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The first-principles, density-functional version of the generalized pseudopotential theory (GPT)
developed in papers I and II of this series [Phys. Rev. B 16, 2537 (1977); 26, 1754 (1982)] for empty-
and filled-d-band metals is here extended to pure transition metals with partially filled d bands. The
present focus is on a rigorous, real-space expansion of the bulk total energy in terms of widely

transferable, structure-independent interatomic potentials, including both central-force pair interac-
tions and angular-force triplet and quadruplet interactions. To accomplish this expansion, a spe-
cialized set of starting equations is derived from the basic local-density formalism for a pure metal,
including refined expansions for the exchange-correlation terms and a simplified yet accurate repre-
sentation of the cohesive energy. The parent pseudo-Green s-function formalism of the GPT is then
used to develop these equations in a plane-wave, localized-d-state basis. In this basis, the cohesive

energy divides quite naturally into a large volume component and a smaller structural component.
The volume component, which includes all one-ion intra-atomic energy contributions, already gives
a good description of the cohesion in lowest order. The structural component is expanded in terms
of weak interatomic matrix elements and gives rise to a multi-ion series which establishes the intera-
tomic potentials. Special attention is focused on the dominant d-electron contributions to this series
and complete formal results for the two-ion, three-ion, and four-ion d-state potentials (Uz, v3, and

v4 ) are derived. In addition, a simplified model is used to demonstrate that while v3 can be of com-
parable importance to vz, U4 is inherently small and the series is rapidly convergent beyond three-
ion interactions. Analytic model forms are also derived for U2 and U3 in the case of canonical d
bands. In this limit, v2 is purely attractive and varies with interatomic distance as r ', while u3 is
weak and attractive for almost empty or filled d bands and maximum in strength and repulsive for
half-filled d bands. Full first-principles expressions are then developed for the total two-ion and
three-ion potentials and implemented for all 20 3d and 4d transition metals. The first-principles po-
tentials qualitatively display all of the trends predicted by the model results, but they also reflect ad-
ditional effects, including long-range hybridization tails which must be suitably screened in real-

space calculations. Finally, illustrative application of the first-principles potentials is made to the
calculation of the [100] phonon spectrum for V and Cr, where the importance of three-ion angular
forces is explicitly demonstrated.

I. INTRODUCTION

The generalization of pseudopotential expansion tech-
niques to d-band metals' has been successfully
developed in the past ten years for materials near the be-
ginning and end of the transition series in the limits of
empty and filled d bands, respectively. Our own work
in this regard has taken the form of a first-principles, gen-
eralized pseudopotential theory (GPT) which has been
fully integrated with the Kohn-Sham local-density-
functional formalism in the first two papers of this
series ' (hereinafter referred to as papers I and II). The
parent theory from which the density-functional OPT
has evolved, however, is a quite general synthesis of
nearly-free-electron concepts for s and p electrons and
localized-orbital concepts for d electrons and applies, in
principle, to all d-band metals. En the present paper, we
address the remaining problem of rigorously extending of

I

the density-functional GPT to the more difficult case of
pure transition metals with partially filled d bands.

The focal point of the present theory is an accurate
real-space representation of the total energy for a transi-
tion metal in terms of well-defined interatomic potentials.
Specifically, we consider a homogeneous, elemental metal
with an atomic volume Q and seek to develop the total
energy of the system as a multi-ion expansion involving
its N individual ion coordinates R;. The essential feature
of our approach which permits this expansion is the char-
acterization of the electronic structure in terms of
effectively weak potentials, corresponding to small sp
band gaps and narrow d bands in the metal, so that while
intra-atomic d-state effects are large, all interatomic ma-
trix elements coupling different sites are small. As a re-
sult, the series we shall derive is formally analogous to
that obtained for nontransition metals:

E«,(R„R2, . . . , RN)=Eo(Q)+ 2 g'u2(R~J)+ —,
' g'u, (R;, ,R~„,R„,)+ —,', g' u4(R...R,„,R„t,R», R», ,Rtl)+

i,j,k i,j,k, l
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Here, Ez represents a volume term (including all intra-

atomic, one-ion contributions) and vz, v3, v4, etc. are
two-ion, three-ion, four-ion, etc. interatomic potentials
which are implicitly volume dependent, but explicitly
structure independent. That is, the potentials themselves
are independent of the absolute ion positions R; and de-

pend only on relative separations R,J. =
~
R; —R~ ~, etc.

They are thus completely transferable at fixed volume
and the entire structure dependence of the total energy
then appears analytically through the summations, which
extend over all N ions in each case. The prime on each
summation denotes the exclusion of all self-interaction
terms where two indices are equal.

The ability of the local-density formalism to describe
the energetics of transition metals has been rather well es-
tablished through direct nonperturbative total-energy
calculations of cohesion, structural phase stability, ' and
high-symmetry phonons. " The introduction of the addi-
tionai expansion (1), while necessarily a more approxi-
mate representation of the total energy, offers the possi-
bility of greatly extending the range of application to in-
clude a complete description of structural, thermal, and
mechanical properties of both the solid and liquid state,
as has been possible for nontransition metals. ' For
these latter materials, one can readily express both the
volume term Eo and the central-force, pair potential vz in
terms of appropriate nonlocal pseudopotentials. Further-
more, the neglect of v3, v4, and higher potentials has
proved to be an excellent approximation in most applica-
tions. For pure transition metals, on the other hand, not
only are the individual functionals necessarily more com-
plicated and diScult to obtain, but one expects a priori
that the angular forces associated with the multi-ion
terms to be more important due to the strong-scattering
nature of the d electrons. This expectation is confirmed
here, and, in particular, the three-ion triplet potential v3

entering Eq. (1) will play a vital role in our development.
At the same time, the series we shall obtain is rapidly
convergent in the sense that the four-ion quadruplet po-
tential v4 is small and higher potentials appear to be
negligible.

To our knowledge, this is the first ab initio theory of in-
teratomic potentials for transition metals which has been
completely derived from basic quantum-mechanical prin-
ciples. In particular, we should contrast at the outset the
present approach with the numerous attempts through
the years to construct ad hoc interatomic potentials for
transition metals from less fundamental perspectives.
Most early representations of the total energy were given
entirely in terms of empirical pair potentials [i.e., with
Ep = v3 = v4 = . ——0 in Eq. (I)], typically with arbitrary
forms for v2 containing a number of adjustable parame-
ters. ' Such potentials are implicitly structure dependent
and hence their transferability is always in serious doubt.
Carlsson et al. ' attempted to derive pair potentials more
systematically by inverting energy-band calculations of
E„, as a function of volume. While such a potential is
parameter-free and reproduces the cohesive properties of
the metal by construction, it does not deal correctly with
more subtle energetic properties such as phonons or
structural energy differences. Moreover, pure pair poten-

tials of this type suffer two fundamental weaknesses.
First, they are required to satisfy the Cauchy elastic-
constant relations (i.e., C44=C, 2), whereas it is well

known that these relations are not obeyed in real transi-
tion metals (e.g. , C,2/C44=3 for V, =5 for Nb, =0.35
for Cr, and = l. 5 for Mo). Second, such potentials re-
quire that the (unrelaxed) vacancy-formation energy E„„
is equal in magnitude to the cohesive energy E„h,
whereas observed values of E„„aretypically only a small
fraction of E„h (e.g.,

~
E„„/E, h ~

=0.3 for Cr, Nb, and
Mo).

An attempt has also been made to invert the experi-
mental phonon spectrum of a metal into a pair poten-
tial. ' This proved to be rather successful for simple met-
als, where a pair potential can indeed accurately describe
the phonon spectrum, but the results are considerably
more suspect for transition metals, where the anomalous
phonon behavior driven by the multi-ion interactions is
not well described. In addition, other attempts to explain
observed properties for the central transition metals in
terms of empirical potentials, including phonons and x-

ray scattering data' and cohesion, defect energies, and
elastic constants, ' led directly to the conclusion that an-

gular forces were indeed required in these materials.
More recent empirical efforts' ' have attempted to
effectively sum the multi-ion interactions by introducing
local-volume potentials which depend nonlinearly on the
local electron density. Such methods are inspired by
density-functional theory and claim to have enough vari-
ational freedom to treat simultaneously not only the bulk
and defect environments (including the lowering of E„„
below E„h ), but free surfaces as well, where Eq. (1) is not
expected to apply. However, as used in practice these
methods depend on arbitrary functional forms with many
adjustable parameters.

Other recent work on transition-metal interatomic po-
tentials has begun to make a closer association with the
real electronic structure of transition metals. Tight-
binding concepts have been invoked in an attempt to tie
the d-bonding component of the potentials to either the
d-band energy or to moments of the density of
states. While the ideas presented are suggestive, the
actual connection between these quantities and the poten-
tials must ultimately be assumed rather than derived, and
a number of the assumptions made are not well supported
by the present theory. In related work, Dagens has
used liquid-metal theory and statistical concepts in an at-
tempt to distribute the d-bonding energy among Eo v2,
etc. in a more general way. His approach has only been
carried out at the pair-potential level (i.e., with
v3 v4 — ——0), but it does produce one result which is
supported by our theory, namely, that in the limit of
canonical tight-binding d bands the short-range, d-
bonding component of vz(r) should vary as r

A brief, preliminary account of the present work was
published earlier, in which prototype results for the pair
( v 2 ) and triplet ( v 3 ) potentials entering Eq. (1) were re-
ported for 3d transition metals together with successful
tests on the fundamental aspects of cohesion, structural
phase stability, and the phonon spectrum. Additional ap-
plications to the recently observed anomalous phonon be-
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havior in Ba and to the high-pressure properties of Cu
have also appeared and more will be forthcoming.
The primary purpose of this paper is to establish, in com-
plete detail, the full theory behind these results. We be-
gin in Sec. II with the basic equations of density-
functional theory governing the total energy of a metal
and derive several important general results needed to ac-
complish our desired expansion. In Sec. III we add those
elements of the parent GPT formalism from Ref. 2 re-
quired to obtain specific forms for the various com-
ponents of the electron density and total energy of a tran-
sition metal. We also demonstrate for real 3d and 4d
transition metals that the zero-order system from which
our expansion proceeds is an excellent starting point and,
in particular, accurately describes the large volume com-
ponent of the total energy associated with cohesion.
Then, in Sec. IV we focus in on the most important
feature of the present development, namely, the multi-ion
expansion of the d-band energy. There we derive precise
formal results for the d-band components of the intera-
tomic potentials ( v 2, v 3, v 4, etc.) and add insight into why
the expansion works through a simplified model. The
latter allows us to explicitly address the question of con-
vergence of our series as well as to make contact with

many of the recent tight-binding ideas. In particu-

lar, we show in the context of this model that while U3

can be comparable to U2 in importance, U4 is relatively
small and higher potentials are negligible. In Sec. V we
return to the full theory and obtain complete expressions
for Eo and the dominant interatomic potentials v2 and U3

entering Eq. (l). We then present and discuss calculated
first-principles potentials for all of the 3d and 4d transi-
tion metals, and briefly illustrate their application. We
conclude in Sec. VI with a discussion about the range of
expected applications of these potentials and possible ex-
tensions, as well as limitations, of the theory as a whole.

II. ELEMENTS OF DENSITY-FUNCTIONAL
THEORY

A. General equations in the local-density
approximation

We begin with the usual nonrelativistic Kohn-Sham
local-density equations specialized to a nonmagnetic, ele-
mental metal of atomic number Z, . The total energy can
be written in the form

(Z, e)
ion=2 g'

~ R R ~

+ g ——,
' ff, drdr'+ f n(r)[ e( (nr)) —p„,(n(r))]dr+NZ, Vo, (2)

v +v Ig, )=E Ig, ), (3)

with V the total self-consistent one-electron potential

Z, e 2

V(r)= —g +f, dr'e n(r')
Ir —R;I

where the E are one-electron eigen values of the
Schrodinger equation

B. Multi-ion expansion of p„and E„,

A fundamental requirement in the present work is to
approximate the inherently nonlinear exchange-correla-
tion functionals entering Eqs. (2)—(6) in forms that are
both accurate and commensurate with the total-energy
expansion we seek, Eq. (1). To do this, we first write the
electron density in the form

n =n„,~+ gn, ,

+p„,(n (r ) ) —Vo,

n the total electron density

n(r)= y &rI y )&q Ir&,

and p„, the exchange-correlation potential

p„,(n)= [ns„,(n)] .
d

de

(4)

(5)

where we envisage that n; is a localized inner-core plus
occupied valence d-state density centered about the site i
and that n„,&

includes all remaining valence-electron den-

sity, which is then primarily s and p in character and
more or less uniform outside the inner-core regions. This
represents no additional approximation at present, but
only reflects the anticipated partitioning of electron den-
sity which will enter our theory below in Sec. III. We
next define the functionals

The sums in Eqs. (2) and (5) are over all occupied states a
and E„,(n) in Eqs. (2) and (6) is the exchange-correlation
energy of the uniform electron gas of density n. When a
specific form is required for s„,(n), we shall use here, as
previously, the interpolation formula developed by Hedin
and Lundqvist. The constant Vo in the potential Vper-
mits an arbitrary choice of the zero of energy in Eq. (3),
while the final terin in Eq. (2) insures that E„,is indepen-
dent of this choice.

and

p„*,(n, ) =—p„,,(n„„+n, )—p„,(n„„)

e(n, )= s(n„„+n;)—e„,(n„,~) .

Both of these quantities are well localized about the site i
and vanish as n; does. We can then develop p„,(n) and

e„,(n) in appropriate multi-ion expansions involving the
overlap of the n,- from different sites. To do this, we for-
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mally proceed as in paper I and consider the limit of
large ion separation. We then expand in powers of
g; n;/n„i, isolate all overlap terms with a common
structural dependence, and finally, continue the result
analytically to arbitrary separation by resumming each
group of structurally similar terms. This leads to the
desired clusterlike expansion

and higher overlap terms may be systematically obtained
by a continuation of this procedure, but are here neglect-
ed as small.

A similar development can be made for s„,(n) and the
corresponding exchange-correlation energy

E„,=f n (r) e„,(n (r))dr—:ne„,(n), (12)

p„,(n)=p„,(n„,~)+ g p,„',(n;)+ —,
' g'5p„', (n;, nj )+

where

5p„',(n, , n )=p„',(n;+nj) —p„',(n;) —p„',(nj) .

