-urve. In the
transmission-coefficient calculation, this value is usually
very large compared to the experimental values. The re-
ported observations of the resonant tunneling through
confined excited states (valence and conduction bands} of
the quantum well up to very high voltage cannot be pre-
dicted by effective-mass theory. The complicated
features of hole resonant tunneling through heterostruc-
tures which are reported in Ref. 11 reflect the fact that

the conventional calculational scheme of transmission
coefficients does not accurately describe the tunneling
phenomena in double-barrier heterostructures. Experi-
ments find several negative-differential resistance regions
up to very high voltage (around 2.3 V, which is about 4
times the barrier height in the experiment}. This observa-
tion of unexpected negative-differential resistance in the
high-voltage region cannot be explained in the conven-
tional effective-mass theory. The report also suggests
that the simple model of effective-mass theory is not good
enough to describe the effect of the complicated valence-
band characteristics on the formation of the bound state
in the valence band of a quantum-well region, and that
the effect of high voltage may cause considerable change
in the electronic structure in a heterojunction.

Since one is dealing with atomic-scale, thin-layered
structures in the tunneling experiments in heterojunc-
tions, applied external voltage may alter the electronic
structure in the thin films. Therefore a proper treatment
of the effect of external potential is required in calcula-
tions of tunneling current through heterostructures. Ex-
plicit treatment of the external potential across the junc-
tion and its effect on the electronic structure of the
heterojunction can improve the tunneling-current calcu-
lation, and can render the proper analysis for I-V charac-
teristics of the tunneling through heterostructures.

Azbel et al. ' obtained improvement in the calculation
of the transmission coefficient of the junctions by consid-
ering the effect of the external field. In the calculation of
transfer matrices' in their work, they consider the effect
of voltage drop over the junction by introducing the
WKB approximation, where a general form of the barrier
potential and the potential drop in the quantum-well re-
gian are assumed. They reported that the resonant tun-
neling current is reduced by this consideration of voltage
drop over the junction by 4 orders of magnitude in one
example calculation. However, this approach is still
semiclassical and is limited to a weak potential drop
(smooth slope). Therefore this approach does not hold
for the ultrathin-film case or high-voltage case. They also
point out that the tunneling phenomenon is a tirne-
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dependent process and might need explicit consideration
of time factors which may be involved in the tunneling
process.

In this paper we apply the previous nonequilibrium
Green's-function technique by Caroli et al. ' ' to tunnel-
ing in the double-barrier single-quantum-well hetero-
structures. The calculational scheme we use here is simi-
lar to the previous paper. ' In this research we assume
ideal junctions where we ignore any band bending or
impurity-related effect. In the tunneling problem, one-
dimensional aspects are prevailing factors. Since transla-
tional symmetry parallel to the interface planes is as-
sumed for most of the tunneling problem in three-
dimensional junctions, the problem is reduced to a quasi-
one-dimensional problem. Therefore the layer represen-
tation simplifies the three-dimensional problem and
reduces it to a quasi-one-dimensional problem. In this
study we consider a one-dimensional two-orbital hetero-
structure model for simplicity. The extension of this
technique to multiorbital three-dimensional problems is
straightforward. We investigate the basic features of res-
onant tunneling using the nonequilibrium Green s-
function technique, and the combination of electronic
band structure with the tunneling-current formalism of
Caroli et al. in the calculation of the resonant quantum-
well tunneling. Although this model calculation study is
not intended for any direct numerical quantitative com-
parison with specific existing experimental data, it sug-
gests the qualitative features of resonant tunneling which
were observed in experiments such as low-resonant-
current peak-to-valley ratios, negative-differential resis-
tance up to high voltages, and illustrates how the none-
quilibrium technique for the tunneling current can pre-
dict the tunneling effect without considering time-
dependent factors. This study also suggests possible ap-
plications to the calculations for real material heterojunc-
tions. This formalism also gives a proper description for
the high-voltage case and has advantages especially for
very thin atomic-scale, layered junctions.

We organize this paper as follows. In Sec. II we
present the model Hamiltonian and the calculational
scheme of the Green's function for the one-dimensional
double-barrier single-quantum-well heterostructure. In
Sec. III the nonequilibrium Green's function and the
tunneling-current expression are presented. In Secs. IV
and V the local density of states of the heterojunction and
the tunneling current through the quantum well are dis-
cussed.

