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We consider Hamiltonians defined on multiply connected domains, which provide models for a
great number of physical systems. Their eigenfunctions behave in a characteristic way as a function
of enclosed magnetic flux. We establish different possible laws for the change of the phase winding
numbers around enclosed flux. These laws provide a common theoretical basis for various quantum
effects in orbital magnetism and charged-particle transport. As an illustration we discuss their
relevance to particle transport in a constant electric field, emphasizing one-dimensional aspects. We
show how the laws of winding-number change directly lead to the equations of quasiclassical dy-
namics, if the particle is subject to a highly periodic potential, but to completely nonclassical motion
if the spatial symmetry is low and the electric field below a threshold value. The nonclassical as-
pects of quantum transport, particularly Bloch- and Josephson-type oscillations, are due to a
periodic appearance of singularities of the phase of the wave function. These singularities are situ-
ated at the cores of phase gradient vortices, which periodically move across the physical domain,
thereby causing jumps of the phase winding number of each state, associated with a change of the
momentum. This picture gives new insight into the microscopic mechanism of momentum change
in elastic processes. Further, the speed of motion of the phase singularities determines whether a

15 AUGUST 1988-1

state is insulating or conducting. We thus obtain a new characterization of such states.

I. INTRODUCTION

An important difference between classical and
Schrédinger quantum mechanics is the fact that in the
former the initial position and velocity of a particle can
be chosen independent of each other (leading to a definite
energy), whereas in the latter this is not always the case.
Here the position is related to the modulus R (x) and the
velocity to the gradient of the phase 7(x) of a complex
wave function ¥(x)=R(x)exp[in(x)], x ERP. This im-
plies an a priori relation between position and velocity,
since R (x) and 7(x) are not independent of each other.
For stationary wave functions it has been shown! that the
phase 7(x) is related in a crucial way to the nodes of ¥(x)
[where R (x) vanishes]. Of particular importance are no-
dal (hyper)surfaces (lines, points) of dimension p—2,
where 7(x) is singular, showing jumps of #W, W an in-
teger. These phase singularities lie at the centers of vor-
tices of the gradient of the multivalued phase function
7n(x). The change of phase around a particular nodel
(hyper)surface (the phase winding number) is just equal to
W, i.e., we have

1 3
W= f,,§ 3% n(x)dx, . (1

Here, P is a path, which once encircles the particular
(p —2)-dimensional nodal surface or line (but no other
surface or line of this type). Note that W is integer, since
Y(x) is single-valued.>® These phase gradient vortices
are therefore also called quantized vortices.*

Relation (1) with W an integer merely follows from the
fact that ¥(x) is a regular, complex function. If, in addi-
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tion, ¥(x) is a solution of a Schrédinger equation describ-
ing a system, which can be enclosed in a simply connect-
ed domain, such that the quantum-mechanical current
density at the boundary of this domain vanishes or is
parallel to the boundary, then the following general
theorem is true:! In the absence of a magnetic field the
quantum-mechanical current density is zero unless there
exists in the corresponding domain of the configuration
space at least one nodal (hyper)surface (line) of dimension
p —2 with nonzero winding number W. This global re-
sult indicates the importance of phase singularities for
systems with a nonvanishing current density. Further, a
magnetic field B(r)=curl A(r) can induce quantized vor-
tices in the system."">> The same is true for an electric
field, since it can be expressed in terms of a vector poten-
tial changing with time. Since phase singularities and
quantized vortices have no direct counterpart in classical
mechanics, we expect therefore that they are related to
quantum effects of orbital magnetism and of particle
transport in an electric field.