(10)

where the latter equality represents a shorthand notation
which we shall adopt everywhere below. To the level of
two-ion overlap, we find

E„,=n„,~ s„,(n„,~) +g n, e„,(n, )

+ y 5&val-core(&

As demonstrated in paper I, the linear superposition ap-
proximation represented by the first two terms in Eq. (10)
is already reasonably accurate for real d-band metals due
to the slowly varying nature of the functional p„,. The
third term in Eq. (10) makes the result exact for two-ion
overlap, as can be verified by inspection. The correction
functional 5p„,(n;, n ) is localized in the interstitial re-
gion between sites i and j and is retained here as a desir-
able improvement for pure transition metals. Three-ion

I

+ —,
' g' [n;p„',(n~)+5e„*,(n;, n )]+

where

5e„","""(n;}=(n„,~+n; } „s,(n„, +in; )

—n„„s„,(n„„)—n;e„,(n, )

and

(13)

(14)

5e„',(n;, nj )=—(n„,~ +n;+nj )[s„,(n;+n~ } s(n—;)—e„',(nj )]+n;[e„',(nj ) ——,'p„',(nj )]+nj[e„",(n; ) —,'p„', (n—;)] . (15)

The first two terms in Eq. (13) represent the exchange-
correlation energies of isolated densities n„,&

and n;, the
third term is the correction for valence-core overlap on a
single site, and the final term is the contribution of two-
ion overlap, which adds directly to the two-ion pair po-
tential Uz in Eq. (1). The valence-core-overlap energy
5s„"," "(n, ) derives its principal contribution from the
inner-core region where n„,&

is small. In papers I and II
this energy was implicitly neglected; a better approxima-
tion, in general, is to arrange a direct cancellation of this
quantity in the cohesive energy, as discussed below. In
addition, the two-ion-overlap correction term 5s„',(n;, n },
which was also neglected in papers I and II, makes a
significant positive contribution to u2 in transition metals,
as illustrated in Fig. 1 for the case of Cu, and is therefore
explicitly retained in the present work.

C. Cohesive energy and valence binding energy

To extract the small structural components of the total
energy which contribute to the interatomic potentials in
Eq. (1), it is desirable to remove at the outset the large
one-ion corelike contributions in Etot With the electron
density expressed in the form (7), this can be done most
cleanly by considering the cohesive energy. We begin by
indexing the total energy per atom in the solid,

~2
K
E

C5

C0

I
aIII0 -10—
CA
C

-12CO

CP

ul -14—

-16
1.5 1.6 1.7 1.8 1.9 2.0 2.1

Physically, Z is a measure of the number of valence s and

p electrons per atom and must be determined self-
consistently. In addition, this valence is an environmen-
tally dependent quantity, depending in the present theory
explicitly on volume for a given material. Representative
values for the 3d and 4d transition metals at their ob-
served equilibrium volumes are given in Table I; the pre-

by the sp valence Z, here defined as

(16)

(17)

Relative separation R l/Rws

FIG. 1. Direct exchange-correlation contributions from Eq.
(13) to the two-ion interatomic potential u2(R;, ) for the case of
Cu. Here, Rs is the signer-Seitz radius, and the location and
number of near neighbors in the fcc and bcc structures are indi-
cated.
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TABLE I. Free-atom and metallic valences and atomic components of the cohesive energy for the 3d
and 4d transition metals, as discussed in the text. The values of Zo are those predicted by the LSD cal-
cu'lations of Ref. 9. The values of Z correspond to a d-state logarithmic derivative of D2 ———3 (see Sec.
III D). All energies are given in Ry.

Element

3d series

Ca
Sc
T1
V
Cr
Mn
Fe
Co
Ni
CU

4d series

Sr
Y
Zr
Nb
Mo
TG

Ru
Rh
Pd
Ag

Zo

2.0
2.0
1.0
1.0
1.0
2.0
1.6
1.1
1.0
1.0

2.0
2.0
1.0
1.0
1.0
1.0
1.0
0.0
0.0
1.0

Z

1.565
1.617
1.516
1.425
1.411
1.485
1.474
1.463
1.487
1.654

1.508
1.541
1.382
1.210
1.141
1.125
1.132
1.146
1.179
1.617

6E,

0.0
0.012
0.159
0.262
0.400
0.395
0.219
0.098
0.043
0.025

0.0
0.014
0.147
0.227
0.330
0.224
0.139
0.016
0.0
0.021

Epro

0.060
0.029

—0.049
—0.029
—0.015
—0.049
—0.011

0.024
0.043
0.089

0.072
0.044

—0.028
—0.007

0.002
0.008
0.016
0.138
0.203
0.206

Eprep

0.060
0.041
0.110
0.233
0.385
0.346
0.208
0.122
0.086
0.114

0.072
0.058
0.119
0.220
0.332
0.232
0.155
0.154
0.203
0.227

Ebind ~ ~ prep

—0.904
—1.019
—1.036
—1.104
—1.278
—1.359
—1.242
—1.174
—1.200
—1.504

—0.822
—0.919
—0.879
—0.856
—0.928
—0.829
—0.771
—0.795
—0.886
—1.443

cise origin of these results will be discussed in Sec. III.
For the present, note only that the range of values is be-
tween 1.1 and 1.7 for all 20 elements, including the
alkaline-earth and noble metals at the series endpoints.
Similarly, in the isolated free atom we write

E„, (Zo)—:E;,",

with

Zo—= f n'„'J (r)dr .

(18)

(19)

For transition metals, Zo represents the number of outer
valence s electrons in the ground state. In the usual case,
an s~d or d~s transfer of electrons will occur as the
solid is formed, so that Zo will differ from Z. Further-
more, in the context of density-functional theory Zo will

necessarily reflect the effects of spin polarization. In or-
der to deal with the latter complication, we here adopt
the values of Zo determined by Moruzzi et al. using the
local-spin-density (LSD) formulation of density-
functional theory and a treatment of exchange and corre-
lation consistent with the Hedin-Lundqvist prescription
in the non-spin-polarized case. These values are listed in

Table I for the 3d and 4d transition-series elements. We
also define a corresponding spin-polarization energy 5E,
as the difference in total energy between the non-spin-
polarized atom calculated in the present local-density
(LD) approximation and the spin-polarized atom calcu-
lated in the LSD approximation for the same atomic
configuration with valence Zo.

5E,p
=E„, (Zo', LD ) —E„, ( Zo,' LSD ) . (20)

Ep„=E„, (Z) —E„, (Zo), (21)

where the LD approximation is now implied in the total
energies. There is no difficulty in evaluating E „direct-
ly, but we have developed a simple yet very accurate ap-
proximation formula for this quantity:

E „=—,
' g(a —a )(e +e ), (22)

where a and a are the occupation numbers and c,

and c. the one-electron orbital energies of the promoted
and unprornoted atoms, respectively. The derivation of
this result in the context of the density-functional theory,
as well as its accuracy for real materials, is discussed in

Then, 5E,„ is a positive constant for each element, which
may be evaluated once and for all, and the remaining
total-energy considerations may be made in the LD ap-
proximation. Values of 5E, that we have obtained from
the LSD free-atom total energies of Moruzzi et al. and
our own LD results for the same atomic configurations
are given in Table I.

The next step is to transfer the appropriate number of
d electrons to valence s orbitals (or vice versa where
necessary) to match the valence Z of the solid. Then
the inner-core plus occupied d-state density of the pro-
moted atom closely approximates n;, the localized densi-

ty associated with a single ion in the solid. The corre-
sponding promotion energy is simply
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Eprep: Epro +5Esp (23)

is, of course, always positive and is maximum near the
center of each series.

One may now write the cohesive energy as the total en-

ergy of the solid relative to that of the free atom:

E„„=E„i;d(Z) E„, (Z—ii)+5E,

solid( } atom(Z}+Eprep (24)

The second form of Eq. (24) then allows us to accomplish
I

Appendix A. Note that only the states whose occupation
numbers change (i.e., the outer d and s states) contribute
to the sum in Eq. (22), so that energies several orders of
magnitude smaller than the total energy are involved in

the result. Values of E „obtained from Eq. (22) for the

3d and 4d elements are given in Table I. The largest pro-
motion energies here occur for elements on the right-
hand side of each series and the smallest for the central
elements. The slight negative values of some of the latter
occur because E,«(ZO } is not the lowest total energy of
the non-spin-polarized free atom. The total atomic
preparation energy,

the desired cancellations. To do this, we break both the
solid and promoted-atom total energies into valence-
binding, core, and valence-core-overlap contributions:

and

E„„.d(Z}=Eb;.„"d(Z)+E„„+E„,i „„,

E„, (Z)=Eb'„d (Z)+E„„+E„i„„,.

(25)

(26)

In the solid with the electron density given by Eq. (7), one
can anticipate that the sum over occupied states in Eq. (2)
will have the form

gE =Et,"„d+ g(T[n;]+n; V), (27)

which defines an effective valence contribution E~",„z to
the total band-structure energy, where T [n; ] is the kinet-
ic energy of the electron density n;. Equation (27) thus
divides the total d-electron contribution to the band-
structure energy into a large corelike component con-
tained in the final two terms and a cohesive component
implicit in Ebe'„d. Then using Eqs. (7), (10), (13), and (27)
in Eq. (2), one can derive the following results without
further approximation:

Eb;„"d(Z)=—Eb,"„d ,'n„,—i V—„,i+n„,i[s„,(n„,i) —p,„,(n„,i)]+—,
' g' [n;p„',(nj )+5e„',(n;, n ) —n„,i5p, „',(n;, n. )]

(Z, e) Za8
+2n; — +n;vj +ZVO,

fR, —R/ ' r —R
(28)

Z~8

(r R,
(29)

and

VR1-COf C
(30)

Canceling the E„„and E„,] „„terms in the cohesive en-

ergy (24), we are thus left with the simplified result we
desire:

Here, V„,1 and v; are the Coulomb potentials arising from

n„,i and n;, respectively. Likewise, for the promoted
atom with valence density n„'', i one obtains (with Vo

——0)

m =val

(31)

with similar expressions to Eqs. (29) and (30} for E,«,
and E„,1 „„.The solid and atomic core energies are
equal so long as n; in the solid closely approximates the
corresponding promoted-atom density, as will be the case
here. The respective valence-core —overlap energies are
approximately equal because (i) in both cases the addi-
tional second term in Eq. (30) tends to cancel the first in

the important inner-core region where n; ~~n„,i and (ii)

in the inner-core region n „,& approximates n „'',
&

due to the
constraints of valence-care wave-function orthogonality.

eoh Ebind ( ) Ebind (Z}+Eprep (32)

The explicit advantage of Eq. (32) is that all three com-
ponents on the right-hand side are already within an or-
der of magnitude of the cohesive energy itself and the
multi-ion expansion we seek can now be developed from
Eq. (28). The small price that has been paid is that the
final two atomic terms depend on Z and hence must be
recalculated for each volume of interest.

Equations (23), (28), (31), and (32) generalize our previ-
ous results obtained for simple, empty-d-band, and
filled-d-band metals in the limit Z =Zp with
6s„',=5p„*,=0. For such metals, both the normal
cohesive properties (cohesive energy, equilibrium atomic
volume, and bulk inodulus) and the zero-temperature
equation of state are thereby accurately described. ' '

For transition metals, a similar test of the present equa-
tions has been made in the case of Cu up to very high
pressure. Except at extreme compression, where the
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core overlap becomes large, these equations are found to
produce results comparable to those obtained from the
full density-functional formalism, Eqs. (2)—(6), as imple-
mented by self-consistent band-structure techniques.

everywhere small. The entire structure of the d bands in
the metal and their hybridization with the nearly-free-
electron s and p bands can be fully characterized in terms
of the d-state energy

III. ELEMENTS OF GENERALIZED
PSEUDOPOTENTIAL THEORY (39)

A. Mixed-basis representation
and pseudo Green's functions

small d-state overlap matrix elements

Sdd (R,~ ) = (pd(r R; )—
I
4d'(r R) )—& (40)

The inner-core electrons governed by the one-electron
Schrodinger equation (3) are amenable to a purely atom-
iclike treatment. We invoke the usual small-core approx-
imation, in which such localized states

~ P, & are assumed
to be exact eigenstates of the full metal Hamiltonian H.
This allows one to transform Eq. (3) to an exactly
equivalent pseudo-Schrodinger equation

and

bdd (R;J )—:( pd(r —R; )
~

b,
~

((}d.(r —RJ ) & (41)

between d states centered on sites i and j, and small
plane-wave —d-state (or sp-d) hybridization matrix ele-
ments

(33}
and

S.d =&1 Ikd & (42)

for the remaining valence s, p, and d electrons, where in
optimized form 8'is the nonlocal pseudopotential

W=(1 P, }V, —

with P, the inner-core-state projection operator

(34)

(35)

Some of the important properties of this form of pseudo-
potential in the present context are discussed in Appen-
dix B, but here we need only note that in transition met-
als W is effectively weak for the nearly-free-electron s and

p electrons, as in simple metals, but is strong for the more
localized 1 electrons which still largely see the full poten-
tial V. An appropriate basis set with which to represent

~ P & then is one including both plane waves
~

k& and
five localized d states

~ pd & centered on each ion site.
The latter are chosen to be exact eigenstates of a suitable
atomiclike reference Hamiltonian:

(43)

k' d"

(E —ek)Gkd ——Skd+ g Wkk Gkd+ g Vkd Gd d ~

k' d'
(44b)

(E —ek)Gkk ——5kk + g Wkk ~ Gk-k + g Vkd Gd k, (44c)
kll d'

Ed Gdk dk+ X Vdk'Gk'k+ g Vdd'Gd'k ~

k' d'
(44d)

The d states centered on a given site are orthonormal
functions, so that for 8,, =0 one has Sdd ——1 and b,dd ——0.

In order to obtain the central theoretical quantities of
interest here, namely, the electron density and the
valence band-structure energy, it is convenient to intro-
duce a pseudo-Green's-function formalism based on Eq.
(33). We follow Ref. 2, where in a

~
k&,

~ pd & basis the
appropriate Green's-function equations are found to be

(E Ed )Gdd. ——S—dd + g Vdk. Gk d + g Vdd Gd d, (44a)

$2
+V~t

2m

A second effectively weak potential is then

where

5V=—v„—V .