II. HAMILTONIAN AND GREEN'S FUNCTION
OF SEMICONDUCTOR HETERO JUNCTION

The Hamiltonian for a one-dimensional double-barrier
heterosystem which is comprised of five subsystems, in
terms of localized Wannier-like orbital basis functions

~
b, n ), where b is an s or p orbital, and n is the one-

dirnensional layer index, is written as

H=g QEb(n)
~

b, n )(b, n
~

n b

+X g Vbb'(n n')
l

b n )(b' n'
I

n, b n', b'

where V&b.(n, n') is the transfer integral and Eb(n) is the
local-site orbital energy. In Fig. 1, R and L indicate the
right and left electrode, respectively, which may be either
a metal or a doped semiconductor, regions 1 and 3 indi-
cate the barrier regions (barrier 1 and barrier 2) which
are semiconductors, and region 2 is the quantum well.
Here we assume that the two barriers have N, and N3
atomic layers, respectively, and the quantum-well subsys-
tem is comprised of N2 atomic layers. Four interfaces
are formed between electrodes, barriers, and the quantum
well in this heterosystem. At these interfaces, the
transfer-integral matrices correspond to interfacial cou-
pling matrices. The (2)&2) interfacial coupling matrix
defined between interface sites m and m+1 is

T(m, m+1) = V(n, n')5„5„
T„(m, m+1) T, (m, m+1)

T, (m, m+1) Tz (m, m+1) (2)

The first interface is formed between n =0 and 1, the
second interface is located between n =N, and N, +1,
the third interface is formed between n =N, +N2 and
N&+N2+1, and the fourth interface is between
N&+N2+N3 and N, +N2+N3+1. For the middle
quantum well a semiconductor or metal may be assumed

L I 2 3 R

Ec

I E———E 09 9

E„

FIG. 1. Schematic energy diagram for a simplified one-
dirnensional double-barrier single-quantum-well heterojunction.
I. and R indicate the left- and right-electrode regions, respec-
tively. Regions 1 and 3 indicate the barriers (barriers 1 and 2)
and region 2 the quantum-well region. E, (E„) is the
conduction- (valence-) band edge of bulk electrodes and
quantum-well material. Eg is the bulk energy band gap of bar-
rier 1 (barrier 2) and Eg" is the energy band gap of the
quantum-well (electrodes) bulk materials (superscripts I and II
indicate regions 1 and 2, respectively). 6, is the conduction-
band discontinuity and 5, is the valence-band discontinuity.
Here, both of these parameters are defined from the bulk pa-
rameters (the energy band gaps of the bulk materials). We as-
sume a symmetric band discontinuity for both valence and con-
duction bands for simplicity. Therefore the defined barrier
height b is determined as the relative difference of the local-
orbital energies between the barrier and the quantum well, that
is, h=h, =h, =(Eg Eg )/2 Ep Ep The actual effective
barrier height of the thin quantum-size tunnel barrier depends
on this parameter and the thickness of the barrier.
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(Fig. 1 is drawn for the semiconductor case). The local
density of states can be studied as a function of this inter-
facial coupling. ' ' For the illustrative calculations in
this paper, at each interface the interfacial coupling is
taken to be equal to the geometric mean of the transfer
integrals for the materials which form the interface. This
choice is motivated by simplicity.

The approach in this research is that first we find
Green's function for the isolated thin-film systems and
then bring these five subsystems together by introducing
coupling processes at the four interfaces, obtaining the
Green's function of the whole junction.

In this semiconductor heterosystem, first, for the left
and right electrodes two semi-infinite semiconductor sub-
systems are produced by removing the interaction be-
tween two adjacent sites from the perfect one-
dimensional two-orbital crystal. This can be done by in-

I

troducing perturbations which remove the intersite cou-
pling in the Hamiltonian, so that a free surface is pro-
duced. In a similar way a thin semiconducting X-layer
film can be produced by introducing the same perturba-
tion X layers apart. '

The Hamiltonian Ho for the perfect one-dimensional
crystal in the Bloch basis is

E, +2 V, cos{ka) 2i V,~ sin(ka)
H11(k}= 2—i V,~ sin(ka) E +2 V& cos(ka)

The retarded (advanced) Green's function 60"(k } is

60"(k) =1/[E+ie —Ho(k)],

where c. is an infinitesimal positive quantity. The Green's
function in real space can be obtained as' ' '

601'(n, n') =Go"(n n')=—( I/2n )fGo"'(k) exp[ik(n n')a]d—k .

