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Functional integral theories of low-dimensional quantum Heisenberg models
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We investigate the low-temperature properties of the quantum Heisenberg models, both fer-

romagnetic and antiferromagnetic, in one and two dimensions. We study two diferent large-N for-

mulations, using Schwinger bosons and S =
2

fermions, and solve for their low-order thermodynam-

ic properties. Comparison with exact solutions in one dimension demonstrates the applicability of
this expansion to the physical models at N =2. For the square lattice, we find at the mean-field level

a low-temperature correlation length which behaves as (cc exp( A /T}, where A asymptotically ap-

proaches 2~S for large spin S, but As i/z-1. 16 and As &-5.46. We mention the relevance of
our results to recent experiments in La2Cu04.

I. INTRODUCTION

Methods of functional integration have recently been
applied to many problems involving strongly interacting
quantum systems. In particular, "auxilliary-boson" for-
malisms in conjunction with 1/N expansions have met
with much success in describing the strong coupling lim-
its of the Kondo impurity, ' Anderson lattice, ' and Hub-
bard models. These theories provide simple and intui-
tive mean-field descriptions of the excitations and are ex-
act in the limit of large quasiparticle degeneracy N (the
number of "flavors" ). They also yield systematic approx-
imations (the 1/N expansion) to thermodynamic
coeScients and finite-temperature dynamical response
functions in cases where perturbation theory is not appl-
icable. Since the models of physical interest are primarily
those with N =2, the question of validity of low-order
calculations has to be addressed by comparing results
with those of any available exact solutions.

In this paper, we shall employ analogous methods to
investigate the properties of low-dimensional (d =1,2)
Heisenberg models. While the ground state of the quan-
tum ferromagnet is ordered, the Mermin-Wagner
theorem guarantees that there is no order at finite tem-
perature for either the quantum ferromagnet (FM} or the
quantum antiferromagnet (AFM) in dimensions one and
two. Naive spin-wave theory, an expansion in Holstein-
Primakoff (HP} bosons about an ordered state, thus leads
to divergences and gives limited information. Recently,
Takahashi ' has described a theory of low-dimensional
ferromagnets using a variational density matrix approach
in which the Merrnin-Wagner theorem is enforced by
hand (e.g., the mean density of HP bosons is fixed at S).
Operators such as

h t(2S h th )
i n

are expanded in h h /2S, and only quartic terms are kept
in the HP representation of S, S . The excellent agree-

ment he obtains with thermodynamic Bethe ansatz re-
sults is astonishing because the constraint guarantees that
(h h/2S) = —,', which hardly justifies truncation of the
aforementioned expansion. In deriving Takahashi s equa-
tions from a large-N expansion, we therefore systematize
his approximation and help explain its apparent success.

The physics of one-dimensional antiferromagnetic
quantum spin chains is largely understood, much due to
the work Haldane, ' and AfBeck, who derived an
effective field theory for the low-energy sector of the
Heisenberg system. The excitation spectrum of integer
spin chains is predicted to exhibit a gap, and the ground-
state correlation functions should decay exponentially at
large distances. The half-odd-integer chains are predict-
ed'o'" to be gapless and to possess algebraically (-n ')
decaying correlations; this behavior is typified by that of
the S=—,

' chain, which has been exactly solved using
Bethe's ansatz. ' The thermodynamic properties of the
two classes of systems will differ accordingly. The phys-
ics behind the Haldane predictions lies in a mapping to
the continuum field theory of the (1+1)-dimensional
nonlinear o. model. Lorentz invariance of the field theory
relates the excitation gap to the correlation length in the
ground state of the one-dimensional theory. Though this
mapping is valid only for asymptotically large values of
the spin S, numerical and experimental work' suggests
that the essential differences between the integer and
half-odd-integer chains (e.g. , massless versus massive
spectra) survive even for small values of S. However,
quantitative analytical predictions regarding the proper-
ties of the (nonintegrable) small-S models are still lack-
ing. '

The two-dimensional quantum Heisenberg model has
received considerable attention in recent literature,
perhaps due to the advent of high-temperature supercon-
ductivity in the compounds La2 Sr„Cu04 and
YBa2Cu307 &. La2Cu04, which is thought to be an S= —,

'

antiferromagnet, has been shown to evidence long-ranged
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two-dimensional antiferromagnetic correlations; similar
observations have been made on the spin-1 system
La2Ni04. ' The continuum-limit mapping relates the
(large-S) two-dimensional quantum Heisenberg antifer-
romagnet to the classical three-dimensional nonlinear o
model. The transition temperature of the classical model
reflects on a zero-temperature transition as a function of
a parameter which is proportional to both 1/S and
presumably to frustration in some manner. It is therefore
not known whether or not the standard S= —,

' model on a
square lattice is ordered at T=O, although numerical
work suggests that it is ordered. ' In case it is not, the
continuum limit has to be taken more carefully, as
demonstrated in one dimension, where topological terms
alter the behavior of the classical model. In particular, at
present it is not known whether the antiferromagnetic in-
teger and half-odd-integer spin models in two (space) di-
mensions differ qualitatively as they do in one dimension.
This question happens to be intimately connected with
the resonating valence bond (RVB} description of super-
conductivity.

Here we investigate the quantum Heisenberg model by
using second quantized bosonic and fermionic representa-
tions of the spin algebra. In Sec. II, the Hamiltonian is
generalized to that of an SU(N)-invariant model, for
which there exists a parameter 1/N that controls the ex-
pansion around the mean field (N =00) saddle point.
Since the physically interesting limit is at N =2, it is im-
portant to assess the significance of the higher-order
terms in this expansion by comparing our low-order re-
sults to available known solutions. We believe that our
formalism is quite powerful in that it leads to simple yet
nontrivial approximations for many models of physical
interest (e.g. , the S= —,

' square lattice antiferromagnet).
For the ferromagnetic (FM) chain, our Schwinger bo-

son theory (Sec. III) describes the thermally disordered
phase in satisfactory agreement with thermodynamic
Bethe Ansatz results for the specific heat and susceptibili-
ty. We emphasize that the entropy is overcounted at the
mean-field level and we show that the Gaussian fiuctua-
tions partially remedy this artifact of the static con-
straint. We find results similar to those of Takahashi's
theory. However, unlike the Takahashi approach, the
Schwinger bosons provide a manifestly rotationally in-
variant theory of the excitations.

For the antiferromagnetic (AFM) chain, the bosonic
mean-field theory yields a disordered ground state with
the correct size of the Haldane gap for large integer spin
S, as given by the renormalization group treatment of the
nonlinear sigma model. Half-odd-integer spins are not
represented correctly by the bosonic large-N limit, since
their ground states are known to be at least quasidegen-
erate. The analogous fermionic mean-field theory for
S=—,

' was discussed by Baskaran, Zou, and Anderson
(BZA) for both one- and two-dimensional systems, and
was generalized to large N by AfHeck and Marston. ' It
captures some of the essential physics missed by the bo-
son theory in one dimension. The Fermi liquid behavior
of the BZA theory is studied in relation to the Bethe An-
satz solution, and the fluctuation corrections, calculated
in Appendix B, are shown to be important in enforcing

the Gutzwiller projection. We discuss the fermionic
large-N theory in Sec. IV.

In two dimensions, the BZA mean-field theory is unsta-
ble toward a novel flux phase discussed by AfBeck and
Marston, ' whereas the bosonic theory exhibits Neel or-
der at T =0 even for S =—,'. We compute the free energy
and spin correlation functions for both cases and mention
why our bosonic mean-field results are compatible with
recent experiments on LazCu04.