(36)

(37)

(38)

with Wkk =—( k
~

W
~

k'
& and V':H E, so that— —

Vkd (E Ed ) kd ~kd

and

Vdd' ( E Ed }Sdd' ~dd'

(45)

(46)

Conceptually, one may identify the reference Hamiltoni-
an in Eq. (36) with the promoted atom introduced above.
In practice, the actual choice of v„and the calculation of

~ p, & and
~ pd & are specified through a closely related

zero-order pseudoatom construction, as used in papers I
and II, and as discussed in Sec. III D below for transition
metals. For this choice of v„, the d-state hybridization
potential 6 is indeed small in the interior region of the
atomic site on which it is centered and only becomes
large in the exterior region. Thus the product 5

~ pd & is

The formal solution of the coupled equations (44a)—(44d)
for the four Green's-function elements Gkk, Gkd, Gdk,
and Gdd is discussed in Ref. 2 and we shall apply those
results directly in our derivations below. The summa-
tions over localized inner-core and d states in all these
equations implicitly include a sum both over ion sites and
individual quantum numbers (excluding spin), and we
shall maintain this convention ' in the remainder of Sec.
III. Also, in all results derived from the Green's-function
equations, E has the meaning E +i0+.
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B. Density of states and valence band-structure
ene gy +band

JV(EF )=N(Z +Zq ),
one has without approximation

(54)

If we now choose the constant V0 in the potential V
such that the zero of energy in Eqs. (44a)—(44d) is at the
bottom of the valence bands, then the density of states for
E & 0 (i.e., excluding the inner-core states) is given by Eq.
(48) of Ref. 2:

E
E~,"„~=NZE~+NZq(EF E—q) —f JV(E)dE . (55)

The next step is to break p(E) and Ã(E) into separate
components:

2p(E)= ——Im g Gg, + g Ggg
7T d

r

and

p(E) =pp(E)+5p, (E)+p~(E)+5pg(E) (56)

2 1= ——Im E —c,k

lnD (E)

(E —s )

(47)

JV(E)=JV0(E)+5JVp(E)+JVq(E)+Mlq(E) . (57)

We identify p0 and 5p, with the first two terms in Eq.
(47}, where po is just the free-electron density of states. It
readily follows that

where the spin factor of 2 has been taken out explicitly
and we have defined the energy-dependent functionals

A'o(E) =
' 3/2

NQ
3772

and

8'kk 8'k k
Xg, = W~~+ g (48)

and, using Eq. (59) of Ref. 2, that

2
2 8'kk

5%, (E)=—Im E —sI '
g (E —sk)

D (E)=det[ —( Vzz +I zq +Azz)],
with

(49) 8 kk~ 8 k~k+$' +(E —. s„)(e„—eg )
(59)

and

Vdk V
I ~g(R;,E): E —ck

Vdk ~kk' Vk'd'
J' ~. (E —s )(E —s )

(50)

(51)

We then identify pz and 5p& with the final term in Eq.
(47}, such that p~ is the one-ion d-state component of the
density of states. In order to do this, we first note that
the one-ion R;~. =0 terms in lnD(E) can be extracted in
the form

lnD (E)= g ln(E Ez I zz
—
A&& )—+ln[d—et(~zz. )],

d

E
Eg,"„q——f Ep(E)dE NZ~E~, — (52)

where EF is the Fermi energy. Here, one can avoid the
energy derivative in Eq. (47) for p(E) by introducing the
integrated density of states

JV(E)= f p(E)dE . (53)
0

Then using p(E)=d JV(E)/dE, integrating once by parts,
and adding the conservation-of-electrons condition

Note that Xkk involves an infinite series expansion in
powers of W~. and that D (E) is a 5N)&5N determinant.
Thus Eq. (47}, although formally exact, cannot readily be
used in this form to numerically calculate the density of
states for a real material. The usefulness of this result
comes rather through its powerful analytic properties,
which we now seek to exploit in developing a multi-ion
expansion for the valence band-structure energy.

In writing Eq. (27} for the sum of one-electron energies
in the metal, we separated out the corelike component as-
sociated with the localized inner-core and d-state electron
density n, If the d-state contribution to n; is now
identified with the partial occupation of our basis states

~ Pz ), corresponding to Zz electrons per site, then the
effective valence band-structure energy defined in Eq. (27)
is exactly

I—V„,—r„,—A„„,
~~q. (R(J,E):E —Ed ~dd ~dd

(61)

It is then necessary to remove the residual structure
dependence in the first term in Eq. (60) by carefully
separating all matrix elements into volume and structure
components. We proceed exactly as in paper II and write
5V=5V„„+5V„„„„sothat

Evol +Estruc
d d d 7

~kd ~kd +~kd

(62a)

(62b)

and similarly for all remaining d-state quantities. In each
case the volume component is dominant and the much
smaller structural component can be formally considered
to be 1 order smaller in magnitude. Isolating the largest
structure-independent one-ion contributions, we are thus
motivated to define

2
JV&(E)—:——Im g ln(E E&

' I &&'), — —
d

(63)

and hence

(60}

where tdd. is the relative d-state coupling strength be-
tween different sites:
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2 Estruc+ I struc+ A
5JVd(E): ———Im g ln 1—

E —E„""—r„"'„'

+ in [det( tdd )] (64)

Here, the volume component of the d-state self-energy,
I'dd', is given by Eq. (50) with Ed and b,zz replaced by
Ed" and 5&d', respectively. The real and imaginary parts
of I dd'(E) are displayed in Fig. 2(a) for the case of Cu and

are similar in form for all of the transition metals. The
volume term JV'd(E) may then be readily interpreted as

metals is already largely contained in E„,~, as we shall
quantitatively demonstrate in Sec. III D below. The
smaller components of Eb",„d which will contribute to our
interatomic potentials are mostly derived from the in-
tegrals over 5JV, and 5JVd for the s and p electrons and
for the d electrons, respectively. The former contribution
is essentially the same as one obtains for simple metals.
The latter contribution, in the full general form of Eq.
(64), however, is new and the most vital feature in the

0.0

JVg(E) =N 52(E),10
(65)

where 5z is the l =2 phase shift associated with a single
site. For very narrow d bands, 52{E) will have a sharp
resonancelike behavior in the vicinity of E =Ed", as
shown in Fig. 2(b) for Cu. More generally, the magnitude
of the imaginary part of I d&'(E) near the Fermi energy is

comparable to half of the width of the d bands, so that
JVd(EF ) alone is a measure of the total number of d elec-
trons present. The structural term 5JVd(E) is conse-
quently small and oscillatory in nature.

To fully isolate the purely volume contributions in

Eb"„d, we finally introduce a zero-order Fermi energy cF
such that Z, Zd, and cz are self-consistently related by
the equations

-0.02
K

CI

'P

I
M

/
/

-0.04—

and

Z+Zd =Z~ —Z~,

JVO(sF ) =NZ,

JVd{~F)=NZd .

(66)

(67)

(68)

In Eq. (66), Z, represents the number of inner-core elec-

trons per atom, which is fixed, so that Z +Zd is a con-
stant for a particular element. Equation (67) is the famil-

iar free-electron relationship between cF and the valence

Z and is consistent with Eq. (17). The final condition (68)
is just the phase-shift relationship Zd ——(10/n. )52(sF).
This condition is invoked by our zero-order pseudoatom
construction, as discussed in Sec. III D, and is consistent
with Eq. (52). Straightforward manipulation of Eq. (55)
then yields, still without approximation, the interesting
and useful result

'a
C$

2

40I
Ol
0$

Q.

{b)~, {~)

g+Z~F++E f
~ p0

—f 5JVd (E)dE NZ„Ed '"'+ 5Eb,—„, , (69)
0

where we have now separated out the principal volume

component of the d-state energy,
F vol

d

Ed„=Z„(sF Ed" ) f 5,(—E)dE,—
7T 0

and a Fermi-energy correction term

(70) 0
0.0 0.2 0.4 0.6 0.8 1.0

EF
5Eb,„d =N(Z+Zd )(EF sF) —I JV(E)dE —. (71)

EF

The increased cohesion in transition metals over simple

FIG. 2. (a) Complex d-state self-energy functional I dd'(E) for
Cu. (b) Corresponding l =2 phase shift 62(E) from Eqs. (63)
and (65).
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present development. We shall devote considerable spe-
cial attention to this contribution in Sec. IV. The correc-
tion term 5Eb,„d turns out to be of order (EF e—F ) and

is small so long as cF is indeed a good approximation to
EF, which will be the case in practice. This contribution
is considered in Appendix C.

C. Valence-electron density n „,~

The localized electron density g; n; in Eq. (7) contains
both an inner-core contribution,

gn, (r —R, }:—2g (r
I P, )(P, I

r)=2(rIP,
I
r), (72)

and a d-state contribution,

=Zd
hand(r

—R;)—= g (r
I Pd )(Pd I

r) .
d

(73)

An exact expression for the remaining valence density
can be obtained from Eq. (97) of Ref. 2, subtracting out
the d-state contribution directly:

n„,l(r)= ——Im f p ((r
I
k&&k'

I
r)+(r

I P, I
k&&k'

I
P, I

r&
k, k'

—(r
I P,

I

k)(k'
I
r) —(r

I
k&(k'

I
P, I

r) )Gkk

+ g (r
I pd )Gdk(k

I
(1 P, )

I

r—) dE —g nd(r —R;) .
d, k

(74)

Equation (74), in turn, can be developed into an appropriate form for application here by using Eqs. (39) and (41) of Ref.
2 for Gkk. and Gdk, respectively, separating volume and structure contributions as above, and manipulating the term in-
volving nd through Eqs. (50), (63), (68), and (73). Further defining the complex d-state or resonance energy

Evol+ I vol(E) (75)

one finds

2 'F (r
I
k)(k I r) &r

I
k) Wkk (k

n„„(r)=——Im g + g
k k k, k'

(r
I P, Ik&&kIP, Ir&-&rIP, Ik)(kIr& —&rIk&&kIP, Ir&+g

&r
I 0d &UdkUkd(kd Ir&

(E —ek)

1 (r
I k)UkdUdk (k'

I
r)

+X XE E„kk, —(E —ek}(E—ek )
—X

(r
I pd )Uzk((k I

r) —skd(pd I
r) )+c.c.

+X E
dE +5nb, „d(r)+ (76)

n„,l(r) =n„„;f+g 5n'„,l(r —R; )+.. . (77)

Here, v' represents the volume component of V', so that
U„'d is give~ by Eq. (45) with Ed and b,kd replaced by Ed"
and b,kd', respectively. The quantity 5nb, „d in Eq. (76) is a
Fermi-energy correction term analogous to 5Eb,„d for the
valence band-structure energy. The evaluation of 5nb, „d
is discussed in Appendix C. Equation (76) is the begin-
ning of a multi-ion series of the form

full theory of our interatomic potentials is assembled.
Multi-ion contributions to n„,~

can be obtained from the
higher-order components of Gkk and Gdk in Eq. (74), but
these are here neglected as small. In principle, these
neglected terms contribute to v3, v4, and higher poten-
tials, but in practice both the electron density and the to-
tal energy already appear to be well described without
them, especially if the choice of d-basis state

I Pd ) is op-
timized.

n„„;f Z/0= ————Im f &rIk&&kIr&
O k E —gk

(78)

and 5n„,i is the additional one-ion oscillatory density as-
sociated with the remaining terms. The latter will be bro-
ken down into separate self-consistent-screening and
orthogonalization-hole contributions in Sec. V when the

where n„„;f is the uniform density arising from the first
term,

D. Zero-order pseudoatoms

Our desired expansions of Eb",„d and n„,i can only

succeed to the extent that the zero-order system from

which they are made is already a good representation of a
real transition metal. We accomplish this goal through a
zero-order pseudoatom construction, which (i) defines ap-

propriate inner-core states
I P, ) and d states

I Pd ) and

permits the evaluation of all matrix elements entering the

theory, (ii) ensures that the self-consistency requirements
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v„(r)=u, (r)+u„,(r) —V', (79)

with Vo = Vo p—„,(n, gggf) H. ere, as in papers I and II, '

the pseudoatom potential vp, represents the neutral one-
ion self-consistent field

uu, (r) =v„„;f(r)+u;,„(r), (80)

where v„„;fis the Coulomb potential arising from the por-
tion of n„„,f inside an atomic Wigner-Seitz sphere of ra-
dius Rws and v;,„ is the remaining ionic potential, as
given by Eqs. (15}and (16) of paper II. The latter con-
tains appropriate one-ion Coulomb and exchange-
correlation contributions from n, and nz. The constant
exchange-correlation potential p„,(n„„;r) has here been
absorbed into Vo rather than v „making Vo a very small
constant in practice (see Appendix B). The additional lo-
calization potential v&„ in v„ is also taken as previously
and is given by Eq. (62) of paper II. This quantity is a
repulsive barrier potential which operates only for
r &Rws and serves to localize Pd(r) to any desired de-

gree while smoothly shaping its tail in a convenient
Gaussian-like form. The strength of v&„ is effectively
characterized by a logarithmic derivative at r =Res,
which we here precisely define as

Dz =—Rws ~
[lnR2(Rws~+d )l .

dT
(81)

(66)—(68) are exactly satisfied and hence provides values
of Z, Zd, and er, and (iii) leads a good first estimate of
both the electron density and cohesive energy of the met-
al. The zero-order pseudoatom is effectively defined by
Eq. (36) with the atomic reference potential u„ taken in
the form

The quantity %2(r, E) is the solution of the radial
Schrodinger equation associated with Eq. (36) for
r & R ws and energy E, and, in the notation of paper II,

+d +d & 0d I
~V.nif I 0d ) VO

=&d' &—0d I ui..+fiV-f
I dd & (82)

where —6V„„;fis the additional Coulomb potential aris-
ing from the uniform density outside the atomic sphere,
as given by Eqs. (7} and (13) of paper II. The definition
(81) allows one to make a useful correspondence with fun-
damental ideas of band theory. In particular, if E&

'

marks the center of the d bands, then one should expect
the Andersen canonical boundary condition, D2 ———3

[= —(I + 1) for I =2], to be appropriate. ' This expec-
tation is realized in practice and such a choice leads to a
generally good zero-order description of the d bands, as
we demonstrate below. Competing optimization criteria
can be elaborated on, however, as discussed in paper II,
and the most important of these concerns the quality of
the zero-order electron density. Experience to date sug-
gests that for the central transition metals a slightly more
bonding d state, corresponding to values of D2 closer to
—2, is optimum, although as yet we do not have a univer-
sal scheme for obtaining definitive values in this regard.
In the present work, we utilize the nominal choice
D2 ———3, except where noted.