Therefore the retarded Green's matrix elements of the perfect one-dimensional crystal are as follows

(s, n
~
60

~
s, O) =(4/h)[a —p —(a —1)' +(p —1)'/ ]

T
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Here,

+( 2 )1/2

p (
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Green s matrices G&, GL of semi-infinite crystals with
perturbations V" and V which produce right and left
semi-infinite crystals and free surfaces satisfy the follow-
ing Dyson's equations,

Gz( nn')=6 (no, n')+Go (n, O)V (0, 1)G&(l,n')

=Go {n,n')+Go (n, O)[ —V(0, 1)]G+(l,n'),

(8a)
where n, n') 1, and

GI (n, n ') =Go (n, n ')+ Go (n, 1)V (1,0)G„(0,n ')

= Go (n, n')+ Go (n, 1)[—V(1,0)]GL(0,n')

(8b)

p=(1/h)( V, g~+ V~/, ),
v=( —4V~+g, g~ )/h,

where h =4( V, V + V, }, g, =Q E„/~ =0 E—~, and-
Q=E+ie Here, (a .—1)'/ is the square root whose
imaginary part has the same sign as Irn(a). The same
rule applies to (P —1)' and Im(P).

From now on we suppress retarded (r) or advanced (a)
superscripts until explicit expressions are necessary. The
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for n, n
'

& 0. Here, 6o and 60 indicate the perfect-
crystal Green's functions for right and left electrodes, re-
spectively, and all matrices are 2)(2 matrices.

The Green's function for three isolated thin films
which will form two barriers and the quantum-well re-

I

gion later, where each region is comprised of N&, N3, and

N2 layers, respectively, are produced as follows. The per-
turbation V~ for each corresponding perfect crystal,
where p indicates 1, 2, or 3, is defined as

&'=2 [ V—fi, (o I)
I

b 0&&b' l
l

—Vga (N, +1, N, ) lb, N, +I &&b', N
l
]+H c.

b, b'

Here, H.c. means Hermitian conjugate. For each of these films, the Green s function satisfies the following equation,

(9)

G~(n, n')=G~~(n, n')+G~~(n, O)[ —V~(0, 1)]G (l, n')+G~~(n, N +1}[—V~(N +1, N }]G (N, n'), (10)

where 1 & n, n' & N, and Glo indicates the perfect-crystal Green's function for each region p. As mentioned in the pre-
vious work, ' each isolated film has its quantized levels which show standing-wave-like characteristics and also depend
on the thickness and energy band structure of the bulk crystal. A local perturbation can also be applied at the surface
site to include the effect of a surface (or interface) which may be present in the heterostructure.

Isolated thin films and semi-infinite right and left electrodes are combined through the interfacial couplings to form a
double-barrier structure. The coupling operator is defined as follows:

T=g [T&&,(0, 1)
l
b, O)&b', I

l
+T&&, (N, , N, +1)

l
b, N&)&b', N&+I

l

b, b'

+T&1", (M, M+ I )
l
b, M) &b', M+1

l
+ T&&.(L, L+1)

l
b, L ) &b', L+1

l
]+H.c.

Application of the external electric field leads to a po-
tential drop across the junctions. We consider this exter-
nal potential as a nonequilibrium perturbation and as-
sume that the spatial variation of the external potential is
confined to the double barriers and quantum-well region
(semiconductor case). The external potential has the
form of

V'"'=g V&"'(n, n)
l
b, n ) &b, n

l

n, b

nE region 2

G2(i, n) V'"'(n, n)G(nj ), (15)

where M =N~+N2.
If i E region 2,j 6 region 2,

G(i j)=G2(i, N~+1)T"(N~+1, N&)G(N~j )

I

G(i j ) = G2(i,j )+G2(i, N, + 1)T"(N, + 1, N, )G(N, ,j )

+G2(i, M)T"'(M, M+1)G(M+1, j)

Vl', "'(n, n) =eVO(L n)l(L —1)—
(12) +G&(l ,M)T"'('M, M+1)G(M +1,j)

G2(i, n)V'"'(n, n)G(n,j ) . (16)
where L =N, +N2+N3.

For the left and right electrodes, there is a chemical-
potential difference. This is the only effect of voltage on
the electrodes. The Green's function 6 of the combined
system and the Green's functions for three isolated thin
films and semi-infinite electrodes satisfy the following re-
cursive Dyson s equations in regions 1, 2, and 3 (Fig. 1) in
the localized-orbital basis.