A. The case of the ferromagnet

The Heisenberg S; S interaction may be written as a
biquadratic form in terms of the Schwinger boson opera-
tors (see Appendix A):

S; S) ———,'9;"7;J—S(S+1)
=-,':v,', v,, :—s', (2.2)

2; =—(ata, +b b ),
with a„a„+b„b„=2Sfor all sites n, and where:6: is a
normal ordered operator in which annihilation operators
are moved to the right. The SU(N} generalization of the
Schwinger boson algebra involves N bosons per site b;,
where a is an SU(N) index and i is a site index. The gen-
erators of the algebra are given by the composite opera-
tors

S$(i):b; bp;, —
which satisfy the algebra

(2.3)

[s$(i ),s~(j ) ]=pg,'&(i ) 55,'s~p(i—) (2.4)

and are subject to the constraint g,S (i) =NS; S must
be an integer multiple of 1/N. The generalized Hamil-
tonian is given by

1HF= g S&(i)S~(j )
&i,j )
a,P

1 .pt
N

&,

(2.5}
V;.= Qb;b ~

II. SU(N} HEISENBERG MODELS, FUNCTIONAL
INTKGRALS, AND THE 1/N EXPANSION

The standard SU(2) Heisenberg model is described by
the Hamiltonian

H=+ g S,'S, , S'=S(S+1) (2.1)
&i,j &

where the sum is over all (nearest-neighbor) bonds in a
lattice, and where the k sign is adjusted to describe anti-
ferromagnetic or ferromagnetic coupling. Throughout
this paper, we use the Heisenberg exchange constant J as
the unit of energy; magnetic field strength is given in
terms of J/p~. This model may be extended to one with
an SU(N) symmetry. The parameter N appears as an
overall prefactor in the functional integral action, and
systematic corrections to the mean-field theory may be
cast in the form of a 1/N expansion.
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Apart from a constant reference energy per site
E„tIJV= ,'zS—,the N =2 version of this model reduces to
the SU(2) model defined in Eq. (2.2). Note that the local
SU(N) transformation b; ~U'pbp, amounts to a unitary
transformation of H, and that H is manifestly invariant
under global unitary transformations.

B. The case of the antiferromagnet

For the antiferromagnet, we write

S&(i):—c,cp-, , (2.9)

where a is an SU(N) index; these operators obey the com-
mutation relations of Eq. (2.4}. The constraint on the fer-
mian occupation is

[This decomposition into composite operators Xl," is
equivalent to the Baskaran-Zou-Anderson' (BZA)
resonating valence bond (RVB) decoupling. ] One now
defines the generalized spin operators

(2.6)

N

c c.=—Nat at
a=1

(2.10)

A,j=a;bj b;a—
again with constrained total bose occupation n, +nb ——2S
at every site. In this case, the interaction is already nor-
mal ordered. We now assume that the lattice X is bipar-
tite and that there is thus no frustration. On one sublat-
tice, we make the unitary transformation a ~—b, b ~a,
i.e., S+= ab, et—c. This effectively decouples the SU(2}
indices, sending A; ~a;a +b; b .

In the SU(NJ language, this amounts to defining ma-
trices hp bbp ge——nerating the fundamental representa-
tion on one sublattice, and matrices h'p —— bg~ g—enerat-
ing the conjugate representation on the other sublattice. '

The generalized Hamiltonian is then

1H„=——g hp(i}h'P(j)
N

&
~

)&
a,P

ij = P caicaj
a

(2.11)

apart from the constant term E„f,the N =2 Hamiltonian
is that of the S=—,

' antiferromagnetic Heisenberg model.

D. Path integral formulation

Each of the above SU(N) models possesses a Hamil-
tonian of the form

and thus we must take N to be even. The Hamiltonian
for the SU(N) model takes the now-familiar form

1Hs=in=+ X hp(')h'aV)
&i j &

a,P

A;j—= g b;b, ,
(2.7)

C. Fermion large-N theory for the S=
~ antiferromagnet

ANeck and Marston' ' have recently formulated a
fermion large-N expansion for the S=—,

' antiferromagnet.
Writing the Heisenberg interaction as

2)j =C;tCj t+Cg iCJ i
(2.8}

where in each bond (i,j ) the site j is taken to be in the
second sublattice. As before, we enforce

i 4 (i)=NS When N. =2, Eq. (2.7) gives the usual
antiferromagnetic Heisenberg Hamiltonian up to the con-
stant E„t.We stress that the resulting Hamiltonian is
not invariant under a global SU(N) transformation U, but
by alternately rotating by U and U on different sublat-
tices.

(2.12)

where Z; is a composite operator, cf. Eqs. (2.5), (2.7),
and (2.11). The partition function is given by the
coherent state functional integral:

Z = a,a; exp — a,a;—:exp — F
(2.13)

1
d~ —,

' g(a;a, —a;a, )——g Z,"
i,a &i j &

+ gA, ;(a;a;—S)
i,a

where a;(~) is a complex or Grassmann field, depending
on the model of interest, aa;(~} it its complex conjugate,
N is the number of Savors, and JV is the number of spins
in the lattice. The A.; integral proceeds along the imagi-
nary axis from —i 00 to +i Oo. ' Introducing a complex
Hubbard-Stratonovich field Q;. for every bond, the biqua-
dratic interaction term may be decoupled, resulting in

Z[j]= J2)[a,a;Q, Q; A]e

ohio
——I d7 —'g (a;a; a;a; )+N —g Q; Q;. + g (Q; Z,z+Q; Z;.)+ g A,;(a;aa; —S)

L

=j g f J d~dr' V~(ir ~jw')a;(r}apj(r') .
&ij &

a,P

(2.14}
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5S M 5$
5QIJ(T) 5Q J(r) A, ;(7 )

(2.16)

which defines the mean-field configurations QJ. "(r) and
I,; "(r). At the saddle point, these fields are in general
time independent, spatially uniform, and real. (In the
case of the fermionic S=—,

' theory, however, the lowest

energy mean-field configuration found is the AIeck-
Marston configuration, in which the phases of the Q,"
fields posses a simple spatial variation. '

) Since the
mean-field free energy is left unaffected by a uniform
phase change of the form Q; ~e'~Q;J, Gaussian fluctua-
tions in this phase will lead to infrared divergences in the
leading order corrections to the mean-field theory. In
one dimension, these zero modes can be eliminated by a
time-dependent Read-Newns gauge transformation, '

We have included a source current j and source vertices
V p(i r

I
jr'); functional differentiation with respect to the

source j yields correlation functions and generalized sus-
ceptibilities. Unless explicitly stated otherwise, we shall
henceforth drop the reference energy E„&from all expres-
sions.

At this point, the a, (r) fields may be formally in-
tegrated out (the action is a quadratic form in these vari-
ables}, yielding

Z[j]=J 2)[Q, Q;A. ]exp( —NS[Q, Q;A, ;j]) . (2.15)

We apply the standard procedure of evaluating Eq. (2.15)
by the method of steepest descents. Since N is scaled out
of the action, this procedure generates an expansion in
1/N. Nondegenerate saddle points of higher action and
endpoint contributions associated with the periodicity
1,, ~A, ;+2ni/P yield subdominant contributions that are
not perturbatively accessible by this expansion. The sad-
dle point of Z is given by the mean-field equations

F" '=(2NP) 'Tr lnD(q),

5$D„„(q):—
5r 5r'

(2.19)

The trace takes over bosonic Matsubara energy-
momentum vectors q, and the three boson indices are
defined by r=ReQ, ImQ, and A, . (For generality we as-
sume that the phase of Q cannot be eliminated. ) Positivi-
ty of the matrix D is necessary to ensure stability of the
mean-field theory.

The leading order general correlation function g is
given by functionally differentiating the source-dependent
free energy, where the source vertices are not necessarily
the same for j and j':

5F
5j5j'

1=X "— ADA+X—" '+O(N ) A=
52

5j5r
'

(2.20)

X " is the susceptibility of the N-degenerate free gas de-
scribed by the mean-field theory. In general, however,
the correct leading order susceptibility must include the
second term in Eq. (2.20) which depends on the functions
A. In fact, such terms occur at every order in the 1/N
expansion, and serve to correct the susceptibility in an
important way. It is easy to see that this term exactly
cancels the mean-field charge susceptibility when j cou-
ples to the local charge, say, as

V p(ir I jr')=5,J5 p5(r r')', —

while for the spin susceptibility

V p(i r
Ijr') =gS'p5(~ r"), —

i8„„+
Q. .+i—= I Q...+i I

e "'""

n = X ekkpl
k( gn)

(2.17)

A vanishes and the mean-field result holds to leading or-
der. (Here, g is the Lande factor. ) The last terin X"~ ' is
the 1/N correction which is given by

~(izw) 5 F" '[jl
5J5J

(2.21)

1 F''~ '+O(N —
) (2.18}

The mean-field free energy F " is that of a single jlavor
gas of quasiparticles with dispersion Ek(Q, A, ) which is
readily obtained from the diagonalization of the quadra-
tic Lagrangian in Eq. (2.14), using the static values of the
Bose fields Q and A.. O(1/N) corrections to the mean-
field free energy are given by the fluctuations in these
fields, which have an RPA form:

which effectively replaces the Q," integration by an in-
tegration over only the magnitude

I Q;J I
.