The zero-order pseudoatom immediately provides the
ingredients needed to obtain both the sp-d hybridization
and d-state overlap matrix elements relevant to the d
bands, particularly diaz' and d&&'. The former matrix ele-
ment is evaluated here exactly as in paper II, while the
latter is refined slightly from Eq. (53) of paper II to the
form

&dd'(R;J ) =f pd(r R; )[v„,( I

r ——RJ I
) —v, (

I
r —R,

I
)—5v„,(r —R, , r —R, )]pd (r —R, )dr, (83)

Wd —— 6(ddcr )+4(d—dm. )+2(dd5), (84)

where ddo. , ddt, and dd5 are the m =0, 1, and 2 com-
ponents of —d"„z' evaluated at R,J. =1.809R~s, the fcc
nearest-neighbor distance. Equation (84) is in close
agreement with the d-band width estimated directly from
Wigner-Seitz boundary conditions applied to v, . That
1S,

~~ =Er —Eb (85)

with the top E, and bottom Eb of the d band determined
from the usual antibonding and bonding conditions:

where 5u„,(r —R;, r —Ri ) is the lowest-order approxima-
tion to 5p„',(n;, n ) as ,given by Eq. (11)with n„,i replaced
by n„„;f Afigure of.merit for the matrix element b, dd'. is
the predicted value of the unhybridized d-band width 8'&

in the tight-binding approximation. For the fcc structure
8'& is the X~-X& energy difference, and retaining only
nearest-neighbor matrix elements one has from Eqs. (B7)
and (B9) of paper II the result

and

d
[in%2(Rws, E, )]=—~

dT

d
dr

[inRz(Rws, Eb)]=0 .

(86a)

(86b)

For all 20 3d and 4d transition metals, we find that Eqs.
(84) and (85) agree to better than 1% with the choice
D2 = —3 in defining the pseudoatorn. Furthermore, the
d-band width 8'& yielded by the pseudoatom potential
v

p
is also in good agreement with that determined from

a full self-consistent band-structure potential. To show
this explicitly, we have performed parallel linear-muffin-
tin-orbital (LMTO) band-structure calculations, which
provide appropriate values for comparison. Figure 3
compares our GPT zero-order pseudoatom and our
LMTO values of 8'& for the 3d and 4d metals. For pseu-
doatoms with D2 ———3, the GPT and LMTO results
agree to within 20%, but except for Cu and Ag there is a
small systematic overestimate of 8'& by the GPT, which
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0.8—
I I I I I I I I I I

is greatest for central elements. Physically, this overesti-
mate corresponds to the d bands lying slightly too high in

energy. Increasing D2 to —2 for the central elements
lowers both E&"and W& and moves the GPT and LMTO
results into close agreement, as also shown in Fig. 3.

Of equal interest regarding the zero-order pseudoatom
are the predicted values of the self-consistent valence Z.
Figure 4 displays our calculated GPT values of Z for the
3d and 4d transition metals, as obtained from zero-order
pseudoatoms with Dz ———3 and, for the central ele-
ments, with D2 ———2 as well. For comparison, we have
also shown in Fig. 4 for each element the number of non-
d valence electrons contained within one atomic sphere
obtained from our parallel LMTO band-structure calcula-
tions. ' In the case of the 3d metals, with the narrower
d bands and more localized d-electron density, there is al-
ways a rather good correspondence between the GPT and
LMTO results, with an approximately constant value of
Z near 1.5 predicted in both cases and little sensitivity of
the GPT results to D2. For the 4d metals, on the other
hand, with broader d bands and more diffuse d-electron
density, the correspondence is more subtle. The LMTO
values have magnitudes similar to the 3d series and again

1.8—
I I I I I I I I I I

3d series

show little variation with atomic number, except for a dip
at Pd. In contrast, the GPT values with D2 ———3
display an extended dip over six elements from Nb to Pd.
However, with D2 ———2 the GPT values for the central
4d metals are raised considerably and then agree with the
LMTO values as well as do the corresponding results for
the 3d series.

The volume dependence of Z is also revealing. For ex-
ample, all of the carly and central transition metals are
expected to undergo an s~d transfer of electrons under
compression as the nearly-free-electron sp bands are
pushed up faster in energy than the d bands. One should
expect, therefore, that the zero-order pseudoatom value
of Z will decrease in such metals with decreasing volume,
and we indeed find this to be so, as illustrated in Fig. 5
for Mo. Furthermore, in the case of Mo with D2 ———2,
the correspondence with energy-band predictions is quan-
titative as well. That is, we find Z~O and the end of the
s ~d transition at about the same volume that additional
parallel LMTO calculations ' predict the bottom the sp
bands to be moved above the Fermi level. The reverse
situation, in which a d ~s transfer of electrons takes

0.6— 3d series
1.6—

0.4
1.4— r

k

0.2—
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FIG. 3. Width of the d bands for 3d and 4d transition metals,
as obtained from Eqs. (85) and (86) using the zero-order pseu-
doatom potentials of the GPT and using parallel LMTO band-
structure potentials (see Ref. 35).

1.0 I I I I I I I I I I

Sr Y Zr Nb Mo Tc Ru Rh Pd Ag

FIG. 4. Self-consistent valence Z for the 3d and 4d transition
metals, as obtained from the zero-order pseudoatoms of the
GPT and as inferred from parallel LMTO energy-band calcula-
tions (see Refs. 35 and 36). In the latter case, Z represents the
number of non-d valence electrons contained within the atomic
sphere.
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place, occurs at the end of each series in the noble metals,
as also shown in Fig. 5 for Cu. Again, the predicted in-

crease in Z with decreasing volume from our zero-order
pseudoatom approach is in accord with band-structure
calculations.

The entire evolution from the free atom through the
promoted atom and the zero-order pseudoatom to the
metal can be conceptually summarized as a simple three-
step process. This is shown in Fig. 6 in terms of the one-
electron energy levels of Cu, and is similar for all transi-
tion metals. In the first step, the appropriate transfer of s
and d electrons is made to create the promoted atom.
The s and d orbitals are largely unchanged at this stage,
but the corresponding energy levels are shifted consider-
ably. For a d~s transfer of electrons, as occurs in the
case of Cu, the s and d levels fall in energy (even though

E~„&0) because well-localized d electrons are moved to
less localized s orbitals. In the second step of creating the
zero-order pseudoatom, one permits the s-electron densi-
ty to be spread out uniformly at a density Z/fl, while
holding the d-electron density approximately constant.
This transfers electrons from outside the atomic sphere to
within, pushing the d level higher in energy, and general-
ly above its position in the free atom, and spreading out
the s level symmetrically into an occupied free-electron
continuum of width cF. The total electron density as well
as the position and occupation of the energy levels in the
pseudoatom now simulate the conditions found in the ac-
tual metal. The final step is then to allow pseudoatoms
centered on different sites to interact and thereby com-
plete the remaining structural details of the energy bands.

Figure 6 strongly suggests that physical properties of
the metal such as the cohesive energy, which are mostly
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FIG. 6. Evolution of the valence energy levels from the free

atom through the promoted atom and the zero-order pseudoa-
tom to the metal in Cu. In the latter three cases, Z =1.65 and

Z& ——9.35, corresponding to the observed equilibrium atomic
volume.

dependent on volume rather than structure, should al-

ready be well approximated at the zero-order pseudoa-
tom step. We can now demonstrate that this is indeed
the case. The appropriate expression for the pseudoatom
component of the cohesive energy, Ep,'h, may be readily
derived from Eqs. (28), (32), (59), and (69) with
n val Aunif' We find

Ecoh =Efe+Evol

N 1.5—
tD

C
4)
0$0 10 Mo:

f (k
i w, i

k)dk —Eb'„d (Z)
(2~)3 k & kF

+Ep~ep '

where Ef, is the free-electron binding energy

(87)

0.5— Ef, = ,'ZeF+Zs„,—(n—„„;r) ,'(Ze) /Rws+Z—V—
O (88)
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I / I t
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FIG. 5. Volume dependence of the self-consistent valence Z
for Cu and Mo, as obtained from the zero-order pseudoatoms of
the GPT with D& ———3 for Cu and = —2 for Mo. Here, Ao
represents the observed equilibrium atomic volume. The
dashed portion of the Mo curve is an extrapolation to Z =0,
where the s ~d transition is completed.

and m, is the one-ion component of the total pseudopo-
tential 8' with V replaced by Upa Vo Calculations of

~
E~;h

~

for all of the 3d and 4d transition metals are
presented in Fig. 7 and compared with parallel LMTO re-
sults based on our full self-consistent energy-band calcula-
tions. For each element there is quantitative agreement
to within 20%, and all trends, including the double-
humped structure of each series, are reproduced by Eq.
(87). Moreover, inspection of the last column of Table I
shows that the latter structure is not simply an atomic
trend but is, instead, a subtle feature involving both the
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atom and the solid, which our zero-order calculation has
correctly simulated. It is also interesting to note that the
GPT results show little sensitivity to the choice of Dz,
especially for the 4d metals.

structure energy Eb",„~, this arises from the fourth term in
Eq. (69) involving Mf&. Specifically, we consider the en-

ergy

IV. MULTI-ION EXPANSION
OF THE d-BAND STRUCTURAL ENERGY

NE,«„,=—Im J ln[det(tz&')]dE,
0

(89)

A. Forrnal results
which results from the dominant contribution to 5JV& in
Eq. (64). Here tzz' is the appropriate volume component
of tdd and is given by the expression

We now focus in directly on the most important d-
band structural contribution to the valence band-

r" '(R;,E)=
(E E—"")S„(R,". )+b,"'„'(R,. ) —"I "".(R,",E}

dd ~j ~ Evol I vol(E)
d dd

(90)

Both S~z.(R,j) and /4&. (R,j) are short-range functions of the separation distance R,j between sites i and j, while

I ~z.(R, ,E) is a"long-range hybridization interaction which depends on energy as well as distance. This latter quantity
reduces to I zz'(E) for R,, =O, so that tzz'(O, E}=1. In addition,

~
tzz'

~

&1 for all R,j of interest and tzz,'~0 as

R,"—+ oo.

Equation (89) may be formally developed into a multi-ion series as follows. First we note that the determinant in this
equation involves a 5N X 5N matrix made up of symmetric 5 X 5 blocks. The diagonal blocks are simply unit matrices I
resulting from the orthogonality of d states on a given site, while the off-diagonal blocks are 5X5 matrices T; linking
sites i and j with components tdd. . The determinant may be developed blockwise about its rows and columns and readi-

ly folds down into 5 X 5 form:

L(E)—:ln[det(t~~')]=in det I ——,
' g'P;j+ —,

' g'(()/jk —
—,', g' /t//jk/+ (91)

where we have defined the matrix products

&v=—v /

4ijk =
T/& T/k Tki + Tik Tk& T&7

I,J, k i,j,k, 1

(92)

(93)

and

/t//jk/
= Tii Tjk Tk/ Ti; + T / T/k Tkj Tj; + T/k Tk/ T/j Tj; + Tij Tj/ T/k Tk; + T / T// Tjk Tk; + Tk Tkj Tj/ T(; $/j Qk/

—(t /k $—j/ it/ / fjk—
(94)

ln[det(I + A ) ]=Tr( A —
—,
' A A + —,

' A A A — ), (95)

where Tr denotes the trace of the matrix which follows.
Expanding the right-hand side of Eq. (91) via Eq. (95),
collecting terms with a common structural dependence,
and then resumming and analytically continuing the re-
sult to arbitrary R,-- yields our desired multi-ion expan-
sion of the d-band structural energy:

NE,«„,———,
' g'vz(R;j)+ —,

' g'v3(R;j, Rjk, Rk;)
i,j,k

We then consider the asymptotic limit of large R,J, where
the elements of T;. are arbitrarily small, and use the gen-
eral expansion for any small, square matrix A:

with

L,"(E}—= ln[det(I —iI);j )] .

The three-ion potential v 3 is a three-dimensional function
given by

v3(l, j,k)=v3(Rj, Rp„Rk; }

2 'F=—Im L;k E
0

[L; (E)+L,k(E)—+Lk,.(E)]]dE,

(99)

+ —,', g' V4(R(~ , Rjk, Rk/, Rk, Rk/, R. /j)+ .
ij,k, l

(96)

with

L jk(E) —= lnI det[I —(Pj+/1/jk +Pk; )+P~k ]], (100)

The two-ion potential uz in Eq. (96) is a one-dimensional
function given by

where p; k is the symmetrized matrix product

v2(i, j)=—u2(R, . )

2 F=—Im I.; E dE,
m 0

(97)

4ijk =
p (0ijk +4'jki +4'kij ) (101)

Finally, the four-ion potential v4 is a six-dimensional
function given by
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u4(i j,k, l)=v4(Rl, Rlk, Rkl Rk Rl„,Rll)

2 'EF

=—Im L;~k& Vk + jkl + kli + hj

+[L, (E)+L k(E.)+Lkl(E)+Ll, (E).+Lk, (E)+Ll (E)]]dE, (102)

with

L;jkl(E):—in[det[I (iti —j+p&k+itikl+4l +.itik +4'll )

+ ( Pij k +Wj kl +Wkli + Pllj ) 0'ij kl ]}

(103)

where

itijkl = 4(dijkl +Pj kli +0 klij +Plijk (104)

Simplified forms of the formal results Eqs. (97)—(104)
are frequently useful. One possible approximation is to
note from Eq. (95) that

det(I + A ) = 1+Tr( A )+ (105)

Using this result in the above expressions for L;, , L;~z,

I 1 1 I I I I I I 1

0.8—

and L,~k& removes the determinants, replaces the matrix I
with unity, and replaces each remaining matrix product
with its trace. This approximation is the origin of Eqs.
(3) and (4) in Ref. 24 for uz and u3, respectively, and has
been used in all of our preliminary applications of the
present theory. The approximation itself is most sa-
tisfactory in practice for early and late transition metals
where A is effectively the smallest. Similar approximate
results can be obtained by using Eq. (95) directly to gen-
erate asymptotic series. To fourth order in T, one then
finds

v2(i,j)=——Im f Tr[p, + —,'(p") + ]dE, (106)

F
v3(i,j,k)= ——Im Tr[ —P,"k

7T 0 V

+(4;j4,k+4'jk4k;+4k;4;j)

3d series ]dE (107)

0.6— and

Q4

u4(i,j,k, l) = ——Im Tr[$; kl
'1T 0 IJ

+ ( 0ij 4k l +0i k lj I +Pi I0j k )

Q.2—
K
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2

o LMTO
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Ca Sc Ti V Cr Mn Fe Co Ni Cu

I I I I I I I I I I

4d series

. ]dE (108)

B. Insight from a simple model

These latter expressions can be used to gain considerable
insight into the nature of our interatomic potentials, as
we show in the next section. In writing Eqs. (107) and
(108), we have noted that Tr(p, .

k ) =Tr(iti;jk ) and

Tr(iti jkt ) =Tr(g,jki ).