Wheni, j& region 1,

G(i j)=G, (i j)+G, (i, 1)T (1,0)G(0,j)

n E region 2

If i,jE region 3,

G(i j)=G&(ij)+G&(i, M+1)T"'(M+1, M}G(Mj }

+G~(i,L)T'"(L, L+1)G(L +1,j )

G&(i, n) V'"'(n, n)G(n, j),
n E region 3

where L =N&+N2+N3.
If i E region 3,j 6 region 3,

(17)

+G, (i, N& )T"(N„N, +1)G(N&+ 1,j)
G, (i, n)V'"'(n, n)G(n,j } .

nE region 1

If i E region 1,j~ region 1,

(13)

G(i j)=G&(i, M+1)T (M+1, M)G(M, j)
+G&(i,L)T (L, L+1)G(L+1,j)

G&(i, n) V'"'(n, n)G(n,j } .
nE. region 3

(18)

G(i j)=G&(i, l)T (1,0)G(O,j)
+G~(i, N, )T (N~, N(+1}G(N)+ l,j )

The Green's functions are found with the following rela-
tions:

G (0 j)=Gl (0,0)T'(0, 1 )G( 1,j),
(19)

nE region 1

If i,jE region 2,

G, (i, n ) V'"'(n, n}G(n,j}. (14)
G(L+1,j )=GR(L+1, L+1)T' (L+1,L)G(Lj ) .

All matrices are 2 X 2 matrices.
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III. TUNNELING CURRENT

The tunneling current at the interface 1 assuming a stationary situation is

J =(e/ih) g [TI'I.(1,0)&ci (l, t)ci (O, t) &
—TI'I(0, 1)&ci.(O, t)ci(l, t) &]

1, 1'

=(e/h) f g [TI'I(0, 1)61+1 (1,0,E)—T&'& (1,0)6&+I(0, 1,E)]dE,
1, 1'

(20)

where I and I are the orbital indices and ci (1,t) and cI(1,t) are the creation and annihilation operators, respectively, for
an electron in a localized state at site 1.

Nonequilibrium Green's functions G+(1,0), and 6+(0, 1) are

G+(1,0)=G+( 1, 1)T'(1,0)Gg (0,0)+6 "( 1, 1)T'(1,0)GL+(0,0),
6+(0, 1)= 6~+(0,0)T'(0, 1)6'(1,1)+GL (0,0)T'(0, 1)6+(1,1),

where GI and GL are the equilibrium retarded and advanced Green's functions, respectively.
Since

(21)

H'= T+ V'"'

G+(1, 1) can be obtained from the following equation,

&b, 1
~

G+
~

b', 1&=&b, 1
~

G~+
~

b', 1&+ g &b, 1
~

G"
~
I, , n &&I„n

~

H'
~

Iq, n'&&I2, n'
~

G~+
~

b', 1&
n, n', l), 1~

&b, 1
~

6)+
~
i), n &&I, , n

~

H'
~

zI, n'&& „in'
~

6'~ b', 1&
n, n', 1),12

&b, 1
~

G"
~
l), n &&I&,n

~

H'
~
I2, n'&

n, n', n", m 1 &, 12, 13,14

X&lz, n'
(

G~+
( I3, n" &&I,, n"

~

H'
) I4, m &&14,m

~

6'~ b', 1& .

(22)

(23)

Here, b, b', I, , lz, l3, and l4 indicate s and p orbitals, and
n, n', n", and m indicate the layer indices. The index p
of the equilibrium Green's function G+ indicates L, R, 1,
2, or 3 when both indices n' and n" belong to the region
L, R, 1, 2, or 3, respectively.

IV. DENSITY OF STATES IN A DOUBLE-BARRIER
QUANTUM-WELL HETEROJUNCTION

It is known that an isolated thin film shows size-
quantized levels which have standing-wave-like charac-
teristics. When this thin film is coupled with the continu-
um states of semi-infinite electrodes in metal-
semiconductor-metal junctions, and these states overlap
in energies, the major feature in the local density of states
of the semiconductor region is broadening of the quan-
tized peaks. This broadening depends on the magnitudes
of the interfacial couplings.

On the other hand, the local density of states of the
double-barrier single-quantum-well heterostructure
shows more complicated features. The local density of
states of the whole junction can be studied as a function
of the interfacial coupling perturbation. Since the contin-
uum states in the electrodes and the quantized levels in
the isolated thin films interact through the interfacial
coupling perturbations, the quantized levels of the isolat-
ed thin films start to split, to have fine structure, and to
be broadened as the coupling increases where the energies
of the states overlap. The splittings and fine structure be-

come smooth as the magnitude of interfacial coupling in-
creases. As the interfacial coupling approaches the
impedence-match limit, ' the overall features of the local
density of states of region 2 and the barriers are much
smoother where they overlap in energy.

The formation of the quasibound states in the
quantum-well region depends on several factors such as
barrier and quantum-well thickness and electronic struc-
ture of materials which are used for barriers and region 2,
the quantum-well region. When the formation of bound
states is possible in the quantum-well region, the sharp
quantized features still persist in the quantum-well energy
range, where the densities of states in region 2 and the
barriers do not overlap.