The accuracy of the mean-field theory is dictated by
the largeness of N; Gaussian intergration of the fluctua-
tions in the Q, and A, fields in Eq. (2.15) yield expres-
sions which are higher order in 1/N, generating the ex-
pansion k+q

x (q}= +

k

XMF

X1/N

x"

+ O(1/N )

FIG. 1. Diagrammatic representation of the 1/N expansion
of the spin susceptibility. Solid lines denote mean-field Green
functions, while wiggly lines denote boson propagators. 7" ' is
the O(1/N) correction of Eq. (811).

Diagrammatically, the terms in Eq. (2.20) are the familiar
low-order bubble diagrams with self-energy insertions
and vertex corrections. In Fig. 1 we show all the terms
contributing to the charge and spin susceptibility, where
solid lines represent mean-field Green functions and wig-

gly lines represent Bose propagators D„,.
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III. BOSON LARGE-N THEORY OF THE FERROMAGNET

The ferromagnetic partition function is given by Eqs. (2.2) and (2.13):

ZF ——f2)[b,b; Q, Q; A ]exp( —8 F[b, b; Q, Q; A ]),
8F——f d~ —,'g(b;b; b—;b, )+N g Q,JQ;J+ g (Q,jb;b 1+Q,)b;b }+.gA;(b. ;b; —S)

(3.1)

Making the static assumption

QMF( ) Q gMF( ) (3.2)

the Schwinger bosons can be integrated out explicitly, re-
sulting in a free energy of

d "kF""=tzQ2 Sz+— f—, in(i —e '"),
P (2n)

(3.3)

where z is the lattice coordination number, d is the num-
ber of spatial dimensions, JV is the total number of sites in
the lattice, and the integral is performed over the first
Brillouin zone. The dispersion ~k is defined by

LM:—A, —zQ,

shall soon see.
The mean-field equations which determine Q ( T,S) and

p(T, S) are identical to those of Takahashi, and we have
independently verified his solutions (details may be found
in Ref. 6). From Eq. (3.6), we obtain for the one-
dimensional chain

' 1/2

(F Eo )c—!min= —TMF MF

2n.

2S 2S

(3.7)

coi =p +ZQ si

(3.4)
where Eo "=F " (T =0), which is an expansion in the
quantity T/S, assumed here to be small. The calculation
of F" ' is carried out in Appendix B, where it is found
[Eq. (89)]:

The saddle point equations 5F/5Q =0 and 5F/5A, =O are
then

F(1/N) T3/2+ 0( T5/2)
( —', )

N V'mS
(3.8)

S=f,n„,
(2m )

d'kQ=S—
d cknk

(2m )

(3.Sa)

(3.5b)

Combinging Eqs. (3.7) and (3.8) and setting N =2 yields,
to 0(1/N),

(F EM")—2(FM" E " F~ / I)

with ni, ——(e "—1) '. Thus, we obtain a free energy per
spin of

FMF lzS2+ /z(Q S}2

g(
3 )

' ' 3/2

3/2m 2S
T2 +0(T'") (3 9)

2S

1 ddk—Sp ——
d

ln 1+nk (3.6)

Upon addition of the reference energy +—,'zS, and taking
N =2, the first term gives the classical ferromagnetic
ground-state energy per spin, Eo' = ——,'zS . We note that
the remaining contribution is precisely t~ice Takahashi's
result for F —Eo'. This factor of 2 is easily seen to be
an artifact of the static constraint and is a generic conse-
quence of approximations of this sort. The SU(N) theory
is defined in terms of N bosons and 1 constraint (per site).
Uniformizing the field A. amounts to ignoring the nonzero
wavelength components of the constraint field, enforcing
the local restriction g b b =NS only on average, cf.
Eq. (3.Sa). Thus, at the mean-field level, the number of
independent degrees of freedom is overcounted by a fac-
tor g=N/(N —1). This is partially corrected by the
0 (1/N) contribution F"/ ' arising from integration over
the Gaussian fluctuations of the constraint field, as we

Comparing our expression with that of Takahashi, we see
that our coeScient of the 0( T ) term is a factor of 2 too
large. The Takahashi result is in remarkable agreement
with thermodynamic Bethe ansatz results for S=—,'. One

unfortunate aspect of Takahashi's variational density ma-
trix is that it is not rotationally invariant, and therefore
the longitudinal and transverse susceptibilities in his
model will be unequal. Takahashi calculates the static
susceptibility

(3.10)

by performing a rotational average of ((S; n}(SJ.n) }and
finds the corresponding result to be in good agreement
with known S=—,

' results. That this rotational averaging
produces the "correct" result is interesting, although we
wish to emphasize that Takahashi's underlying theory is
not rotationally invariant. Our model preserves rotation-
al invariance, and we find
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~ dk~ h i g nk(1+nk }—~ 2'
3 «z T

g 2S4T—2
1

S v'2qr 2$
+O(T) (3.11)

At long distances, one is concerned with the small-k be-
havior of the occupation function nk, and we obtain the
following asymptotic expressions:

(So SR) = —,'S e " ~, (=S /T (d =1),
which is —,'as great as Takahashi's result. For the two-
dimensional square lattice, we find

3T2 e
—RIg

SqrSz (~/g) ' (3.14)

+O( T')

g
2

exp
4mS +O( T 4ns IT)

(FMF EMF ) i Tz
2mS 8mS 2S

(3.12)

g= &S/T exp(2irS /T) (d =2,square) .

As discussed in Ref. 6, Eq. (3.14) differs only in its prefac-
tor from the Ornstein-Zernike correlation function ex-
pected for the two-dimensional classical Heisenberg mod-
el. However, as in the case of the Kondo lattice, there
will be O(l/N) corrections to the prefactor, and the
disagreement with cr-model results stressed by Takahashi
is likely only an artifact.

The spin-spin correlation function is

|,'S S„~=—
I f(R)

I

f(R) f eik Rn
(2n )

(3.13)

IV. FERMION LARGE-N THEORY
OF THE S=

q
ANTIFERROMAGNET

The fermionic functiona1 integral for the partition
function in the s= —,

' case is given by Eqs. (2.11) and
(2.13):

Z~ )~2
—— c,e; » exp —

& &&2 c,c;
r

iI2
——f dr —,

' g(c«c« —c«c«)+N g QJQJ+ g (Qijc«c~j+Qijc~jc«)++A;(c«c« —, —,')
(4.1)

+
I Q I g (t,,ct c, +Hc. ),

&ij &

(4.2)

At the saddle point, the mean-field theory is that of a
half-filled tight-binding model,

H "=,'JVNz
I Q I

—,'JVNA. +A. +——c; c;
i, m

l

(Using the unimodular decomposition for the N =2 mod-
el, described in Appendix C, the value of

I Q I
is fixed at

Q„=l/i/2. We shall comment on the significance of
this later on. ) The leading-order values of the specific-
heat linear coeScient y ", the T =0 susceptibility Xo ",
and spin correlation functions are those of a noninteract-
ing, F-flavored, half-filled cosine band:

where we have assumed spatial uniformity of A, ; and of
I Q;~ I, but not necessarily of the phases t,j:—Q;J/ I Q;1 I

.
[We have also changed notation slightly, letting the ffavor
index be the magnetic quantum number m, which runs
from ——,'(N —1) to + ,'(N —1).)—

A. 1= 1: The linear chain

In one dimension, the phase t; - may be absorbed into
the Fermi fields via the Read-Newns transformation of
Eq. (2.17). The free energy (per ffavor per site) is then
given by

MF Nqr ~MF N(N 1}g p, —
6Q

'
24qrQ

S "(q)= pm g fk(1 fk+ )—
t7t k

N(N' 1) Iq I—
12 2m

(Szpz )MF f dk —iqnS(.2~'