0.6—

04

0.2—

0.0 I I I I I I I I I

Sr Y Zr Nb Mo Tc Ru Rh Pd Ag

FIG. 7. Magnitude of the cohesive energy for the 3d and 4d
transition metals, as obtained from the zero-order pseudoatoms
of the GPT via Eq. (87) and as obtained from parallel LMTO
energy-band calculations (see Ref. 35).

In this section we briefly consider the consequences of
the above formal results in the context of a simple model
for tdd'. This will allow us to draw some immediate con-
clusions about the convergence of our multi-ion expan-
sion Eq. (96), as well as to elucidate the behavior of the
dominant potentials v2 and u3. Moreover, the model is

sufficiently realistic that it well accounts for the results of
full first-principles calculations on v2 and u3 in the ab-

sence of hybridization [I'dd'(R, ,E)=0], as we shall

demonstrate, and is currently being used as a basis for de-

veloping a parametrized version of the transition-metal
OPT. It should be emphasized, however, that the

simplfying approximations introduced in this section apply
only to this section; the full theory will be restored in Sec.
V.

Our model for tdd' is obtained by ignoring all of the
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hdod'. (R; )t""(R ,E"}~
E"]+iI- (109)

complicating features of Eq. (90), namely, the overlap
term Sdd. , the hybridization term I dd', and the energy
dependence of I dd'. Specifically, we let Two

-ion

2fld
order

I j
2

3rd
order

4th
order

M(')
4

where I p—:—il'dd'(e„) and the real part of I dd' has been
effectively absorbed into Ed". This form is suSciently
simple that the energy integrals in Eqs. (106)—(108) can
now all be done analytically. The quantity I 0 is a posi-
tive constant on the order of one-half of the d-band
width, while the numerator of tdd' now involves only the
energy-independent, tight-binding —type matrix elements
5dd. linking sites E' and j. The contributions of the latter
to the d-band structural energy E,"„„,can be conveniently
expressed in terms of rnornents. Specifically, one can
define a dimensionless partial moment M„" of order n

linking s distinct sites for each of the terms in Eqs.
(106)—(108), such that

M(2 '= g'a Tr((();~)
l,J

Three
-ton

Four
-ion

'
M() j

3 k

E„,„,=E2+E3+E4+ (113)

M(4)
4

FIG. 8. Graphs associated with the partial moments M„"'
defined in Eq. (110) and the corresponding interatomic poten-
tials v„given by Eqs. (106)—(108). Each solid line represents a
matrix element hdd' (or, more generally, t dd') linking two sites.

~dd'(Rt, )~d'd(Rt&)

p2
(110a)

where E2, E3, etc. are the two-ion, three-ion, etc. contri-
butions to E„,„„it is completely straightforward to show
from Eqs. (96) and (106)—(108) that

where a—:(E —Ez"+iI p)/I p is a normalization factor
which effectively replaces the denominator of tdd' with I 0
in Eq. (109}.' Similarly,

E2 ———[ M'z 'Fi('E—F) ,'M'4 'F3(—eF—)+ ]I p, (114a)

E = [ ,'M' 'F—(Z2—)F,'M4 'F3(e—F—)+ ]I, (114b)(3)

2N, ,
X' ~'Tr(0;jk»(3)

I,j,k

(110b)
and

(110c) E =—[ —
—,
'M' 'F (Z )+ ]I (114c)

M4" —= 6~ g'&'T«0;, 4,k+0jk4kt+4k 4tj»(3)

i,j,k

and

(110d}

(4)M4 =
24jy y (r Tr(y jkt + hajj ykl +4jk'Pj( +yjt4jk }

i,j,k, l

(110e)

Each moment has a simple graphical representation in

which the matrix element Add'(R;j ) is denoted by a solid

line segment connecting sites i and j. Thus, M„" is a lat-

tice sum of topologically similar graphs, each involving n

line segments linking s sites. The graphs corresponding
to the five moments defined in Eq. (110}are illustrated in

Fig. 8.
In order to express E,"„„,in terms of the moments M„",

we further introduce the normalized energy

The functions F„(Z) are oscillatory in nature and the fac-
tors F„('Ez) in Eq. (114) reflect the effects of d-band filling
on the various energy components. The number of oscil-
lations in F„('f) increases linearly with n, but the magni-
tude of each function is bounded through the condition
—1 (F„(1,as shown in Fig. 9 for n =1, 2, and 3. Con-
sequently, the convergence of our multi-ion expansion for
E„,„, is govern entirely by the behavior of the moments
M(s)

n

To proceed further, we need specific forms for the
quantities 5dd' and I 0. In the spirit of our model, we
treat here the special case of canonical d bands, where
simple analytic forms can be derived, ' ' which are
consistent with our first-principles results discussed
above. Following the notation of Harrison, both 6&d'
and I 0 can be related to a single intra-atomic length pa-
rameter rd. We find

E Eyol

I-
0

=A —1

6 0
&gd(R; )= ' —4 X for m= 1

yp] A 1 5 rd

2m ~~5
1 lJ 2

(115a}
(115b)
(115c)

and the energy-integral —related functions

F„('g)—= —Im[(Z+ i) "]= —Im(a ") .

Then, writing

where an overall minus sign with respect to conventional
tight-binding matrix elements, as apparent from Eq. (46),
has been taken into account, and
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1.0

TABLE II. Partial moments defined by Eq. (110), as evalu-
ated for the fcc and bcc structures assuming canonical d bands
and Z =1.4.
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FIG. 9. Oscillatory functions F„(Z) for n = 1, 2, and 3 associ-
ated with d-band filling, as defined by Eq. (112).
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As we have shown above, under normal circumstances Z
is rather constant for transition metals with values rang-
ing from 1.1 to 1.7, in which case Cz =1 and the precise
value of Z is not an important issue in addressing the
convergence question. Only in the extreme limit where
Z~O and the d bands become decoupled from the free-
electron continuum does Cz become large and our expan-
sion obviously fail. We have here evaluated the moments
M„" using Z = 1.4 in Eqs. (118) for the cases of (i) an fcc
structure with nearest-neighbor only nonzero matrix ele-
ments and (ii) a bcc structure with nearest- and second-
nearest-neighbor nonzero matrix elements. The values so
obtained are listed in Table II. The dependence of the
low-order moments on crystal structure is relatively

In obtaining the second line of Eq. (116), we have used
e~=(3m Z/0) from Eqs. (58) and (67). Note that
both 6&&' and I 0 have the expected scaling property of
canonical d bands, namely, they vary inversely with the
fifth power of distance. In addition, the ratio biz'/I 0
which enters the moments M„'" is exactly independent of
r& and depends only on the valence Z:

U2(r)= —U,

' 10
Rws

(119)

where v, is the structure-independent constant

Ug = CzF, (e~)I o . (120)

The r ' distance dependence in v2 comes directly from
the two powers of 6&&' appearing in Mz '. The constant
v, is inherently positive since F, )0, as is clear from Fig.
9. Thus, v2 is a purely attractive potential. Furthermore,
v, and hence the strength of the potential is maximum

weak, as expected. In both cases the largest moment is
M2 ' arising from two-ion pair interactions. The rno-
ments M3 ' and M4 ' arising from the three-ion triplet in-
teractions are smaller but certainly not negligible, espe-
cially M4 ', and can combine via Eq. (114b) to make E3
comparable to E2 in magnitude. In contrast, the leading
four-ion moment M4 ' suddenly drops below M4 ' by 1 —2
orders of magnitude in value, depending upon structure.
This is a rather dramatic result of the well-known
phenomenon of destructive interference for high- (I )2)
angular-momentum states. The increased multiplicity
(i.e., the number of graphs summed) with increasing n

and s is first balanced and then quickly overwhelmed by
the alternating-sign cancellations of the m =0 and 1 cou-
plings. This destructive interference applies even more
strongly to the higher moments. For example, we find
that the moment M6 ', which arises from four-ion graphs
analogous to those which contribute to the large three-
ion value of M4 ', is an order of magnitude smaller than

M4 ' in the fcc case and 2 orders of magnitude smaller in
the bcc case. We conclude, therefore, that four-ion and
higher interactions make only a small contribution to
E„,„„while three-ion triplet interactions can yield a con-
tribution of comparable importance to that of two-ion
pair interactions. Clearly, for the most subtle energetic
questions, such as the bcc-fcc energy difference itself,
even four-ion contributions cannot be neglected. For
many other applications, however, it may well be
sufficient to consider only v2 and v3.

One can further use Eqs. (118) to extract explicit ana-
lytic forms for the potentials v2 and v3. If one neglects
the small contribution associated with M4 ', then it is
easy to see from Eqs. (106), (110a), and (114a) that the
two-ion pair potential is just
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for half-filled d bands, where cF——E&", EF ——0, and

F, = 1. Equation (119)is, in fact, representative of the be-

havior of full first-principles potentials calculated for real
metals in the absence of hybridization, as shown in Fig.
10(a) for Cr.

The behavior of the three-ion triplet potential U3 is

necessarily more complicated, but nonetheless can be ela-
borated analytically in the context of our model. This
potential is a three-dimensional function of distances r&,

r2, and r3 defining a triangle. Retaining the contribu-
tions to both M3 ' and M& ', one can infer from Eq. (107}
the general form

v3( ~, r2, r3)=vb f(r, )f(r, )f(r, )L(8,, 8, )

+v, [f (r, )f (r, )P(8, )

+f'(r, )f'(r, }P(8,)

+f'(., )f'(., )P(8,)], (121)

'5
~wsf(r)= (122)

where 0&, 02, and 03 are the angles subtended by r, , r2,
and r3, respectively. For canonical d bands, it follows
from Eqs. (114b) and (118) that

and that the structure indep-endent constants vb and v,
are given by

-20—
180

b CzP2(~F )~0 (123)
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The angular functions L and P in Eq. (121) depend only
on d symmetry and may be expressed entirely as polyno-
mials involving sines and cosines. The behavior of these
functions, as well as v3 itself, is most easily understood by
considering the limit r2 ——r&

——d and 83——8, in which case
r3 ——2d sin(8/2) and 82 ——8( ——(n —8)/2. The relevant
functions L(82, 8) and P(8) are displayed on Fig. 11.
These functions are normalized to unity at 8=m and
show local minima near 8=2@./3 (120') and 8=m/2
(90'), respectively. The full potential v f becomes a func-
tion of d and 8 only and is simplified to
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FIG. 10. Two-ion and three-ion interatomic potentials ob-

tained from the analytic model discussed in the text for Z = 1.4
and Zz ——4.6 and from first-principles calculations for Cr in the
limit of no hybridization [I zz'(R„,E)=0]. (a) vz(r), with the
model result from Eq. (119). The location and number of fcc
and bcc near neighbors are indicated. (b) v 3 {d, 8), with the
model result from Eq. (125). The location and number of three-
ion triangles where d approximates a nearest-neighbor distance
in the fcc and bcc structures are indicated.
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FIG. 11. Angular functions L(02,0) and P(8) associated
with the model three-ion triplet potential v&(d, O) given by Eq.
(125). Here, 82 ——{~—0)/2.
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lows that such a pair potential must vary with interatom-
ic distance as r, as indeed found by Wills and Har-
rison. In contrast, our pair potential emerges from a
linear relationship between E,«and Mz ', is independent
of structure, and varies as r ' . This behavior results
directly from separating out a large volume term E"„& in
the d-band energy and associating only the small residual
structural energy E,"„„„with the pair potential. Ulti-
mately, this separation is possible because of the fact that
in bulk transition metals the d-band width is basically a
volume-dependent quantity with only a weak structure
dependence, as demonstrated by out zero-order pseudoa-
tom results through Eq. (85). Likewise, the theory pro-
posed by Dagens, which does allow for a volume term
in the d-band energy, yields a pair potential with an r
dependence at short range for canonical d bands. If the
theory of Wills and Harrison is reformulated by expand-
ing E,"„about some average structure at fixed volume,
then it too yields an r ' dependence in the resulting pair
potential, as Dagens has noted.

In the tight-binding studies, only Carlsson et al. have
considered higher moments and the occurrence of non-
pair interatomic potentials. However, tight-binding
theory itself provides no fundamental analytic link be-
tween E„,and the higher moments, so mostly what has
been studied are correlations between the total energy
and the third and fourth moments for various geometries
and conditions of band filling, using simplifying assump-
tions about the density of states. In contrast, we have ob-
tained here general linear relationships between E„,and
the higher moments through Eq. (114), and consequently,
both well-defined and structure-independent three-ion
and four-ion interatomic potentials.

L(82, 8)

32 sin (8/2)
20

~ws
V3(d, 8)=Ub

P(02)
P(&)+

512 sin' (0/2)
~ws

+v,

(125)

V. COMPLETION OF THE FULL THEORY

We now return to the full theory and complete the cal-
culation of the valence-binding energy of the solid Eb';„"d,

as given by Eqs. (28) and (69). Up until this point, only
two classes of terms have been neglected in our develop-
ment: (i) three-ion and higher exchange-correlation con-
tributions in Eqs. (10) and (13), and (ii) two-ion and
higher electron screening contributions to the valence-
electron density in Eq. (76), which also make three-ion
and higher contributions to Eb;„"d. If we similarly neglect
all additional three-ion and higher components of the
valence band-structure energy Eb",„d not already con-
tained in Eq. (89) for E,",„„„then we can anticipate a re-
sult of the general form

Unlike the pair potential v2, the triplet potential v3 can
be either attractive or repulsive depending on d-band
filling. For half-filled d bands, Ub ——0 since F2=0 and
v, & 0 and maximum since F3 ———1, so that v3 is purely
repulsive. Figure 10(b) illustrates the contour
d =1.8Rws from Eq. (125) for conditions simulating Cr:
Z =1.4 and Zd ——4.6. The potential exhibits a relatively
deep minimum as a function of 8 near 80', in agreement
with the corresponding first-principles potential for Cr
calculated in the absence of hybridization, as also
displayed in Fig. 10(b). For sufficiently small filling of the
d bands, on the other hand, vb & 0 and v, & 0, as is evident
from Fig. 9, in which case v3 is purely attractive. This
condition is indeed realized in the early transition metals,
as previously discussed for the case of Ba, and as we
will demonstrate for the 3d and 4d metals in Sec. V. In
the opposite limit of large d-band filling, vb y 0 but v, &0,
in which case v 3 is again attractive if the magnitude of v,
is greater than that of vb. This is true for the late 3d and
4d metals, as we will further demonstrate in Sec. V.