In this paper we study general qualitative features us-
ing a simple model. The parameters are chosen so that
the conduction band is characterized mainly by p orbitals
of atoms and the valence band mainly by s orbitals, and
the parameter V, determines the mixing effect between s
and p orbitals. This model calculation is not intend-
ed for any numerical comparison with experimental data.
However, we simulate the basic circumstances of tunnel-
ing through a heterojunction. We consider the conduc-
tion and valence-band characteristics by following the
universal rule presented in Ref. 23, where the
interatomic-orbital interaction parameters which deter-
mine the energy band widths are defined as Vll.

=gll A /ma . We choose a value for the interatomic p-
orbital interaction

~ V~~ ~ =ri~~ A /ma, where ri~~ is
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0
3.70 and the lattice constant a is around 4.3 A. The same
value for the interatomic s-orbital interaction is assumed
for simplicity. The parameter V, is also used to change
the curvature in the conduction and valence energy bands
for fixed bandwidths. If the lower part of the conduction
band participates in forming the eigenstate (actually in
effective-mass theory, the effective-mass parameter m* is
determined by the curvature of the lowest conduction
band at certain symmetry points), the energy range of in-
terest in the conduction band in the semiconductor junc-
tion is of order of a few eV. We assume a finite width for
the conduction band for convenience. This leads to con-
sideration of the orbitals which participate in forming the
eigenstates of the quantum well in real materials. The
same values of VII are considered for both barriers, elec-
trodes, quantum-well materials, and for interface-
coupling matrix elements [impedance-matching values
T =( V'V")'~ at interfaces are assumed] for simplicity.
We also assume symmetric band discontinuities in both
conduction and valence bands (i.e., b, =A, =b) in the
heterojunction for simplicity. (However, this assumption
is not essential. ) Therefore the barrier-height parameter
b, which is a half of the difference of energy band gaps
between bulk barrier and bulk quantum-well material
here, is determined as the difference in local atomic-
orbital energies of two materials, E' E". (Ho—wever,
this assumption is not essential and this formalism can be
applied to any kind of heterojunction. ) Since we assume
a symmetric case for both conduction and valence bands,
the same discussion holds for the resonant tunneling of
holes through the valence-quantized level. The energy
band gaps of both materials are assumed large enough
( ) 1.6 eV) that the tunneling of valence electrons
through the conduction states of the quantum well and
barrier, which may occur for a heterojunction with small
energy gaps or with application of high external bias, ' is
negligible compared to the tunneling of conduction elec-
trons in the considered range of external voltage. In an
actual heterojunction, a slight complication might occur
because of multiorbital features such as the multiorbital
nature of the quantum-well bound eigenstates, and the
structure factor due to basis atoms in the unit cell of a
simple-cubic structure. These characteristics of the con-
duction and valence bands in the semiconductor depend
on the details of real band structure. However, we expect
that all the qualitative features discussed in this study
will hold.

The positions and the widths of these quantized
quantum-well levels are mainly determined by barrier
height 5, interfacial couplings, barrier and quantum-well
thicknesses, and electronic structures of barriers and
quantum-well materials for the ideal heterojunction. For
instance, as barrier height increases or interfacial cou-
pling decreases, the quantized level positions move up-
ward in the quantum well. However, the level position is
always lower than the isolated thin-film quantized levels
in the conduction band of the quantum-well region in
semiconductor heterojunctions. This is expected for the
case of a particle in a quantum well with finite barrier
height where the bound states in the well approach the
quantized levels of the infinite well as barrier height 5 in-
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FIG. 2. Dependence of the local density of states in the
conduction-band energy range at the interface site (n =N, +1)
of the quantum-well region on barrier height 6 for the sym-
metric heterojunction. The barrier height 5 is 0.3 (dotted
curve), 0.4 (solid curve), and 0.5 eV (dashed-dotted curve). The
local density of states has a sharp peak at the energy which cor-
responds to the quasibound states of the quantum well. (The
first peak in each curve. ) The continuum states of the junction
start approximately from the second peak in each curve. There-
fore these peaks indicate the effective barrier height of the junc-
tion (Ref. 16). The conduction-band edge E, is 0.8 eV, that is,
Eg' 1.6 eV. [Here, E,'——=E~=4.31 eV, ——E,"=E"=3.81 eV,
yl (II) TI (II, III, Iv

1 5 V yI (II) TI (II,III,Iv)
1 5 1 V 7

(5=0.5 eV). The parameters Eb (subscript b is s or p) are ad-
justed accordingly to produce smaller 6's. N& ——N2 ——N3 ——10
for all curves. ]

creases. The isolated thin film corresponds to the case of
a particle in a well between infinitely high barriers
(Q~ ca ).