N(N 1) (1—e—' ")
12

5n, O

(4.5}

F "=Q 'A. — ln—(1—+—e "}
P n2n. —

where cok ——A, +2Q cosk. The mean-field equations are

A. =0,
1 ~n dk

Q =——f (cosk ) sech (PQ cosk )
0

=———(In2)T +. . .1 m.
2

m' 2

(4.3)

(4.4)

where f» ——(e "+1) ' is the Fermi function.
This mean-field theory captures some (but not all) of

the essential low-temperature properties of the exactly
soluble X =2 model. It has been pointed out by Ander-
son that although strictly speaking this system is not a
Fermi liquid (since there is a gap for charge excitations),
it might be described as a limit of a Fermi liquid with
Fo~~ where Fo is the compressibility Landau parame-
ter. This was motivated by the observation that the



322 DANIEL P. AROVAS AND ASSA AUERBACH 38

Bethe solution exhibit the Fermi liquid signatures of a
linear specific heat, C =0.7T, and finite Pauli-like
paramagnetism at T =0, Xo--g A. . In addition, the

gapless des Cloiseaux-Pearson excitations described by
toi, n—/—2

~

sink
~

are suggestive of particle-hole excita-
tions about a "pseudo-Fermi-surface'* at k =r /2, termed
"spinons" in the RVB theory. Additional support for the
validity of this picture is given by the success of the
Gutzwiller wave function, which is the image of a half-
filled tight-binding Fermi gas under a projection operator
which eliminates all configurations with any doubly occu-
pied sites. Numerical and analytical treatments of the
Gutzillwer approximation for the strong coupling,
half-filled Hubbard model (which maps into the S=—,

'

Heisenberg antiferromagnet) have reproduced the correct
power-law decay of the spin-spin correlations in one di-
mension. The close analogy between the 1/N expansion
and the Gutzwiller approximation has been explored in
the Kondo lattice and the Hubbard models.

The mean-field theory has therefore the correct tem-
perature dependence of the specific heat and susceptibili-
ty. It is interesting to study the discrepancies between
the known coeScients and correlations and those ob-
tained from Eq. (4.5) by setting N =2. This comparison
gives us a valuable opportunity to study the effects due to
higher order corrections that are not calculable. The
"Wilson ratio" between g and y is defined as

4m

gi(N 1) 7'— (4.6)

and is unity for the mean-field values, while the exact
solution gives R =2. This situation is analogous to that
encountered in the 1/N expansion of the Kondo problem,
where gaussian fluctuations correct R by 1/N, changing
its value from 1 to —,

' when %=2. If the expansion is well

behaved, R can be expressed as a power series in 1/N
which presumably adds up to the correct result. Based
on intuition garnered in the Kondo problem, a Wilson
ratio of 2 is expected in a Fermi liquid with one channel
for energy excitations and two for spin excitations.

An important effect of the Gutzwiller projection —one
that is not reflected at the mean-field level —is the loga-
rithmic divergence of the structure factor S(q) at the
zone edge. Gebhard and Vollhardt have found

Soutz. (q) I q Iln 1 —(1—g }
4(1—gz) n

(4.7)

g S(q) = —,'S (S + 1)= —,',
q

(4.8)

is also not satisfied at the mean-field level, at which the
sum is —,'. In Appendix B we calculate the first correc-

where g is the Gutzwiller correlation parameter. For
g =0, Eq. (4.7} agrees remarkably well with numerical re-
sults and properly describes the asymptotic power-law

decay of (SOS„')-e' "/
~

n
~

. By contrast, the mean-
field result of S(q)=

~ q ~
/4n, obtained from Eq. (4.7}

with g —+ 1, yields an inverse square decay for the correla-
tion function, cf. Eq. (4.5). The "total-inoment" sum rule
for N =2,

(4.9)

The indication given by this calculation is that the g =0
Gutzwiller projection is approximately enforced by the
Gaussian fluctuations of the constraint fields which are
represented by an exchange of the propagator D&&. As
for the Wilson ratio, we note that an extrapolation Eq.
(4.9}as a geometric series in 1/N yields the correct result
of Eq. (4.8}. One additional question is that of the actual
energy scale of the excitations. Using the mean-field re-
sult Q=1/m, we find that the T =0 susceptibility is
~ /4=2. 47 times higher than the exact result. This is
because the exact des Cloiseaux-Pearson bandwidth is a
factor m /4 greater than the mean-field value. If, on the
other hand, we use the unimodular decomposition of Ap-
pendix B (which does not yield a 1/N expansion), for
which Q„=1/&2, the ratio of bandwidths is

W,„,«/W„m =n /2~2 = 1.11. The unimodular mean-
field theory gives a more accurate result in this case be-
cause it circumvents the need to sum over fluctuations in
the Q field which introduce corrections to the mean-field
theory.

The finite temperature spin-spin correlations at the
mean-field level are given by

(SOS„')~n exp( —
~

n
~

/g), g(T)=2Q/T . (4.10)

The finite correlation length is a consequence of the
thermal smearing of the Fermi surface.

8. d =2: The square lattice

In one dimension, a position-independent A, ; leads to a
stable mean-field solution, i.e., the fluctuation propagator
is positive definite. The phase of the bond fields can be
absorbed into the fermion fields via a Read-Newns gauge
transformation. In two dimensions, on the square lattice,
for example, there are two bonds per site and the phase of
the bond fields cannot be gauged away. At the saddle
point, these phases are time independent, but may not be
spatially uniform. These phases resemble Peierls phase
factors in tight-binding lattice models in the presence of a
magnetic field. One may associate a "flux" to each pla-
quetter p according to

P =Imln g Q;
&~i &&a

(4.11)

where the product is over all bonds bordering the pla-
quette p. As emphasized by AfHeck and Marston (AM), '

there are many different but gauge-equivalent
configurations for the Q; phases which result in the same
set of fluxes I P I. One simple configuration discussed by
AM is a "flux phase" one in which the phases of all y-
directed bonds are set to 1, while x-directed bonds are as-
signed a phase e *'~ according to whether the "hopping"
is from sublattice A to sublattice 8 or vice versa. The

tions to this sum rule, and adding them to the mean-field
result we find

y [SMF(q)+S(1/x)( )+0(N —2)]
q
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mean-field Hamiltonian is

H "=2NNQ ,'—N—JV'A,

+ X' «~ 0i +Pi ++E~ 4~

(a)

E„*—=A.+Q
i t„i,

tz =2(cosk +e'+cosk„),

(4.12) CO

LL

O

where the prime on the sum denotes that the sum is over
the "little zone, "which is a square defined by the vertices
k=(0, +m), (kn, O), half as large as the original zone.
The free energy is

CO

LLI
O

1 d kf [ln(1+e " )+ln(1+e " )],
—PE~+ —PEt,

(2m)

0
ENERGY, &i,

4Q

(4.13)

where the integral is over the entire Brillouin zone. It is
easy to prove that the mean-field free energy is minimized
for q= tr/2, i.e., the BZA uniform bond phase mean-field
theory' is unstable toward the fiux phase. Mattis has
also given arguments for the instability of the former
phase. The mean-field equations as p=n /2 are

=0,
(4.14)

y y2E 2y 1 y2 1/2 tanh 2
0

with Q ~ r 0-0.479. E(x) is the complete elliptic in-

tegral of the first kind. The ground-state energy for large
N is thus EOM" = —2NQ2 = —0.458N.

The crucial difFerence between the two phases lies in
the quasiparticle properties. The uniform bond mean-
field theory possesses a two-dimensional band structure
with logarithmically diverging density of states at the
corners of the square Fermi surface defined by
cosk„+cosk =0. This leads to a specific heat
C~ —TlnT and a susceptibility X~lnT. The correla-
tions develop an algebraic R decay at T =0 (see Ap-

I

FIG. 2. (a) Density of states for the BZA mean-field theory of
the two-dimensional square lattice S=

2
antiferromagnet. (b)

Density of states in AfHeck-Marston flux phase. A comparison
demonstrates that the BZA mean-field theory is unstable: Its
filled states (shaded) are concentrated at relatively high energies.

pendix D). The fiux phase, by contrast, has only four
Fermi "points" at k=(+n/2, +n/2), where the density
of states vanishes linearly. The density of states in the
uniform bond phase and the fiux phase are plotted in Fig.
2. Therefore, one finds C~ T and Xcr T. In addition,
the structure factor S(q) is nondivergent as T~O,
rejecting no transition to long-ranged order, with alge-
braically decaying spin-spin correlations. Experiments '

on La2Cu04 seem to be inconsistent with this phase since
an apparent divergence of the structure factor at the zone
edge is seen with decreasing temperature.