It is also of interest to briefly compare and contrast our
model with some of the central tight-binding ideas which
have been suggested in recent work on transition-metal
interatomic potentials. The point of clearest con-
nection is through the moments of the d-band density of
states, which are linearly related to the moments we have
defined in Eqs. (110). In the simplest tight-binding
description, the total d-band energy E„, ( =E„„—
+E,«„, ) is assumed to be proportional to the d-band
width and hence to the square root of the second mo-
ment. In our notation this is a dependence of I 0(M2' ' )'

and for nearest-neighbor interactions implies that Eg
varies as the square root of the number of nearest neigh-
bors. Further equating E„,to a sum over pair potentials
necessarily requires a structure dependent pote-ntial which
varies inversely with the square root of the number of
nearest neighbors. A result of this form has been explic-
itly derived, for example, by Wills and Harrison, ' and is
also implicit in the work of Carlsson et a1. and Mac-
Donald and Taylor. For canonical d bands, it also fol-

+gjpd(z)=+„](II)+ g [Up(& J)+Up (l,J))+ g U", (i j,k)+ g U4(t j,k, l)+
2N, 6N, k

' 24N,
(126)

That is, v3 ——v 3, v4
——v4, etc. and the remaining contribu-

tions that need to be considered here are contained in ei-
ther the pure volume term E„«or the pure pair-potential
term v 2"'. Moreover, at the pair-potential level of treat-
rnent essentially all total-energy contributions implicit in
the local-density equations are thereby included in our

formalism. Only the three-ion and higher potentials are
then approximated and in each case by the dominant
band-structure component of the potential through Eq.
(89). The explicit derivation of E„,~ and v2" is similar to
the corresponding development presented in paper II for
empty and filled d-band metals and we outline the details



3218 JOHN A. MORIARTY 38

TABLE III. Summary of all expansion quantities entering the full transition-metal GPT, their rela-
tive order of smallness in terms of an arbitrary dimensionless scale parameter A., and the maximum or-
der in A, to which they are treated in E„„,v2, v3, and v4. Note that quantities treated to order A, enter
only E„,& and v2.

Quantity

W, Wpa, Pc
vol a

V kd s ~Itd ~ ~kd

dd', wdd ~, a dd

Estruc b
d

wstruc b
~kd
gggstruc ~struc b

~~dd
+struc A struc ~struc c
dd' ~ dd' & dd'

Assigned order

g 1 /2

g3/2

i2
i2

Maximum order
Treated

i2
i2

all orders
i2

A,
2

i2

'These quantities also appear in I dd' and tdd', where they are treated to all orders.
Decomposed and reabsorbed into the total energy in terms of other quantities, as discussed in Appen-

dix D.
'These quantities only first appear in the theory at order A,

' and hence are neglected in the present treat-
ment.

in Appendix D. A summary of the small expansion
quantities entering the full theory and the order to which
they are thereby treated is given in Table III. We focus
here on the new ingredients and the central results which
emerge from them. We begin by completing the calcula-
tion of the one-ion oscillatory components of the
valence-electron density contained in Eq. (76) which are
required to obtain v 2'".

5n„„(r)= g 5n „'„(r—R, )

=5n, (r)+5n,h(r) . (127)

Neither 5n~, nor 5n, h involves any addition of electrons
to the system, so that both of these densities oscillate
about zero as a function of r. The screening density is
composed of all k+k' terms in Eq. (76) and can be
developed into the familiar reciprocal-space form

A. Oscillatory components of n „,&
5n~, (r)= g'S(q}n, (q}e'&'. (128)

The small one-ion components of the valence-electron
density n„,&

can be separated into self-consistent-
screening and orthogonalization-hole contributions ex-
actly as for nontransition metals:

where the prime excludes the q=0 term from the sum,
S(q) is the usual structure factor, and using Eq. (59) of
Ref. 2,

4
n ()=„,q, f„„ (k+q

~
tv

~
k)

~k ~k+q

I

4 's vw+qavut

m 0 0 ~ „(E E, )(E —e„)(e„——eg+q)
(129)

Here, m is the one-ion component of the total pseudopo-
tential W and the sum over d states is now a sum over
states on one site only. ' The first term in Eq. (129)
represents the screening density arising from the s and p
valence electrons, as in the case of simple metals, while
the second term is the additional screening density pro-
duced by the d electrons through hybridization. In the
limit E,~E&", the energy integral in the second term
can be done analytically and, after some manipulation
and making use of Eq. (B3) of Appendix B, one recovers
Eq. (36) of paper II for an empty- or filled-d-band metal.
For transition metals the contribution of this term is con-
ceptually similar, but such energy integrals must always
be done numerically. In either case, Eq. (129) represents
an implicit equation for n„, in terms of the full one-ion
self-consistent potential v which, in turn, depends on n„,.

I

Using Eq. (38) of paper II for v(q) in terms of n„,(q), v

can be eliminated and n, determined self-consistently.
The orthogonalization-hole contribution in Eq. (127)

consists of all remaining terms in Eq. (76) and can like-
wise be developed into the familiar rea1-space form

Z*—Z
5noh(r)= Z ng, f+ g n,„(r—R,. ), (130)

where Z' is an effective valence and n,h(r —R,. ) a local-
ized depletion of electron density from within the interior
of the site i due to valence-core wave-function ortho-
gonality. The latter has both an inner-core component,
n,'h, as in the case of simple metals, and a d-state com-
ponent which is modified by hybridization:



38 DENSITY-FUNCTIONAL FORMULATION ~. . . III. 3219

2 F
n,„(r)=n', h(r) ——Im

d, k

with

&r
I dd &vdkvkd (Cd Ir&

(E E—, )(E—ek)

(r
I pd )vdk((k I

r) —Skd(pd I
r) }+c.c. 5Zb, „d

(E E„—)(E —sk)
(131)

n,'„(r }= — f ( & r
I p I

k & & k
I
r ) + ( r

I
k & & k

I p, I
r &

—( r
I p, I

k & & k
I p. I

r & }dk .
k &kz

(132)

Here p is the one-ion component of the total inner-core projection operator P . The effective valence is then

I I

Z'=Z —f n,k(r)dr=Z; ——Im f g dE —5Zb, „d,
d k (E E„}(E——sk)

(133)

with

Z,'=—Z —f n,'k(r)dr

=Z+ '",f„„«Ip,Ik&dk. (134)

The terms in Eqs. (131) and (133) involving the small
quantity 5Zb, „d arise from the Fermi-energy corrections
contributions to Eq. (76), as discussed in Appendix C. In
the limit E„~Ed",Eqs. (131)and (133) can be reduced to
Eqs. (21) and (25), respectively, of paper II for an einpty-
or filled-d-band metal. While invariably Z,*)Z corre-
sponding to a net depletion of valence electrons from the
inner-core region, either Z') Z,* or Z* &Z,* is possible

in transition metals. That is, the d-state component of
n, h can actually correspond to either a net depletion or
accumulation of electrons in the outer-core region de-
pending on d-band filling and other conditions. Typical-
ly, we find Z' )Z,' at the beginning and in the middle of
the transition series and Z'&Z,' near the end of the
series, such that in the noble metals Z* =Z.

B. Valence binding energy Eb;,"z

Using the above results for 5n„, and 5n,k together
with Eqs. (28) and (69), the valence-binding-energy calcu-
lation can be completed. From the analysis in Appendix
D, one finds

Eb';kd(Z)=Et, +E„,i+ f (k
I w~, I

k)(1+(k Ip, I
k))dk+E, hk&kF

vdk(k
I w~, I k)vkd vdk(k I p, I k)vkd

~ + dE
(E E„)(E—ek)2— (E E„)(E—sk)—

——,'(k
I
w, I k~)5Z„,„+E,";"'(z')

+ g'
I (q)

I

' '(q)+ g' [v, (i,j)+v.'i(i, j)]+ g' v, (i,j,k)+ g' v, (i,j,k, l)+
q l,j i,j,k i,j,k, l

(135)

The initial eight terms of Eq. (135) all contribute to the
pure volume component E„,&. The first three of these are
just the contributions we isolated in the zero-order pseu-
doatom cohesive energy, Eq. (87). The term E,h is an
orthogonalization-hole self-energy correction due to the
finite size of n,k and is given by Eq. (50) of paper II. The
next four terms of Eq. (135) all contribute to the pair po-

I

tential V2. The first of these latter terms, E,",""'(Z'), is
the structural component of the electrostatic energy of
point charges Z*e immersed in a uniform compensating
background and is given by Eq. (44) of paper II. The
second is a band-structure contribution involving an
energy —wave-number characteristic F (q) given by

o 2Q
I &k+qI w Ik& I' 4 F vdk+q(k+qI w Ik&vkd

(2m. }' "& k~ ek —ek+, o dk (E E„)(E—ek)(ek —ek—+ )

2me 0
[G(q}[n.„(q)]'+[1—G(q)][n, (q)] I . (136)
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ol(}~j) core
Z. —Z

J J J
Z nuc + V core + xc

Here, G(q) is the exchange-correlation functional defined
in paper I and n,h(q) is the Fourier transform of n,h(r).
In the present work, we use the analytic expression for
G(q) developed by Ichimaru and Itsumi, which is very
similar to the form of Geldart and Taylor adopted in

papers I and II, but somewhat simpler to apply. The
present G(q), however, is still based on the Hedin-
Lundqvist exchange-correlation energy. The final term
contributing to v2 is a direct overlap potential vo&, which
in the shorthand notation of papers I and II and Appen-
dix D can be expressed as

in all of our preliminary applications of the transition-
metal OPT. as well as in the calculations presented
below. The final term 5E„,(i,j) in Eq. (137) is a correc-
tion for the increased kinetic energy due to the overlap of
d states on site i with the inner-core states of site j and
vice versa. This correction becomes important for nearly
filled d bands and is discussed in detail in the next sec-
tion.

The two-ion terms in Eq. (135) for Eb';„"d(Z) are in a
mixed reciprocal-space and real-space representation. To
convert this equation to the real-space form (126) requires
only standard transformations. The total pair potential
U2(r) becoines

2U(P)=U2(P)+ pU(P)
Z. +Z

+ z n nuc

Z. —Z
Z Vnuc +V core

a
(Z "e) 2 f }} sin(qr)

d
T 7T 0

+5E„,(i,j )+5E,„(ij )+5E„,(ij ), (137)
+U2(r)+U,'i(r), (139)

5E.h(},j ) =2}}oh
Z. —Z

J J J
Vnuc +Vcore +Vxc

a

+noh
Z —Z J

Z nuc
a

+(n,'},+n, h )5U„', (138)

where n,'h=—n, h(r —R;), Uj„ is the Coulomb potential
arising from njh, and 5U'„J, —:5U„,(r —R, , r —R ), as
defined in Eq. (83). However, 5E,h is largely compensat-
ed for by orthogonalization-hole contributions to hdd in
the valence band-structure energy. Since we are here
neglecting the latter contributions in Eq. (83) for hdd', it
is also appropriate to neglect 5E,h. This has been done

where integrations over the volume of the solid are im-
plied, as in Eq. (12). Here we identify n„„with n; and
Uj„„with U, as in Eq. (28), while n„'„,—:Z, 5(r —R, ) and
U J„,—:Z, e /

~

r —R
~

. In addition, U J, and 5E„,(i,j ) are
the lowest-order approximations to p„',(n ) as given by
Eq. (8) and 5s„',(n, , n ) as given by Eq. (15), respectively,
with n„,&

replaced by n„„;f in both cases. The term
5E,„(i,j) is a small correction for the overlap of the
orthogonalization-hole density on site i with site j and is
given by

where Fz is the normalized energy —wave-number
characteristic

0. ,F'(q} .
2m(Z e)

(140)

In addition, if we denote the pure volume terms in Eq.
(135) as E„,i, then the total volume contribution E„,i in

Eq. (126}is

E„„=E„,}+—,'(Z'e )
' ——f F~(q)dq

Rws ~ 0

2m d F~(0)
+ ~, . (141)

dq'

Likewise, one can convert Eq. (135) into a reciprocal-
space representation which parallels the result obtained
in paper II for empty- and filled-d-band metals. This can
be done by first subtracting from v2 its long-range hybrid-
ization tail to create the short-range overlap potential

I'dd'(r, E)1 &'d(r, E)
U,}(r)=U2(r)+ —Im f g dE

7r 0 dd, (E —E }2

+U,}(r), (142)

and then adding this tail back in reciprocal space to
create the total energy —wave-number characteristic

I 2
V g+qd V

F(q)=F (q) —Imf— dE .
(E E„) (E —e},)(E},—e},+q)—

(143)

In this representation, the pair potential v2 can be written

U2(r) = 1 —— FN(q) dq +Uo}(r),
(Z'e ) 2 ~ sin(qr)

1 0

(144)

with Fz(q) related to F(q) as in Eq. (140). This result, of
course, is exactly equivalent to Eq. (139) and, in practice,
the correspondence is a useful check on the numerical
methods used to perform the numerical integrations. Fi-
nally, in subtracting and adding the hybridization tail,
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Ukd Vd

dE .
(E E,—) (E —e„)

(145)

Figure 12 illustrates the impact of U2"' on the total pair
potential Uz for the case of Cr. In the vicinity of near

neighbors, the net effect is to make Uz more attractive.
This is primarily the result of hybridization acting
through the oscillatory electron density 5n„,&. In Cr the

effect is seen to be relatively large compared to the direct
effect of the hybridization term I dd' on U2 alone. Howev-

er, the increased attractive nature of U2 relative to U2 for

the central transition metals is largely countered by the

more repulsive nature of U3 due to hybridization, as will

be demonstrated below. In addition, at sufficiently short
distances the attractive components of Uz will be bal-

anced by the combined repulsive behavior of the
Coulomb potential (Z'e) Ir and the increased kinetic

energy of overlapping d and inner-core states. This typi-

cally results in a deep minimum in the potential, which

for the central transition metals can lie well inside

nearest-neighbor distances for metallic structures, as

shown in Fig. 12 for Cr. But, again, the corresponding
repulsive nature of U3 makes this minimum physically
inaccessible in such cases.