In the following we illustrate the major changes of the
quantum-well electronic states in various circumstances.
The quantum-well quasibound states are rather sharply
localized in the semiconductor quantum-well region.
However, these electronic states have finite energy
widths. When a few quantum-well states can be formed
in the conduction band of the quantum-well region, the
ground state has the narrowest energy width and the en-

ergy widths of the quantized quantum-well states are
broadened as one goes higher in energy. In Fig. 2 we
present an example of the local density of states
[D(n) = —g& ImGbb(n, n)ln] at the interface site in the
conduction quantum-well region which shows the depen-
dence of the energy width of the quantized state on the
barrier height h. From the left the barrier height 5 of
each curve is 0.3, 0.4, and 0.5 eV and all of them have the
same barrier thickness. The energy width of the peaks of
bound states (near E= 1 eV) increases as the barrier
height is decreased. Also note the change in peak posi-
tions. Even for the same barrier heights, as the barrier
thickness increases the energy width of the quantized lev-
els becomes narrower. The dependence of the energy
width of the quantized levels on the barrier thickness is
presented in Fig. 3. The barrier thickness increases
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through 5, 10, and 15 layers for the curves from the top.
As is shown, the broadening of the quantum-well states
increases with decreasing barrier thickness for fixed bar-
rier height.

In each barrier region, unlike the single-barrier case,
even at zero bias, an asymmetry in the density of states
occurs across the barrier, because it is coupled to the con-
tinuum states of the electrode at one side and coupled to
the thin-film quantized states at the other side. In the
forbidden energy-gap range of the barriers, the local den-
sity of states has small peaked structure at the energies of
the quasibound quantum-well states, which indicates the
penetration of the quasibound states of the quantum well
into the barrier region.

In the quantum-well region for the zero-bias case, if we
assume the ideal situation where no impurities and sur-
face perturbations cause asymmetry, a symmetry exists
with respect to the line parallel to the interface, which

8 l.4

80.0,;

22.4—

l.4—

c 224 NI = IO

l.4—

l.4— N, =5

0
0.6 1.3

E (ev)
2.0

FIG. 3. The dependence of the quantum-well states on the
barrier thickness (N& ——N3) for the symmetric heterojunction.
As barrier thickness increases, the local density of states at the
interface site in the quantum well ( n =N& + 1) shows the quan-
tized level with smaller energy width (more sharply localized
bound state in the quantum-well region) which indicates a
smaller probability for an electron to cross the barrier. Change
in the thickness of the quantum-sized barrier influences not only
the position of the quasibound quantum-well state, but also the
effective barrier height in energy, which is, here, determined ap-
proximately by the position of the second peak in the density of
states. [Here, the conduction-band edge E, =0.8 eV, the pa-
rameters are the same as the dashed-dotted curve (5=0.5) in

Fig. 2, and N2 ——10 for all curves. )

bisects the middle of the quantum-well region. Therefore
the density of states of the whole junction shows mirror
symmetry with respect to the middle point of the
quantum-well region. As an example, exactly the same
shapes appear at the first and the last site in region 2 in
the local density of states at zero bias as a result of the
symmetric property in the local density of states
throughout the junctions. The bound states in the
quantum-well region have well defined peaks through the
quantum-well region, and the local-density variations of
the bound quantized levels in the well depend on the no-
dal and near-nodal behavior of the wave function.

Application of the external voltage introduces asym-
metry throughout the whole junction. As external volt-
age is increased the wave functions of quantum-well
states are changed by the effect of the external bias.
Therefore the symmetric property in the density of states
with respect to the middle point no longer holds. As an
example there is an asymmetry in the local density of
states at the first and the last site at finite external bias.
There exist broadenings of the peaks in the local density
of states at finite bias, and the broadening in the peak of
the local spectral density at the last site is greater than
that at the first site in the quantum-well region. This is a
natural consequence of the quantum-well quasibound
state becoming closer to the continuum states of the right
barrier in energy. The voltage-induced tilting effect on
the local density of states of the whole junction in the
presence of the external field contributes to the smaller
peak-to-valley ratio in the I- V characteristics.