V. BOSON LARGE-N THEORY
OF THE ANTIFERROMAGNET

The bosonic partition function for the spin-S Heisen-
berg antiferromagnet is given by Eqs. (2.7) and (2.13):

Z„=f2)[b,b;Q, Q;A]exp( —at„[b,b;Q, Q;A])

cP„=f dr —,
' g(b;b~; b~;b;)+N g —QtQt+ g (Qjb~;b J+Qjb;b~/)+ gA,;(b;b; —S)

a

(5.1)

%e assume that the bond amplitudes are uniform, and a
generalized AM configuration for the phases ts (5 is a
nearest-neighbor vector).

The mean-field Hamiltonian is then

with

(5.3)

H "=
2' JVNzQ JVNSA. —

+—,
' g [A.(atq aq +a i, a „)

k, a

+zQ(yiai, a i, +ygag a i~)], (5.2)

H " is brought to diagonal form by a Bogoliubov trans-
formation, and integrating out the Schwinger bosons
gives a mean-field free energy of
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FM"=-,'zQ' ——,'(2S + 1}A,

d'k
+—

d
ln(2 sinh —,'Pc@i,),

(2m. )

~1,=()('—z'O'
I y1 I

'}'"
(5.4)

indicates a gap of b. =A(1 —7) )'f . For large S, we may
use the asymptotic relations

K(2)) =ln + —,'(1 —2) )
( 1 2)1/2

The mean-field equations 5F "/5Q =0 and 5F "/M. =O
yield

2S+1 d k
d CDi cothr~pro) (s.sa)

d "k —1
y 2cothg (5.5b)

where the integrals are over the first Brillouin zone of the
reciprocal lattice.

It proves convenient to rescale our parameters
(A.,Q, P)~(A, ri, x) according to

)1,=——,'zA, P=4a/z,

Q:——,'Ari, co1,
—

—,'zA(1 —ri I y1, I

)'f
(5.6)

d "k
(2S+1)=f, ( I —g'

I y„I

')-'"

In terms of these rescaled quantities, the free energy and
mean-field equations are

F "=,'zA vP ,'—z(2S+—1)—A

d'k
~2 y

2 1/2

4 (2n }d

(5.7a)

4
ln —1 + ~ ~ ~,

(1—2) )

(5.9)

E(r))=1+—'(1 —g ) ln
4 1

( 1 2)l/2

A=2S+1 ——,2
m'

(5.10)

2 1 2F "IT 0 ———S —S 1 ———— 1 ——
4 m.

Restoring the reference energy +S and taking N =2, we
find for the Heisenberg model a mean-field ground-state
energy of

'2

EOMF= S2 2S 1 ————' 1 ——
7r 2 m

For reference, naive spin-wave theory gives a ground-
state energy of

which are valid for
I

1 —ri I
&~1, and obtain (to lowest

nontrivial order in 1/S)

8
ri = 1 — exp( 2n S—),

7T

xcothxA(1 —ri I y„I

2)'/2,

d k
A — yk 1 n2 yk

2 -1/2
(2m )

)& coth~A(1 —q2
I y„I

')'" .

(5.7b)

(5.7c)

which is larger in O(S). The spin-spin correlations in our
theory decay exponentially at large distances with a
correlation length given by

(=2)/[8(1 —2) )]' -exp(mS )

A. d = 1: The linear chain at T =0

We first employ the Read-Newns transformation to
eliminate the bond phases. At T=0, the mean-field
equations may be evaluated in terms of known functions:

FM"(A, q, o)=-,'A2q2 —(S+—,
' )A+ —E(q), (5.8a)

(2S+ 1)=—K(2) ),2
(5.8b)

Avg=(2S+ I ) — E(rl), — (5.8c)

where K(ri) and E(g) are the complete elliptic integrals
of the first and second kind, and f=F "/JV. Since
K(rl) &m/2, the mean-field equations possess a solution
for all S. The excitation energy

co„=A(l—2) cos k)'f

(this is discussed below). The gap has the asymptotic
form b-Sexp( —mS), which should be compared with
the Haldane result b -S exp( nS), obtain—ed .from the
O.-model mapping. It is remarkable that our simple
mean-field theory reproduces the asymptotic S depen-
dence of the Haldane gap. All is not well, however, be-
cause our mean-field theory is unable to "see" the topo-
logical terms responsible for the gaplessness of all half-
odd-integer antiferromagnetic chains. Alternatively stat-
ed, the Lieb-Schultz-Mattis theorem, ' which exploits the
differing properties of integer and half-odd-integer spins
under SU(2) rotations is violated at the mean-field level,
since it requires that all half-odd-integer Heisenberg anti-
ferromagnetic chains must have either degenerate ground
states or gapless excitations in the thermodynamic limit.
We stress that the bosonic mean-field theory is applicable
to any model in which the ground state is ordered.

It is a straightforward task to calculate the staggered
susceptibility,



38 FUNCTIONAL INTEGRAL THEORIES OF LOW-DIMENSIONAL. . . 325

which behaves asymptotically as X-S 'exp(2n. S).

B. d =2: The square lattice

(5.1 1)
y„=—,'(cosk„+cosk },

for which the density of states is

d kn(r)=f,&(r y—k}
(2m. )

2 e( 1 y2)K[( 1 y2)1/2] (5.12)
We first consider the mean-field theory in which the

bond field is real and uniform throughout the lattice, e.g. ,
Q; =

~ Q ~

. The bond phases are thus rs ——1, in which
case

where e(x) is a step function and K(x) is the complete
elliptic integral. The free-energy and mean-field equa-
tions are

(2S+1)=I (ri, Y}= f dyK[(1 —y )'~ ](1—r) y2) '~~cothY(1 —ri y )'~ (5.13a)

(2S+1) Ar) =—I (ri, Y)= f dyK[(1 —y2)'~ ](1—ri y )'~ cothY(1 —ri y )'~ (5.13b)

F "(A,ri)= ,'A ri —(2S+1—)A+ — f dy K[(1—y )' ]ln[2sinhY(1 —g y )' ],A 4
Y g 0

(5.13c)

with Y=PA. The first of these equations gives ri(Y, S).
Using this result, the second equation gives A(Y, S), and
the temperature associated with this solution is then
determined by T=A/Y.

It is easy to see that, unlike the d =1 case, no T =0
solution exists. At T=0, Y= ~, and the first of the
mean-field equations becomes

(2S+1)= f dk K(ricosk) . (5.14)

Since K(x) is increasing, the right-hand side (rhs) of the
above equation is bounded from above by its value at
g=1, which is

4K (1/&2)/m =1.39,
which thus rules out any solution with S)0.2. We re-
mark that the ground state for S & 1 on a square lattice
has been rigorously shown to display Neel order. The
present result suggests that the ground state possesses
Neel order for S=—,

' as well, for a nonsymmetry breaking
mean-field solution at T =0 does not exist.

For finite T, the rhs of Eq. (5.13a) is bounded from
below by coth Y, and so no solution exists with

Y&Y;„=—,
' ln(1+S ') .

The following inequalities (which follow from
x ' &cothx & 1+x ') will prove useful in our analysis:

—Y 'K(g) &I, (g~, Y) & —Y 'K(g)+ K2(1/&2),
m

(S.1Sa)

Y '&I, (q', Y)&1+Y (5.15b)

When Y approaches infinity, g tends to one, and for
large S the mean-field equations can be solved in asymp-
totia with the help of Eqs. (5.15a) and (5.15b). We find

A -2S,
g —1 —16exp( 4n S / T—) .

(5.16)

When S is not large, the above equations remain qualita-
tively correct in their temperature dependence, though
the numerical values of A and the coefficient of 1/T in
the exponent are diferent. The most important result
here is that there is a temperature-dependent gap which
satisfies 6( T) ~ e "~ as T~0.