In this paper we will first investigate some general laws
for the evolution of these phase structures as a function
of a (changing) vector potential. These laws provide a
common theoretical basis for various quantum effects of a
wide class of systems, which can be described by a Hamil-
tonian of the following general type:
fid

1
H=— —
2m % [i dx,

2
+Vix),

_9
L 1ba(x)+5—f(x)

a

(2)
(X 1y eevsXgsen- ,xp)=x €D CRP, where D is a multiply

connected domain in R? with r holes. We define f(x) as
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a regular function of x in D, but it may have singularities
(branching points) in the holes, such that, on a closed
path P, f(x) may be multivalued, leading to a nonzero
flux contribution. If we consider a path P encircling the
ith hole once, then

3
=3 [ 5 S xdx, (3)

a

denotes the magnetic flux through the ith hole generated
by f(x). By definition, we choose b, (x) to be
differentiable in D and in the holes. The total vector po-
tential 4 ,(x) is equal to b,(x)+9/f(x)/dx,.

The simplest example for a Hamiltonian of type (2) is
given by a charged particle on a real loop of circumfer-
ence L threaded by a total magnetic flux ¢. Here, H may
be expressed in terms of the curvilinear parameter x, =x
on the loop, and we have

f(x)=¢x /L . 4)

(The line integral of b, along the loop is zero in this case,
i.e., b, represents just a gauge term.)

A related example is given by the Bloch theory in
solid-state physics. Here, due to periodic boundary con-
ditions in a d-dimension box, D is a torus T¢ and the
phase winding number W “around” the ith hole of T is
just the quasimomentum k£ in the ith spatial direction
(multiplied by L /27, where L is the length of the box in
the ith direction). Our investigation will therefore give
new insight into the mechanism of momentum change in
elastic-scattering processes.

Other examples are normal and superconducting net-
works, and, further, particles confined to cylinder or
torus geometries. These may either be real geometrical
structures or be the result of mathematical idealizations
of simply connected systems by means of periodic bound-
ary conditions.

The motion of phase gradient vortices (centered by
phase singularities) as a function of ¢; may change the
phase winding number W associated with the ith hole.
Recently,’ phase singularities have been studied for an
electron confined to a two-dimensional, doubly connected
domain D with asymmetric boundaries, which is threaded
by a magnetic flux ¢ (this system was called Aharonov-
Bohm “billiard”). Here the phase winding number W
along a path encircling once the hole of D has been inves-
tigated, and it was found that W of any eigenfunction of
H changes with ¢ in the following way:

W(dp+1)=WI(4)+1 with ¢ given in units of hc /e .
(5)

This property has also been found for one-dimensional
perturbed loops threaded by a magnetic flux.’

In this article we will study the continuous evolution of
wave functions as a function of a flux parameter ¢. We
will find that in the general case a series of other laws of
winding-number changes are possible differing from (5).
We will investigate these different cases and their theoret-
ical origin together with the characteristic behavior of
the wave functions with which they are associated. We
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will find that the winding-number changes are connected
with various different scenarios of quantized-vortex
motion as a function of ¢. These lie at the origin of seem-
ingly different physical phenomena.

Many different physical systems can be described by a
Hamiltonian of type (2). The laws of winding-number
and quantized-vortex change therefore provide a general
tool for discussing quantum effects of a priori different
systems from a unified point of view. As a first example
we mention the oscillatory magnetic behavior of thin net-
works® and Aharonov-Bohm-type effects.>® In this pa-
per we will illustrate the significance of the general laws
by showing their relevance to the dynamics of charged
particles in an electric field. Further applications will be
discussed in forthcoming papers.

II. DIFFERENT CASES
OF WINDING-NUMBER CHANGE

We will investigate various properties as a function of a
single flux ¢ (possible other flux variables associated with
other holes remaining constant). For the following it is
therefore sufficient to consider a Hamiltonian of type (2)
describing a particle with charge g on a doubly connected
domain D (i.e., containing a single hole) threaded by a
flux ¢. The mathematical properties which are important
for the following are best illustrated by the case of one
spatial variable (x; =x €D =[0,L]; D may be represent-
ed as a loop in the plane):

2
#d q¢

iox cL

H(p)=——

m +Vix). (6)

In this one-dimensional case b,(x) of Eq. (2) has been set
equal to zero, since its line integral along the loop is zero
as we have mentioned, and therefore it has no influence
on phase winding numbers.