Not only VI& (where I is s or p) but also V, in this mod-
el changes the curvature of the energy band. For a large
value of V, in the quantum-well region, the energy-band
curvature increases near the conduction-band minimum.
This leads to the formation of the quasibound state at a
higher energy. This is equivalent to the observation that
a heavy-electron (-hole) quantum-well bound state is
lower in energy than a light-electron (-hole) state in
effective-mass theory. In Fig. 4(a) we present the average
density of states per atom of each region in the
conduction-band energy range at zero bias. In this case
the value of V,z is a half of that in Fig. 3. The density of
states indicates a lower ground-state energy and also a
higher-energy bound state in the quantum well (the
second peak from the left) compared with Fig. 3. In Fig.
4(b) we present the average density of states per atom of
each region of the junction which is subject to very high
external bias, Vo ——1.4 V, compared to the barrier height
(around 3 times the barrier height) in the conduction-
band energy range. The density of states of the junction
shows rather complicated features in this high-external-
bias case. In Fig. 4(b) the first two peaks in the spectral
densities of states per atom in the quantum well, and the
barrier-2 regions are derived from the two quasibound
states at zero bias. However, the wave functions of these
two states are quite different from those at zero bias. As
is shown in the figures, if the external bias is increased up
to a high value, the densities of states in the quantum well
and in barrier 2 have additional peaks at the energy range
below the continuum edge of barrier 1 (located near
E=2.4 eV), which belong to the smooth continuum
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states of the quantum well and barrier 2 at zero bias.
These peaks can be clearly seen if we reduce the magni-
tude of the interfacial coupling matrix elements a little to
see sharper features of these levels. ' This state can be
explained as the induced state due to the highly tilted po-
tential in the junction, as is shown in the schematic dia-
gram in Fig. 4(b). Therefore, these kinds of induced reso-
nant states, which are rather confined in the quantum-
well and barrier-2 regions, can give additional negative-
differential resistance regions in the I-V curves up to the
high external bias.
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FIG. 4. The average densities of states per atom of
quantum-well and barrier regions: (a) at zero bias and (b) at
fimte bias Vo ——1.4 V. Here V''"'=T'"'"" '=0.7 eV (half of
that in Fig. 3), E, =0.8 eV, 5=0.5 eV, N& ——N3 ——5, N& ——10,
and the other parameters are as in Fig. 3. At zero bias, the den-
sity of states shows the quasibound quantum-well states in the
quantum-well region, and the penetrations of these states into
the barrier regions gives a finite amplitude in the densities of
states of the barrier-1 and -2 regions. At Vo ——1.4 V the first
two peaks in the quantum well and barrier 2 originate from the
quantum-well states at zero bias. However, as is shown in the
density of states, the wave functions of these states are quite
different from those of the zero-bias case due to the effect of
high external bias. The third peak in the quantum well and bar-
rier 2 indicates that the states are rather confined to the
quantum-well and barrier-2 regions. The third peak, which is
below the continuum edge of barrier 1 in energy, corresponds to
the induced resonant state arising from the highly tilted junc-
tion potential due to the high external bias, as is shown in the
schematic energy diagram.

The nonequilibrium Green's-function approach for the
calculation of the tunneling current in the tight-binding
representation has advantages for atomic-scale layered
heterojunctions where the quantum-size effects of the
junctions are important, and where the spatial variation
of the external potential over the interatomic distance in
the junction is considerable. The effect of the external
potential may alter the physical properties a great deal.
For this reason, the effect of the external-potential per-
turbation is found to all orders in this research.

In Fig. 5 we present one example of I-V characteristics
which shows the effect of the barrier height b on the tun-
neling current. The model junction in this figure corre-
sponds to a 43 A —43 A —43 A (N =10, p=1, 2, and 3)
heterojunction. As in Fig. 2, the barrier height is
changed through 0.3, 0.4, and 0.5 eV for the curves from
the top, respectively, with fixed barrier and quantum-well
thicknesses. The peak positions in current change as
shown in Fig. 5(a). The calculated quantum-well state
positions at zero bias are 0.09, 0.12, and 0.17 eV from the
conduction-band edge E, . The positions of peaks in
current are at about twice the difference between these
quantum-well bound levels and the equilibrium Fermi
level. (Here the Fermi level is assumed to be 0.05 eV
from the conduction-band edge E, and the temperature is
assumed to be 300 K.) The peak-to-valley ratio in the
resonant tunneling current becomes smaller as the barrier
height is decreased, which is shown clearly in Fig. 5(b),
the natural-log —scale current-voltage [(1nI)-V] graph.
This indicates that the relative position of the peaks with
respect to the barrier top plays an important role in
determining the peak-to-valley ratio in resonant tunnel-
ing current. The resonant current peak-to-valley ratios
are about 9:1 (b =0.3), 20:1 (b, =0.4), and 45:1
(6=0.5}. At low temperature (around 20 K) our calcu-
lated I-V curve for the same model junction with barrier
height b =0.3 eV (which is not illustrated here) indicates
a resonant peak-to-valley ratio of about 14:1. Although a
direct comparison of this model calculation with experi-
mental data is not intended in this work, we will mention
experimental data to illustrate the qualitative improve-
ment achieved in our calculation of the resonant current
peak-to-valley ratio. In Ref. 4, for a Ga, Al As/GaAs
double-barrier single-quantum-well heterojunction (50
A —50 A —50 A) with barrier height (b, ) 0.23 eV, the ob-
served resonant peak-to-valley ratio in the tunneling
current is 6:1 (4.8:1 at reverse bias) around 20 K (most of
the other reported experimental results are smaller than
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this, but, on the other hand, most of the conventional cal-
culations of transmission coefficients yield values which
are orders of magnitude larger). This indicates that the
nonequilibrium treatment of the junction and explicit
consideration of the external voltage yield reasonably
better values for the resonant current peak-to-valley ratio
and significantly improve the calculation of tunneling I-V
characteristics in this type of heterojunction.