In the opposite limit, we write Y=Y;„+d Y,
g =0+de, and thus obtain

BI
~ /Br)

BIi /BY

= —,
'

(Y;„+sinh Y;„coshY;„). (5.17)

The equation for A then gives A= —,'ctnhY;„,or
—1

max =
4 +minctnhYmin

=(S+—,')/ln(1+S ') . (5.18)

For S=—,', T,„=1/ln3=0. 91.
We have found that unlike the case of the fermion

large-N theory described in Sec. IV, the uniform bond
field phase has a lower energy than the corresponding
ffux phase. For S= —,', the O(N) term in the ground-state

energy is given by Eo "(Bose)= 0.671N, which is lower—
than the fermionic result Eo "(Fermi)= —0.458N found
in Sec. IV. Although this inequality is suggestive, we
stress that higher order (in 1/N) corrections to Eo have
not been evaluated. We plot the mean-field free energy
versus temperature for S=—,

' and S =1 in Fig. 4. If we
restore the reference energy of +—,'zS and restrict our-
selves to N =2, then we obtain a mean-field free energy
for the SU(2) Heisenberg model of F "'=2F "+ ,'zS . —

We note that in two dimensions, the gap b, ( T) satisfies
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T» b ( T) & 0 as T~0. Thus, thermodynamically speak-
ing, at low enough temperatures, the system behaves as if
there is no gap, and the free energy behaves as a power
law. Although complications in the asymptotic analysis
have thus far prevented us from extracting the analytic
behavior, numerical differentiation of our results indi-
cates that the specific heat and susceptibility behave as
CV-C, T and X-C2+C3T at low temperatures. The
correlation length, analyzed below, does know about the
gap, with g( T)—I /4( T).

C. Asymptotic spin-spin correlations

The spin-spin correlation &So SR) is given by (R&0)

As seen from Fig. 3, the quantity A —= Ting(T) is only
weakly temperature dependent. Defining the ratio

r(S) = 3 (S)/ZnS (S+ I )

of our coefficient of 1/T in In/ with the expected o-
model result, we obtain significant renormalization at low
values of the spin: r( —,')=0.246 and r(1)=0.442. We
stress that these are mean-field results and that O(1/N)
corrections due to Gaussian fluctuations will likely fur-
ther decrease the correlation length, although we have
not by any means shown this.

1
1Cothrp&k

& so SR & =-',
I f«}

I

'—-',
I
g«)

I

'

1"k
I(R) i I ei& R

(Zn )
(5.19) 5.8

I I

(0) S= 1

l I i I I l I

g(R)—= —,
' ~e' ', 2,~2coth —,'pcoi, .tf k ig.R 9Yk

(Zn ) (1—2} yi, }'~2

It is easy to show that f(R) vanishes whenever R is in
the odd sublattice and that g(R) vanishes whenever R is
in the even sublattice. Thus, the sign of the spin-spin
correlation function is always positive on the even sublat-
tice and negative on the odd sublattice, as expected. In
one dimension and at T =0, we find

54

~ 50 I

Q. l

-(b) S=I/2

I

0.2
I

0.5
I

0.4
I

05

&So S. &
I T=o— (5.20}

16'
with (=21/[8(1 —2} )]'~ . In higher dimensions, there is
no gap at zero temperature, and the long-distance corre-
lations are dominated by

n('kI ikR (5.21)
ZA (Zn )"

On the square lattice, we obtain

I.2

r
l.l5—

I.I

0
I

0.05
I

O. IO

T
O. I5 0.20

T2 e
—R/g

0 R —
8 2 4

again with g=rl/[8(1 —2} )]'~ . In the limit of large spin
S, the results are

I.o
I I

S * (clolslcol) (c)

~n/2
g(0) = —exp(nS), d =1

16''2

g(T) = — exp(2nS /T), d =2W(S)
8v'Z

(5.23)

g'( T)
I T-o ~ exp( A /T ),

with

A =1.16, S=—,
'

A =5.46, S =1

(5.24)

(5.25}

where we have not been able to extract
W(S)—:C, exp(C2S) from our coupled mean-field equa-
tions.

In Fig. 3, we plot T In/ vs g' for the S=—,
' and S = I

models obtained from numerical solution to our mean-
field equations. We find:

0.8—
~ ~ ~ ~ ~ ~ ~

S*2
+~ 06-
Ch S ~ I

~ ~

CV~ 0.4 — S*Igp

~ ~

4r

0.2—

0-
I

Q.2d
I I

0.50 O.T5
T/S (S+I)

[

I.OO
I

I.25

Flies. 3. Ting vs T for bosonic mean-field theory of square
lattice antiferromagnet. (a) S= z, (b) S= 1; (c) results scaled by

classical expression. Dashed lines indicate extrapolation of nu-

merical results to T =0.
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D. d )2: Finite-temperature phase transition

cothzA (A ((2S+ 1),1
(5.26)

from which we obtain an upper bound on T:

d(2S+1)

2 tanh
1

2d(2S+1)

(5.27)

As S tends to infinity, we have T+ -d (2S+ 1) .
To derive a lower bound for T, we examine the first of

our mean-field equations, Eq. (5.7b), which in conjunction
with above results may be massaged to give

(2S+1)
d"k 1 +4T d k 1

(21T)d ( 1 —y2)1/2 (2%)d ( 1 ?,2
)

%'e wish to derive some loose bounds on the region of
temperature where our mean-field theory is applicable.
For definiteness, we will assume a cubic lattice and uni-
form (ts ——1) phases for the bond field, giving

d

y„=d ' g cosk,
j=1

and a =d /2T (d is the number of dimensions). From the
second of our mean-field equations, Eq. (5.7c), we derive
the inequality

integral spin antiferromagnetic chains, and hence violates
the Lieb-Schultz-Mattis theorem. ' The fermionic large-
N theory' ' for the S=—,

' chain does yield a gapless
spectrum and a power-law decay of the spin-spin correla-
tions. In two dimensions, the most stable fermionic
mean-field theory yet found is the flux phase, which is
disordered even at zero temperature. Our bosonic theory
predicts a low-temperature correlation length which
diverges as g-exp( A/T), with A =1.16 for S=—,', and
where A(S~~)=2nS . It also yields a lower mean-
field free energy than does the fermionic theory. %'e have
not yet analyzed the temperature dependence of the free
energy, although we have provided a plot of our results in
Fig. 4 for the cases S=—,

' and S=1.
To what extent can one trust the results of the 1/N ex-

pansion when the physical model lies at N =2? In the
case of the ferromagnet, we found that the uniformiza-
tion of the constraint field A, ; led to a theory with

g =N/(N —1) times as many low-energy excitations as
are truly present. At N =2, we therefore found that
while the temperature dependence of F "(T) is correct,
the coefficients differ from those of Takahashi by a factor
of 2. The O(1/N) corrections to the mean-field theory
bring the first of these coefficients in line with the

(o)

(5.28)

For all d & 2, the integrals Ji and J2 are finite, hence

-2.5—

2S+1—J)T):—T
2

(5.29)

The vanishing of the bandwidth Q at T & T+ suggests
that the system has entered a local moment phase in
which there is no coherence to the spin fluctuations. It
seems reasonable that the temperature T should be as-
sociated with the Neel temperature, since that is also
where the correlation length g diverges (at ~1). (b)

VI. SUMMARY AND CONCLUSIONS

We have generalized the usual SU(2) Heisenberg model
to a model with an SU(N} symmetry. The thermodynam-
ics properties and temperature-dependent response func-
tions may then be evaluated using a 1/X expansion simi-
lar to those formulated for the theory of dilute magnetic
alloys and the heavy-fermion problem. ' In the case of
the ferromagnet, our saddle point equations are identical
to those of Takahashi's constrained spin-wave theory,
and we obtain the correct temperature dependence of the
free energy and susceptibility for the soluble S=—,

' chain.
For the antiferromagnetic model, our bosonic large-X
theory predicts a gap for one-dimensional systems which
at the mean-field level tends to zero with increasing
values of the spin S as b z ~ S exp( —m.S ), in good agree-
ment with the Haldane result hs ~ S exp( n.S ). We-
note that the bosonic theory is blind to the topological
terms responsible for the gaplessness in all half-odd-

-0.?—

-0.9—

I

OA
I

0.8

FIG. 4. Free energy per site F " vs T for the bosonic mean-
field theory of the square-lattice antiferromagnet. (a) S= z, (b)

S =1.
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Takahashi result; higher-order corrections are in princi-
ple calculable, though this is a difficult task. We believe
that our mean-field theory is the correct starting point
and that the 1/N expansion is well behaved. At the very
least, we have systeinatized Takahashi's theory, which we
find ad hoc as it stands for reasons given in the introduc-
tion.