50
I

CV g)
CP

)M
(Xl

K
E

-50
~~
CI
0
CL

+o -100
~~
0

i =j and q=O terms are absorbed into the volume term,
which then becomes

(I FPE)1'
E„' (

E—„)+—Im
m' o ~ (E E—)

(n) —=— (3H) n'3
ke =5 2m

and the related localized functional

(146)

sg (n; )=Ek (n„/+n;) —sk (n„/), (147)

as in Eqs. (8) and (9). In analogy with Eqs. (10) and (13),
the two-ion overlap contribution to the kinetic energy is
then just

Ek, (i,j)=sk,(n;+nj ) —sk,(n;)—sk, (n ), (148)

where, as in 5E„„we identify n; with n,'„„replace n„„
with n„„;f, and an integration over all space of the right-
hand side of Eq. (148) is implied. From this result for
El„(i,j ) we must subtract the kinetic-energy contribution
associated with d-state overlap alone, which is already
contained in v2. This is given to a good approximation
by

El„(i,j ) =4

where

Z~ S~q (R(J )b~'~(R; )

1 —SX

Zd
g Sg~.(R() )hq'~(R(J )+

. d, d

(149)

S; = g S~~(R; )S~~(R; ) .
d, d'

(150)

The first line in Eq. (149) is an exact result in the limit

Z& ~10 (or Z&~0) where the d band is completely filled

(or empty). The second line appears explicitly in Eq. (52)
of paper II for v, ~

in a filled (or empty) d-band metal.
Our final kinetic-energy correction is then taken to be

C. Calculation of 5E&,(i,j)
We now turn briefly to the kinetic-energy correction

term 5E„,(i,j) introduced into Eq. (137) for U„. The at-
tractive electrostatic and exchange-correlation contribu-
tions to the d-state —inner-core-state overlap have already
been included in Eq. (137). To obtain the compensating
repulsive kinetic-energy contribution to this overlap, we
proceed in the spirit of the cluster expansion developed in
Sec. II for the exchange-correlation energy, which yield-
ed the corresponding term 5E„,(i,j ) Sp. ecifically, we in-
troduce the kinetic-energy functional

-150 5Eg, (i,j)=Ek, (i,j)—Eg, (~',j) . (151)

-200
1.0 1.5 2.0 2.5 3.0 3.5

Relative separation r/R~s

FIG. 12. Relationship of the full two-ion pair potential v&(r)

in Cr to its band-structure d-state component v2(r). Also

shown for comparison is v 2 (r) calculated in the limit of no hy-

bridization [1 ~~', (R„,E)=0], as in Fig. 10(a). The location and

number of fcc and bcc near neighbors are indicated.

At sufficiently large separation where the overlap is
confined entirely to d states, Ek, (i,j ) does indeed ap-

proach Ek, (i,j), as shown in Fig. 13 for Cu. At smaller

separations, 5E„,(i,j ) &0 as expected, and in the case of
Cu this correction amounts to 50% of Ek, (i,j ) at the fcc
nearest-neighbor distance. However, the percentage con-
tribution of 5E„,(i,j ) drops steadily as one moves to the
left in the transition series away from the noble metals.
In the central transition metals, the nearest-neighbor con-
tribution of 5Ek, (i,j) is typically only 10% or 15% of
E~, (&,g)
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FIG. 13. Two-ion overlap kinetic-energy contributions to the
full pair potential vz(R;j) for Cu, as discussed in the text. The
location of the fcc nearest-neighbor distance is indicated.
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D. Interatomic potentials for 3d and 4d metals .M ~ w
~ y

The full theory developed above has been applied to
calculate two-ion pair potentials vz and three-ion triplet
potentials vz for all 20 of the 3d and 4d transition metals.
The two-ion potentials have been obtained using Eqs.
(97), (98), (137), (142)-(144), and (151), with all quantities
entering these equations evaluated from first principles.
Our calculated uz(r) for the 3d series are illustrated in

Fig. 14 and those for the 4d series in Fig. 15. Both series
show systematic behavior which is driven in large part by
the d-electron physics we have elaborated on here. Be-
ginning on the left-hand side of these series with Ca and
Sr, uz(r) displays a shallow minimum in the vicinity of
the fcc nearest-neighbor distance and weak Friedel-like
oscillations at long range. The potentials for Ca and Sr
are qualitatively similar to those for simp1e metals on the
left-hand side of the Periodic Table, although quantita-
tively the d-state hybridization is essential, as we have
previously emphasized in paper II. As one moves to the
right in the Periodic Table, the depth of the first
minimum increases, its position moves to shorter dis-
tances, and the amplitude of the long-range oscillation in-
creases. This behavior primarily reAects the effects of d-
band filling, but is strongly amplified by the 1-state hy-
bridization as in Fig. 12. These trends continue through
the center of each series and then begin to reverse them-
selves as one moves towards the end of each series. At
the same time, the repulsive overlap kinetic energy
Ek, (i,j ) is growing such that by the time Cu and Ag are
reached the potential in the vicinity of near neighbors has
been pushed entirely to positive energy. The resulting
picture of the noble metals as having purely repulsive
near-neighbor potentials, while at the same time an in-
creased cohesive energy due to E„,&, appears to be con-

-50

-100
}Late 3d series

-150

-200
1.0 1.5 2.0 2.5

I

3.0 3.5
Relative separation r/R~s

FIG. 14. Two-ion pair potential vz(r) for the 3d transition
metals, as calculated from the full theory of Sec. V. The loca-
tion and number of fcc and bcc near neighbors are indicated.

sistent with both a band-theory description of cohesion
and the observed behavior of intermetallic compounds in-
volving noble-metal atoms.

The corresponding three-ion potentials have been ob-
tained using Eqs. (99)—(101), again with all quantities
evaluated from first principles. As in our model results of
Sec. IV B, the full three-dimensional triplet potential
u3(r„rz, r~ ) is most easily discussed by considering the
limit r, = rz, where r~ =2d sin(8/2) and the potential is a
function of distance d and angle 0 only. Figures 16 and
17 illustrate two of the most prominent types of behavior
that we find for u&(d, 8) in the transition metals. Figure
16 shows the dominantly attractive nature of v& for Sc,
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which is typical of the early transition metals, while Fig.
17 shows the dominantly repulsive nature of v3 for Cr,
typical of the central transition metals. These results also
demonstrate that U3(d, 8) is a rapid function of both d
and 0, in each case increasing in magnitude with decreas-
ing d and exhibiting minima or maxima at intermediate
angles 0. The general magnitude of v3 also varies rapidly
with atomic number, as shown for the 3d and 4d series in
Figs. 18 and 19, respectively, and near each series end v3
again becomes primarily attractive. As with v2, these
trends reflect the effects of d-band filling, with the max-
imum strength of v3 occurring near the center of each
series. In addition, the relative importance of v3 com-
pared to v2 also tends to be greatest for the central transi-
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FIG. 16. Three-ion triplet potential v3(d, 0) for Sc, as calcu-
lated from the full theory of Sec. V in the range
1.5 (d/R~s (2.0.

tion metals. At the ends of the series in Ca, Sr, Cu, and
Ag, we find v3 to be negligibly small. At the same time
and as in the case of v2, d-state hybridization strongly
amplifies the magnitude of v3 for a given element. In the
central transition metals, this results in a great deal of
cancellation of the hybridization contributions due to the
opposite signs of vz and v3. This cancellation is readily
evident in calculated physical properties. One can show
this explicitly by multiplying each interatomic hybridiza-
tion term coupling sites i and j in the total energy by
exp[ a(R;i/R—ws) ] and allowing a ' to grow from
zero. Figure 20 illustrates the behavior of the pair-
potential energy Ez, the triplet energy E3, and their sum
for bcc Cr as a function of a '. While the magnitudes of
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FIG. 15. Two-ion pair potential v&(r) for the 4d transition
metals, as calculated from the full theory of Sec. V. The loca-
tion and number of fcc and bcc near neighbors are indicated.

FIG. 17. Three-ion triplet potential v3(d, e) for Cr, as calcu-
lated from the full theory of Sec. V in the range
1.5 (d/Rws &2.0
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FIG. 18. Three-ion triplet potential U3(d, 8) for the 3d transi-

tion metals, as calculated from the full theory of Sec. V with
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FIG. 19. Three-ion triplet potential U3(d, 8) for the 4d transi-
tion metals, as calculated from the full theory of Sec. V with

d/Rws ——1.8

E2 and E3 increase rapidly as the hybridization strength
grows, E2+E3 remains relatively small and tends to os-
cillate about zero.

This effective cancellation of hybridization contribu-
tions has, we believe, a fundamental physical origin, as
well as important practical consequences. The physical
origin lies in the very nonspherical nature of the Fermi
surface in transition metals, which implies that any net
long-range Friedel-type interaction should be strongly
damped or screened. In the present theory, the long-
range tails of the potentials v2, v3, v4, etc. are dominated

by hybridization contributions and screening is only for-
mally achieved through destructive interference among
the various multi-ion interactions. In real-space calcula-
tions with full hybridization tails included this presents
some difficult convergence problems in most cases. One
alternative is to transfer part of the total energy to re-

ciprocal space where the convergence is greatly im-
proved. This is readily achieved for the two-ion interac-
tions through the energy-wave-number characteristic
I' (q},but is very cumbersome for the remaining multi-ion
interactions and, consequently, has not as yet been suc-
cessfully developed in the present context. A more at-
tractive alternative is to simply screen the real-space hy-
bridization interactions from the outset. We have
developed several closely related schemes to do this,
including that discussed above in connection with Fig.
20. These schemes still require more rigorous
justification, but as a practical matter they are extremely
effective. An example of their use is shown in Fig. 21,
where we display calculated [100] phonon spectra for bcc
V and Cr obtained using pair and triplet potentials with
interatomic hybridization contributions screened in the
manner of Fig. 20. In both cases, pair interactions alone
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FIG. 21. Phonon spectrum in the [100] direction for the 3d
bcc metals, as calculated with two-ion pair potential v& only,
with the three-ion triplet potential v3 included, and as observed
experimentally. In the theoretical results, the interatomic hy-
bridization contributions have been screened in the manner dis-
cussed in the text. (a) V, with D2 ———2.0 and the experimental
results from Ref. 48; (b) Cr, with D2 ———2.25 and the experi-
mental results from Ref. 49.

are seen to be inadequate to explain the observed spectra,
with the frequencies too low in magnitude and the longi-
tudinal branch lying below the transverse branch and ei-
ther soft or unstable low-q modes. Addition of the triplet
potential in both cases raises the calculated frequencies,
pushes the longitudinal branch above the transverse
branch, and accounts well for the prominant peaking of
the longitudinal branch near the center of the zone in Cr.
None of these results is qualitatively sensitive to the de-
tails of the screening.

VI. DISCUSSION

The formal similarity between the present interatomic
potential expansion for transition metals, Eq. (1), and the
corresponding result for simple metals immediately sug-
gests that the range of application of our potentials
should include the vast majority of structural, thermal,
and mechanical properties of both the bulk solid and the
liquid. Examples of properties on which we have ob-
tained encouraging preliminary results ' include
cohesion, the vacancy-formation energy, phonons,
structural phase stability, melting, and both the solid and
liquid equation of state. More generally, we anticipate
that these potentials can be useful not only in connection
with analytic calculation of physical properties, but also
in computer-simulation studies with Monte Carlo and
molecular-dynamics techniques. In this regard,
simplified analytic fits of the multi-ion potentials will
clearly be desirable. While the multi-ion potentials may
be calculated without difficulty for any given ion
configuration, efficient storage of the potentials for the
enormous number of configurations which must be con-
sidered with three-ion and four-ion interactions is still an
unsolved problem. One possibility we are exploring is to
fit the potentials to appropriate separable forms, such as
Eq. (121) for v3. Another tract we are pursuing is to de-
velop the model results of Sec. IVB into a complete
parametrized version of the transition-metal GPT.

There are only two obvious limits in which the
transition-metal GPT developed here is expected to fail.
The first of these is in the ultrahigh-pressure regime
where the s ~d transition has been completed and Z ~0.
Even for most high-pressure applications, ' however,
this is not a severe limitation, and near normal solid or
liquid density, of course, is of no concern at all. The
second limit is when the average near-neighbor environ-
ment ceases to be bulklike, such as occurs at free sur-
faces, near cracks or large voids in the solid, or at hetero-
junctions. In these instances, the valence s- and p-
electron density is very nonuniform and our zero-order
psuedoatom is no longer an adequate starting description
of the system. Neglected higher-order multi-ion contri-
butions to both the electron density and the total energy
become large and essential to a proper treatment. On the
other hand, extended defects of the homogeneous system,
such as stacking faults, dislocations, and grain boun-
daries, are much more favorable cases and should be
treatable with the present potentials.

There are also two natural extensions of the present
theory which we are currently attempting to imple-
ment. The first is to AB binary systems including in-
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termetallic compounds, metallic glasses, quasicrystals,
and disordered alloys. Except for the relatively new case
of quasicrystals, such extensions have been successfully
carried out in the case of simple metals. In the context
of the GPT, it should be possible to treat systems in
which A is a transition metal and 8 is either a simple
metal or another transition metal. The second possible
extension of the present theory is to the light actinide
metals, where the 5f electrons play the role of the d elec-
trons in transition metals and the 6d, 7s, and 7p electrons
play the role of the valence s and p electrons, as model
studies have suggested. ' A1I of the methodology we
have developed here for localized d states should apply to
localized f states in a straightforward way. The only ad-
ditional complication is the clear need for a relativistic
treatment of the inner core in such heavy metals. The
same relativistic treatment, of course, could also extend
the transition-metal GPT directly to the Sd-series metals.