In Fig. 6 we present the dependence of tunneling
current on the barrier thickness. The barrier height is
fixed and the barrier thickness varies through 5, 7, 10, 12,
and 15 layers for the curves from the top as in Fig. 3. Be-
cause the current varies over a wide range, the log-scale
current-voltage graph is useful. As the barrier thickness
increases, the quantum-well bound state is more 1ocalized
in the quantum-well region. Therefore, as is shown in

Fig. 3, the quantum-well quasibound state is more local-
ized in energy (with smaller energy width) as the barrier
thickness increases. This causes a larger peak-to-valley
ratio in the tunneling current, as is shown in the natural-
log —scale current and voltage curve. However, the
peak-to-valley ratio is more moderate than is expected
from the density of states at zero bias (at equilibrium).
This shows that the effect of the external bias is partially
to smooth the sharp features in the peak-to-valley ratio.
Although the quasibound state at equilibrium (at zero
bias) becomes more sharply localized in the quantum-well
region for junctions as barrier thickness increases, the
peak in the continuum region of the density of states for
barriers (junction) moves closer to the quasibound-state
energy as barrier thickness increases. The former effect
sharpens the resonant current, and tends to increase the
peak-to-valley ratio, but the latter effect decreases the
effective barrier heights, tending to decrease this ratio.
These two effects compensate to a certain degree. The
magnitude of the peak of resonant current through the
quantum-well state decreases exponentially as the barrier
thickness increases, as expected.

The formation of the quantum-well bound states may
also be inAuenced by local perturbations. The change in
effective barrier height and width or local density of
states at the interfaces due to local perturbations at inter-
face sites in the barriers or in the electrodes or the quan-
tum well affect the energy position of quantum-well
bound states and tunneling current. The comparison
among the cases with a local perturbation at interface
sites in barriers (dashed-dotted curve), in the quantum
well and the electrodes (dotted curve), and that without
any local perturbations in the junction (solid curve) is
presented in Fig. 7.

-IO-

-l5
0 0.5

Voltage (V)
I.O

FIG. 5. The effect of barrier height 6 on the tunneling
current (in units of e/A). (a) The current-voltage (I-V) charac-
teristic and (b) the (lnI)-V for the heterojunctions with barrier
height 6=0.3 (solid curve), 0.4 (dotted curve), and 0.5 eV
(dashed-dotted curve). (Here, the temperature is assumed to be
300 K and the Fermi level from E, is assumed to be 0.05 eV.
Other parameters are the same as in Fig. 2.)

-l5
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I l I

0.5
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FIG. 6. The dependence of tunneling current (in units of
e/fi) on the barrier thickness. N&

——N3 ——5, 7, 10, 12, and 15
from the top, and N2 ——10 for all curves. The same parameters
as in Fig. 3 are used.
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type of calculation, it is expected to produce more accu-
rate results, and to predict the quantum-size effect more

precisely than any other calculation. This formalism
does not have any limitation on the magnitude of the
external potential.

Our model calculation shows the major features that
pertain to tunneling through a heterojunction. It also ex-
hibits the general features which are expected in the con-

ventional calculational scheme, while describing other
features which are not obtained within the conventional
scheme, but are observed, such as the negative-
differential resistance at voltages far above the barrier
height (Figs. 8 and 9). The success of this model calcula-
tion indicates that the use of realistic tight-binding band-
structure parameters for real materials in the scheme
presented here wi11 be worthwhile.
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