Conventional wisdom has it that if the ground state is
disordered, subtle topological effects may have profound
consequences in the determination of correlations and the
excitation spectra. This is true, apparently, in one dimen-
sion, where the 8 term in the continuum field theory for
the Heisenberg antiferromagnet renders the spectrum
gapless for S half-odd integral (8=m), while there is a

gap for the integer S (8=0) chains. Concerning the Hal-
dane ga~~ in integer spin antiferromagnetic chains, we ob-
tain 5s '

&
-0.17 at the mean-field level, which is almost a

factor of 2 —3 smaller than current numerical estimates, '

which give hs, -0.41. We therefore overestimate the
T =0 correlation length, obtaining Pz", -9.8, which is
to be compared with numerical estimates of gs, —5.5.

There does not exist a unique large-N generalization of
the S=—,

' Heisenberg model. However, it is our preju-
dice, based on existing numerical and experimental
work, ' ' that the ground state of the S=—,

' Heisenberg
antiferromagnet in two dimensions possesses Neel order.
Therefore, we suggest that our boson mean-field theory is
valid in d =2 (for a/I S & S,=0.2), and that the correla-
tion length gs( T) diverges as exp( A /T). We note that
the critical spin S, is related to the coupling constant and
transition temperature of the corresponding three
dimensional nonlinear e model, which is the appropriate
continuum theory. Introducing frustration would in-
crease S, and perhaps allow for a disordered ground state
for the S=—,

' system.
La2Cu04, a sister compound of the high-temperature

superconductor La2 „Sr„Cu04,is believed to behave as
an isotropic square lattice S=—,

' quantum antiferromag-
net above its three-dimensional Neel point 50 K
& T~ &300 K. ' Below T~, a spin-wave velocity of
c =0.4 eV A is measured, implying a coupling J=792 K.
At T=300 K, we have T/1 =0.378, and the mean-field
correlation length is /=35, in units of the lattice spacing
a, a figure which is quite compatible with current experi-
mental estimates. The corresponding o -model result is

g-exp[2i»S(S+1}I/T] =2.52X10',

which is much too high.
Our 1/X formalism allows straightforward calcula-

tions of the dynamical susceptibility X(q, co; T) which can
be compared with results from energy-resolved inelastic
neutron-scattering data. This mill be presented in a fu-
ture publication.

Note added. In a recent report, Chakravarty, Halpe-
rin, and Nelson (CHN) have investigated the phase dia-
gram of the {2+ 1)-dimensional nonlinear o model,
which is related to the two-dimensional quantum Heisen-
berg antiferromagnet when the width in the temporal di-
mension is proportional to the inverse temperature. They
obtain exponential temperature dependence of g'(T) as in

our Eq. (5.24) which agrees in detail with neutron-
scattering data. Their value of A (S) is given by
A (S)=2nS ZrZ„where Zr(S) and Z, (S) are known to
O(1/S) from spin-wave theory. Plugging in S=—,

' and
S= 1 into their expression, one finds 3 "

( —,')=0.944
and A (1)=5.30, which are very close to our mean-
field values of Eq. (5.25), A "(—,

'
) = 1.16 and

A "(1)=5.46.
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APPENDIX A: SCHWINGER REPRESENTATION
OF THE SPIN ALGEBRA

The algebra of spin is that of the group SU(2):

[S~,S~]=i e~ S», S S=S (S+1) . (Al)

APPENDIX B: GAUSSIAN FLUCTUATIONS
AND 0 ( 1/N) CORRECTIONS

In this appendix we demonstrate a typical calculation
of the O(1/N) corrections to the mean-field theories dis-
cussed in the text. We concentrate on two simple one-
dimensional cases, those of the bosonic large-S ferromag-
net and the fermionic large-N S=—,

' antiferromagnet.
Since the integrations involved are relatively easy to per-
form in these cases, this appendix serves as a practical ex-
ample which highlights the utility of the functional in-

Conventional spin-wave theory makes use of the
Holstein-PrimakoS' representation

S+=h [(2S—b b)]' ", S'=b h —S,
(A2)

S =[(2S—h th )]'"b, 0 & h th & 2S,
in which each spin is represented by a single Bose oscilla-
tor, together with the anholonomic constraint that states
in the physical sector must have 0(n& & 2S. This type of
constraint is extremely diScult to handle in a functional
integral approach because it defines boundaries in Hilbert
space.

In the Schwinger representation, each spin is replaced
by two bosons,

S+=a b, S'= —,'(a a bb), —
(A3)

S =ab, S=—,'(a a+b b),
together with the holonomic constraint S=—,'(n, +nb)
=S. Constraints of this type may be imposed by func-
tional 5 functions, and thus this representation lends it-
self well to the approach we take in the text.
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(B1)

where h is an external field. The mean-field equations
determine the saddle-point values of the temperature-
dependent (and field-dependent) constants A, and Q, cf.
Eqs. (3.5) and (4.4). One defines the mean-field Green's
function

tegral approach.
The Read-Newns transformation of Eq. (2.17) replaces

the coinplex fields Q, by their absolute values
~ Q;/ ~.

The partition function is given by

Z= f2)[Q,A]e, xp[ —NS(Q;A, ;h )],

where the matrix R is defined by

=(Q), g+~), )+gmh), (B4)

(B5)

[The indices m = ——,'(N —1), . . . , —,'(N —1 } are fiavor in-

dices. ] The + signs in Eq. (B3) apply to the Bose and
Fermi case, respectively. Expanding Eq. (B3) to second
order in the Bose fields Q and A. (at zero magnetic field

hz) and performing the Gaussian integrals yields the Bose
propagator

Gi,),
——.„5&),5~~, co„=A,+2Q cosk, (B2)

lk P
—cok

where k=(iko, k) is an energy-momentum vector, and
where the Matsubara frequencies iko are 2n.nT for the
bosonic model and (2n+1)nTfor .the fermionic model.
In addition, in one dimension each bond Q„„+,may be
labeled by a single index, say n+ —,', which denotes the
midpoint of its terminating sites. The action can now be
written as

Ng=RTr lnG 'RTrln(1+GR)+NP g QqQ q
—A,

(B3)
I

where the index r ranges over Q and A, , and the polariza-
tion matrix is explicitly given by

nk nk+q
Ck Ck

2Q cosk —2Q cos(k +q)+ q'
(B6)

where nk is the Bose or Fermi occupation function and
the Ckq are coherence factors:

CP =2 cos( k + —,'q ), C), q
= &' . (B7)

For the Bose case, the polarization functions can be ex-
panded at low temperatures using a steepest-descents in-
tegration, yielding

I

—n~„/r CkqCkqII= k

—~ 2rr 2Q cosk —2Q cos(k + q)+Oiqo

=SC() qC() q g . [1+0(T' )] .
2 1 —cosq + (r lq0

(B8)

Since the coherence terms factor out of Eq. (B8}at low T,
there is a cancellation with the off-diagonal term in detD,
leaving detD=T/Nil&a+ . . The trace over Matsu-
bara frequencies can now be accomplished, and we obtain
the following correction to the free energy:

F( i /N) + in( 2I)g cask

NI3 ~2n.
(B9)

y(1/N)(& 0+ ) y g(1/N)(p) g P()/N)(ip p )
1,Po,P

(BIO)

[g(p) is the static structure factor. ] X" ' is determined

by the quartic terms in the expansion of the logarithm in

Eq. (B3) which have contributions from two Bose fields

and two magnetic fields h h r. Completing the square
the integrating out the Q and A, fields, it can be seen that
all the 0(1/N) corrections are included in the following
integrals:

This correction, when added to the mean-field result of
Eq. (3.7), brings the coefficient of the T term in line
with the result of Takahashi and with the numerical ex-
act result for S=—,'. However, no correction to the T
terin is found at the 0(1/N) level. By explicitly includ-
ing the magnetic field to second order, we find that I'"
is independent of h and hence there is no corresponding
correction to the static susceptibility.