Other refinements and extensions of the present theory
are also possible. If one so desires, those particular ex-
pansions carried out here only to second order, as sum-
rnarized in Table III, may be systematically developed to
higher order. This will mainly produce additional contri-
butions to U3 and U4. However, we expect these contribu-
tions to be small and that one will rapidly approach a
point of diminishing returns with such refinements.
Another possible extension of the transition-metal GPT
is to magnetic systems. For a ferromagnetic metal like
Fe this is clearly necessary for a realistic treatment of its
structural and vibrational properties. The replacement of
our local-density formalism with a corresponding local-
spin-density (LSD) formalism would allow the incorpora-
tion of spin-polarization effects in the same manner as
LSD band theory.
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APPENDIX A

In this appendix we derive Eq. (22) for the atomic pro-
rnotion energy and discuss its accuracy for transition
metals. The LD total energy of the unpromoted free
atom with electron density no can be written in the short-
hand notation of the text as

Eto«t (nu)= pa c 2tno—u(—nu)

+no[c„,(no) —tM„,(ntt )], (Al)

where v(nu) is the Coulomb potential arising from no
The electron density of the promoted atom, n, differs
from nu by some small amount 5n:

n =no+5n . (A2)

The promoted-atom orbital energies c are shifted from
the c, of the unprornoted atom by the extra Coulomb
and exchange-correlation potentials accompanying 5n
and, to a lesser extent, by the small amount of relaxation
in the orbital wave functions. It is straightforward to
show that
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ga c = ga c +(nu+5n)[u(5n)+p„, (no+5n) —p„,(nu))+ ga 5c (A3)

where 5c represents the orbital-relaxation contribution. Using the corresponding expression to Eq. (Al) for the pro-
moted atom and Eq. (A3), one finds

E;,", (nu+5n)= ga c —
—,tnuv(nu)+ —,'5n u(5n)+n[c„,(n) —p„,(no)]+ pa 5c (A4)

An exact form of the promotion energy is thus

EO Eatom( +5 ) Eatom(n

= g (a —a }c + ,'5n u(5n )+—nc„,(n) —nuc„,(nu) —5n p„,(no)+ g a 5c (A5)

The most commonly used approximation to the prorno-
tion energy is just the first term in Eq. (A5):

E, =g(a —a )c (A6}

The Coulomb correction to this result in Eq. (AS) is
clearly of order (5n) . Expanding nc„,(n) in powers of
5n and using Eq. (6), it is also easy to show that the

exchange-correlation corrections are of the same order.
Thus, neglecting orbital relaxation, Eq. (A6) is correct to
first order in 5n. As we demonstrate below, however, this
is not an adequate approximation for transition metals,
where 5n arises from the transfer of electrons between or-
bitals of rather different spatial extent. The much more
accurate result (22) can be obtained using Eq. (AS) and
the analogous expression developed in terms of the
promoted-atom energies c
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Et Eatom(n) Eatom(n 5n )pro — tot tot

= g (a —a )em —,'5—n U(5n) +n e„,( n) —noe„,(no) —5n tu„,(n)+ pa 5E (A7)

Averaging Eqs. (A5} and (A7) cancels the Coulomb correction exactly and gives

0 1
Epro p ( pro + pro )

=—,
' g (a —a }(c, +E )+nE„,(n}—noe„,(no) ——,'5n[p„, (, n)+p„,(n o}]+—,

' g (a 5e +a 5e ) . (AS)

The first term is this result is Eq. (22) and the leading
correction now involves only exchange-correlation con-
tributions and is readily shown to be of order (5n) .
Thus, neglecting orbital relaxation, Eq. (22) is correct to
order (5n ) .

In order to illustrate the accuracy of Eq. (22) for transi-
tion metals, as well as the inadequacy of Eq. (A6), we
consider the case of Cu as a function of volume. Then,
Z0 = 1 and thc promotion involves thc transfer of Z —1

electrons from the 3d to the 4s orbital, with Z —1 in-
creasing in value as the volume is decreased, as shown in
Fig. 5. Equations (A6) and (22) in this case reduce, re-
spectively, to the simple formulas

W= V+P, (E 8),— (Bl)

and notes that for E = e& the plane-wave matrix elements
(k+q

~

~
~

k) of Eqs. (34) and (Bl) are identical. This
latter replacement is just the effect achieved in the energy
integrations over the poles (E —si, )

' and (E—e), )

which occur in Eq. (69) for the valence band-structure en-
ergy and Eq. (76}for the valence-electron density. At the
same time, the Hermitian nature of Eq. (Bl) allows for
some easier manipulations, especially with respect to the
valence-electron density, as discussed in Ref. 2.

The plane-wave matrix elements of Eq. (34) can be
separated to lowest order into a structure factor and a
form factor in the usual way:

and

Ep„——(Z —1)(e4,—s3d )

Ep„———,'(Z —1}[(e4, s3d )+— 4r 3d }] .

(A9)
(k+q

~

W
~
k) =S(q)(k+q

~

w
~

k)

+(k+q )

8"""'(k),
(A 10)

where the form factor is '

(B2)

Figure 22 compares these results for E „and E „with
the exact promotion energy obtained from direct total-
energy subtraction, over a range of electron transfer from
about 0.45 to 1.2. Over this range, E „underestimates
the promotion energy by up to 75%, whereas E „is ac-
curate to within about 5% and always represents an
upper bound to the exact result. For a typical transfer of
0.5 electrons, Eqs. (22) and (A10) are accurate to better
than 2%%uo and this level of accuracy is refiected in Table I
for all of the transition metals.

It is finally of some interest to point out the relation-
ship between Eq. (22) and Sister's transition-state approx-
imation for calculating free-atom excitation energies.
Such a result follows from Eq. (22} if one further notes
that the eigenvalue c. is approximately linear in the oc-
cupation number am. Replacing (e +e )/2 by the ei-
genvalue obtained from a parallel atomic calculation in
which exactly one-half of the electrons in question are
promoted then produces the transition-state approxima-
tion.
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With the zero of energy taken at the bottom of the
valence bands, the nonlocal pseudopotential (34) is, to
lowest order, of the theoretically optimized form for sim-

ple metals. This form of pseudopotential also enters the
present pseudo-Green's-function formalism for d-band
metals in a natural and convenient way. In fact, useful
simplifications in the analysis of Sec. III are possible if
one begins with the closely related pseudopotential
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FIG. 22. Promotion energy in Cu as a function of relative

atomic volume and electron transfer Z —1 between the 3d and

4s orbitals. The approximate results Ep„and E„, have been

calculated from Eqs. (A9) and (A10), respectively.
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with u(q) the Fourier transform of the one-ion com-
ponent of the potential, as given by Eq. (38) of paper II,
and with

E,""=E," (—P, I5V„„;,I P, ) —V' . (84)

The core energies E,""(as well as the d-state energy Ea")
are the same as used in paper II apart from the small con-
stant Vo determined by the choice of the zero of energy.
This constant affects only the repulsive part of the pseu-
dopotential and in paper II we implicitly made the choice
Vo ——0. The form factor (83) enters directly in Eq. (129)
for the screening electron density and Eq. (136} for the
energy —wave-number characteristic. The higher-order
structural component of the pseudopotential, 8'"'"', is
separated from W and then reabsorbed into the total-

I

energy calculation in terms of other quantities, as dis-
cussed in Appendix D.

Similarly, the diagonal matrix element ( k
I w, I

k ) ap-
pearing in Eq. (87) for the pseudoatom cohesive energy
and Eq. (135) for the valence binding energy is given by

& k
I wp. I

k & = & k
I Up. I

k) —Vo

+ X( ~
—E.

"")&klan.

&&4', Ik& . (85)

(Ol w, Io)=0.
Using Eqs. (84) and (85), this yields for Vo the result

(86)

In addition, placing the zero of energy at the bottom of
the valence bands leads to the k=0 condition

Vo ——

&o
I U„ I

o& —g (EP &y, I
5—v„„,„l 0, &)&o

I 4, ) &y, I
o&

(87)

For all 20 3d and 4d transition metals, we calculate
I Vo I

& 0.2 Ry at normal density with Eq. (87).
only to lowest order. From Eq. (59) one obtains

APPENDIX C

In this appendix we consider the Fermi-energy correc-
tion terms 5Eb,„a and 5nb, „a(r), appearing in Eq. (69) for
the valence band-structure energy and in Eq. (76) for the
valence-electron density, respectively. We begin by ex-
panding the integrated density of states JV(E) about the
zero-order Fermi energy cF:

d JV(e~)
JV(E)=JV(sF )+ (E —eF )+dE

= —&kF
I w,. I kF &Po(sF }+ (C4)

z, struc~d
5JVa(eF ) =—g

m d CF —E,

Likewise, using Eq. (64) and expanding the logarithm in
the first term one finds

=JV(eF )+p(sF )(E —sF )+ (Cl) Ea pa(sF }+ ' ' ' (C5)

Noting that JV(E~)=JVo(E~)+JVa(eF)=N(Z+Za), Eq.
(Cl) can be used to solve for the true Fermi energy EF.
One finds

Approximating p=po+pd and noting that the formally
first-order quantity Ea'""' is very small in practice, 5Eb,„a
is then taken to be

[5JVp(eF )+5JVa(sp) ]
EF=@ +

p(sF)
(C2}

1 po(sF }
5Ebaaa + & kF

I wpa I kF &5Zbaad
pa sF

Then, using Eqs. (Cl) and (C2) it is straightforward to
evaluate Eq. (71) for 5Eb,„a. This leads to the general re-
sult

+Ed ~zband +

where we have defined

(C6)

5Eb,„a=~p(cF)(EF EF) +—2

1 [5JV, (sF }+5JVa(sF)]~
2 p(sF)

(C3)

po(sF} a(sF}
5Zbaad = & ~F I wpa I kF & (C7)+ Po(Es)+Pa(EF)]

Note that 5Eb,„a is inherently small because 5JV, (sz)
and 5JVa(s~) are both small while p(sF) is large. We
proceed further by evaluating these latter components

Similarly, 5nb, „a(r) is derived from the energy contri-
butions between cF and EF in the integral on the right-
hand side of Eq. (74}. Retaining the dominant electron-
density terms involving n„„;fand nd, this leads to
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5nb, „z(r)=——Im I g + gF (r
I
k ) (k

I
r ) ( r

I
t}I'd ) ((()d I

r &

CF ~ E —cg

pp(eF ) pd(sF )
=(EF EF—) n„„;f+ g ftd(r —R; )+ .

dE

(C8)

Finally, using Eqs. (C2}, (C4), (C5}, and (C7} and keeping
only volume and one-ion terms, one has

5Zb d pp( sF }
5ft band( },, nunif

Pd'L &F )

APPENDIX 0
In this appendix we outline the derivation of Eq. (135)

for the valence binding energy Eb';„"z from Eqs. (28) and
(69). The first step is to add and subtract a term
n„„;f(V+ Vp ) froin Eq. (69) for Eb",„d and write

Zband
y ftd(r —R;)+

i
(C9) Eband ', NZ——sF—+nun;f( V+ Vp)+NEd +E«st,

where we have set

(D 1)

We note that the second term in Eq. (C9) contributes
directly to the orthogonalization-hole density n,h, as
given by Eq. (131). The first term in Eq. (C9), on the oth-
er hand, combines with a similar contribution from the
term involving Wzz/(E —sz) in Eq. (76} to yield a net
compensating uniform density (5Z—b,„z/Z)n„„;f, which
contributes to Eq. (130}.

cF
rest = ftunif( V+ Vp) [5~x (E)+5JVd(E)]dE

NZd Ed"—"'+5Eband (D2)

Using Eq. (D 1) in Eq. (28), one can then manipulate the
electrostatic quantities exactly and expand the exchange-
correlation terins in powers of 5n„,l to obtain

NEsbo;„"dd(Z) =N[ —3ZsF+Zs„,(n„„;f)+ZVp+Ed")+E„„+E„(Z)

Pxc unif }
+ unif X "nuc-core g

5 val 5 Vval + ~
5 val

J+I~ core nuc-core +
i,J

Z. +Z
Z.

ln nuc

Z. —Z

Z.
(D3)

where we have defined

l
U nuc-core =

Z Z

Z.
U nuc +U core + U xc (D4)

The result (D3) is analogous to Eq. (Al) of paper II, ex-

cept that we now retain for completeness the small elec-

trostatic term involving n'„„„as in Eq. (21} of paper I,
and the new exchange-correlation terms from Eq. (28).

I

I

In the present development, p„'c(n; ) and E„*,(n;, n ) are re-

placed by v'„, and 5E„,(i,j ), respectively, as discussed in

connection with Eq. (137), while the higher-order contri-
bution 5n„,l5p„',(n;, n ) is dropped. We may then evalu-

ate the quantity E„„from Eq. (D2} by using Eqs. (59),
(64), and (C6). Expanding the logarithms in Eq. (64},
separating volume and structure components, and further
using Eqs. (63}and (89) leads to

E„„=——Im
2 'F

I

—( + ll)k) 1 ((kI WIk)} I &k+q
o (E —ez) q

(E —ek)(ek —
ek+q}

" (dl "ol/dE)+ I s«uc
d dd dd dd

E + E —E„
dE +NE gtruc +5Ebang + (D5)

where we have assumed the Hermitian representation of the pseudopotential W given by Eq. (Bl) and we have used the
integral representation of n„nif in Eq. (78) to combine V+ Vp with W in the first term. This latter term may be manipu-
lated exactly as in Eq. (A3) of paper II to yield

N
20

3 I &"
I

W —(V+Vp}
I
k&dk=N, J &k

I ~„ I
k&dk —n„„,fyU' —y(n'„)'5V' . (D6)

20
k &kF (2ir) k &kF

The terms in Eq. (D5) involving Ed""' and I dd"' represent the net contribution to Eb';l'dd from the structure-dependent
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part of the hybridization potential and, as in paper II for an empty- or filled-d-band metal, can be collapsed into the
form —g, n,'h 5 V,'«„,

—y n,'h 5V'„,„,= —y (n;h)'5V'„, ——Im I7T 0 d

Estruc(df volydE)+I struc

dE+NEd""'5zb, „d .

Equation (D7) can be verified directly by using Eq. (131)for n,h(r) and noting the definitions of the various quantities.
The remaining terms in Eq. (D5) may be evaluated in a straightforward manner to give the result

Z

+ g n,'„5V,'„„,+N g'
~
S(q)

~

5F (ttt)+NE„,„, ,
I

(D8)

where 5F (q) represents the first two terms in Eq. (136) involving the form factor of w. The final step is to manipulate
the orthogonalization-hole terms left in Eqs. (D3) and (D8) by adding and subtracting a term 5n,„5V,h in Eq. (D3),
noting that

dn
(D9)

and using Eqs. (A8) and (A9) of paper II. Equation (135) then follows immediately with the inclusion of the overlap
kinetic-energy term 5E)„discussed in Sec. U.
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