In the case of the fermionic large-N theory of the S= —,
'

antiferromagnet, we wish to concentrate on the 0(1/N)
correction to the total moment sum rule of Eq. (4.8}
(equal-time local susceptibility):

(p ) =
N Q m G(, +p G), G), G(, +q

C)",qC )",qD„„(q),
k, q, m

(B.1 1)
v 1 2
(p }=—g m G)

+IONG),

G), +) +qG), +q
k, q, m

X C)", qC)",+ p qD„„(q),

whose diagrams are shown in Fig. 1. (We have adopted
the shorthand notation G:—G ~ .) Summing over ipo,
the contribution to the equal-time correlation functions
are given by
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S (p)=g —g m nk+&GkGkGk+ Ck Ck D„;(q),
k, q, m

~V( )
2 ~ 2 k k+ + k+ + C„C„D( )

(n n— )(n n — )
p =g — m kq k+pq rr' 'V

N „(cokco—k+ +iko)(cok+ c—ok+ +iko+iqo)

(B12)

X"'"'(t =0+ ) =—'X""(t=0+ ) .
N

(B13)

Since the other contributions to S(p) are antisymmetric
in p~p+m, the logarithmic divergence at the zone
boundary which is missing at the mean-field level is ex-
pected to arise from S and higher-order terms in the
1/N expansion.

By particle-hole symmetry, the off-diagonal propagator
matrix elements vanish, i.e., D&& ——0. Using the antisym-
metry tok+„———cok (A, =O for the fermionic mean field), it
is also possible to show that the O(1/N) corrections to
the total moment sum rule all vanish with the exception
of the vertex contribution involving Dkk This. correction
is easily found to be

where the A, , integration contours run from i ~—to
+i 00. At this point, one can break up the biquadratic
C;j C; terms with a complex HS bond field, as described
in Sec. II of the text. However, the simplicity of the
Grassmann algebra allows one to accomplish the same re-
sult with a unimodular HS field.

The idea is basically this: The composite field C;j is bi-
linear in Grassmann variables and one can check that it
satisfies C,"=0. It is then easy to see that by integrating
over only the phase angle 8; with t—:exp(i8) the unimo-
dular field, that

exp )~ t +t l+ ] 2 + ] 4 2

APPENDIX C: UNIMODULAR HUBBARD-
STRATONOVICH TRANSFORMATION

In the case of the S=—,
' Heisenberg antiferromagnet in

its physically relevant N =2 fermion incarnation, one can
decouple the quartic term in the action by a unimodular
Hubbard-Stratonovich (HS) transformation, i.e., using a
bond field Q," whose magnitude is fixed to be unity. This
result, due to Arovas and Girvin, is derived below.

For S=—,', one can write

=exp( —,'a CC —
—,', a CCCC },

(C5)

where a is a free parameter, and where we have used the
fact that all Grassmann bilinears commute with each oth-
er. Setting a=&2, one finds that the above integral is
given by

with

C;j.=(c;tcji +cite;( ) = Cp

2)j

=(citcjt+c;(cia�

),
(C2)

exp t +t —exp '

(C6)

H=g S;Sj.

= —,'JVz ——,
' g Ct C.. . (C3)

and where:X: denotes normal ordering. We shall write
everything in terms of the C,, operators. The Heisenberg
Hamiltonian is then

Note that the above expression does not exactly repro-
duce the relevant part of the action in Eq. (2.13) on ac-
count of the C CCC term. However, we claim that this
makes no contribution to the path integral due to the
constraint. One way in which we see this is to note that
if the interaction were not of the form —,

' ——,'C; C; but
rather

where JV is the number sites and z is the lattice coordina-
tion number. Since H is already normal ordered,

Z = f2)[c,c;A, ]exp( —S[c,c;A.]},
(C4)

S=f dr —,
' g(c, c; c; c; ) ,' g —C;jC;j——

0

+ yX, (c„c,, +c,,c, , 1)—

4 2 ~ij ~ij i6 ~ij ~ij ~ij ~ij

(which is normal ordered), then the associated term in the
action would be exactly that which would be reproduced
by the above unimodular HS transformation. The addi-
tional eight-point term does commute with the constraint
n;&+ n,-&

——1, however, it must be zero since the constraint
enforces an occupation of one fermion quantum per site.

One thus obtains
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Z= c,c;;8 exp — c,c;A,;

(C7)

—i8, i8,4'= f dr —,
' g(c; c, —c, c, )+ +A, , (c;&c,&+c,&c, &

—1)+ — g [e "(c;&c &+c,&c, &)+e "(c,&cj&+c &c, &)]

for any bipartite lattice in an arbitrary number of dimensions. [There is a reference energy per spin of E„r/JV=—,z not
included in Eq. (C7).] In d =1, one can gauge away the HS field via a Read-Newns transformation Eq. (2.17), leaving
one with an integral over only the Grassmann variables and the constraint field.

An identical expression may be derived using the 2)," operators, resulting in

Z= f2)[c,c;A,;8]exp( —S[c,c;)).;8]},
(C8)

—ie, i 9,.)4= f dr —,
' g(c, c; c; c—; )+ QA, , (c;tc;&+c,~c, &

—1)+~ g [e "(c,&c,&+c,~c, ))+e "( c&j,c&+ c& c&)]
2 &;,J')

where the reference energy per spin is now
E„r/JV= ——,'z.

APPENDIX D: SPIN-SPIN CORRELATIONS
AT T =0—FERMIONIC THEORY

C(k) =—g e'"'"C(R)
R

d2
n(1 —n „)

(2 )2 P P+ (D5)

The fermionic mean-field theories yield gapless spectra
and an algebraic decay of the spin-spin correlation func-
tion. In this Appendix, we investigate the asymptotic be-
havior of the correlations in both the BZA phase and the
flux phase on the two-dimensional square lattice. In each
case, one obtains

c(R)=—&s, S„&

is easily shown to be
2k„

C(k) =—1+
4

2'

(D6)

Note that C(k=0)=0, i.e., the ground state is a singlet.
As emphasized in the text, the total-moment sum rule is
violated, and we obtain

=-,'&R,o——', 1«R)
I

' (D 1)
d kf,c(k)=-,'

(2m )
(D7)

with

L(R) f k —ik Rie

n (2~)'
(D2)

at the mean-field level, rather than the correct value of
$($+ I)=—,'. Note also the nonanalyticity of C(k) at the
zone edges.

cosk +i cosk„
expi8k ——

(cos k„+cosky)'~

in the Aux phase.

(D3)

1. BZA phase

where the integral is over the little zone 0 defined by the
vertices (0, Sir) and (+ir, 0). The coherence angle 8), is 1

in the BZA phase and

2. Flux phase

The nontrivial coherence angle in Eq. (D3) makes an
exact evaluation of L(R) difficult. However, we can ex-
tract the leading asymptotic behavior of the integral in
Eq. (D2) using the saddle point approximation:

Vk8k ——R,k=K

Here, the integral in Eq. (D2) may be done exactly,
yielding

L(R) e Ke —iK R
4ir v'detA

(D8)

sin( n. /2 )R +LR= —'
(ir/2)R+

sin(n /2)R

(ir/2)R
(D4)

where R+ =R„+Rz.Since both R+ and R are even
when R is in sublattice A and odd when R is in sublattice
8, we find that C(R) vanishes for all nonorigin R in sub-
lattice A. Along the axes R.x=0 and R.y=O the corre-
lations decay as R

The static structure factor, defined by

As R gets larger, the solutions are confined to small re-
gions about the four Fermi points (+ir/2, +m. /2). By
translating the region of the little zone in the lower-left
quadrant by (nr, m ) and translating the region of the little
zone in the lower-right quadrant by ( —ir, m ), we find that
there are really only two saddle points to consider. In the
vicinity of Ko=(n. /2, ir/2}, we write k—:Ko+q, with q
sma11, yielding
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ie qy +~qx

( 2+ 2)1i2

from which one easily obtains det A =R . Summing over
the two saddle points at (+m/2, n /2), we obtain

qy 9x
Vl Ok= (D9)

i
L(R)

i

— R p(R),
4m.

(D 10)

zXRK=Ko+
R

with p(R) =0 if R„+R»is even (i.e., if R is in sublattice
A), p(R)=R /R if R„is even and R is odd, and

p(R) =R„/R if R is even and R„is odd.
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