It is well known’ that H admits a family of infinitely
many (nonequivalent) self-adjoint extensions H, defined
in L,([0,L]), each of which is defined by

fLde:a (mod 2m) , (7
0 Ox

where a €[0,27). Among these Hamiltonians we choose
the one with a =0, i.e., we choose that self-adjoint exten-
sion of H, which is defined by means of functions
Y(x)=R (x)exp[7n(x)], which are single-valued on the
loop, corresponding to periodic boundary conditions
PY(0)=y(L).

Remark: If D describes a real loop imbedded in the
two- or three-dimensional physical space (i.e., x is the
curvilinear parameter along the loop with length L), then
this is the only physically correct self-adjoint extension.>?
On the other hand, if D represents an open interval (e.g.,
a rectilinear interval) of length L, then each of these non-
equivalent self-adjoint Hamiltonians H, may be physical-
ly possible. However, a definite extension H, with a0
is unitarily equivalent to a Hamiltonian H (i.e., defined
on single-valued functions), where now ¢ is replaced by
¢—*#ica /q, i.e., to a Hamiltonian with a shifted flux ori-
gin. Since for the following discussion the origin of ¢ is
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not important, we set @ =0 also in the case where D is
not a closed loop.

The Hamiltonians (6) have the important property that
the set of eigenvalues of H (¢) is identical with the set of
eigenvalues of H (¢ +mhc /q) for any given ¢, where m is
any integer. This follows from the fact that the unitary
transformation

Y =vyexpli /AF (x)], (8)
where
F(x)=—hxm /L, m an integer , 9)
and, hence,
("2 Fxdx = —hm (10)
0 0x

transforms H(¢+hcm /q) into H'=H(¢), leaving the
domain of definition of the operators unchanged provided
m is an integer. In other words, the ser of eigenvalues
(the spectrum) S(¢) of H(¢) is periodic with ¢ with
period hc /q:

S(¢+1)=S(¢), (an

where ¢ is expressed in units of hc /g, as in the following
of this section (hc /q has a sign). The property (11) is in-
dependent of the particular form of V'(x).

If H depends on more than one spatial variable (e.g., a
hollow cylinder or the two-dimensional Aharonov-Bohm
“billiard” of Ref. 5), Eq. (11) follows from completely
analogous arguments, starting with the fact that there ex-
ists a one-parameter family of self-adjoint extensions’ of
H, each of which is characterized by a relation analogous
to (7), where now the integral follows any path P which
once encircles the hole, and in the same way equation (10)
is generalized to

dF(x,,...
[,z

2 ox,

s Xy e o)

dx,=—hm . (109
For a general Hamiltonian of type (2) with many holes,
Eq. (11) is true individually for each of the flux variables
¢:.

There exist different forms of S (¢), which are compati-
ble with (11). Figures 1 and 2 show some examples.
These different forms of S(¢) can be classified according
to the behavior of the individual energies E;(¢) [the
union of which composes S(¢)],

where the labels j are defined such that each ¥;(¢) is a
continuous function of ¢. This means that across a possi-
ble point of degeneracy of the eigenvalue we follow ¥/;(¢)
continuously as a function of ¢. In the general case an in-
dividual E;(4) is not periodic with period 1.

One important class of S(¢) (illustrated by Fig. 1) is
characterized by the following behavior of all the eigen-
values of a given Hamiltonian:

Ej(¢+n)=E;(¢), n€(1,2,...] (13)
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FIG. 1. Schematically shown examples for the periodic ¢
dependence of the eigenvalues, such that in addition to relation
(11) also an equation of type (13) is fulfilled. ¢ is given in units
of hc/q, where g is the charge of the particle. (a) Energy levels
E,(#) periodic with period 1. The numbers shown in the figure
are the phase winding numbers W;(¢) associated with the corre-
sponding pieces of the energy curve E (¢) in the case where the
levels represent eigenvalues of a Hamiltonian of type (6). The
dashed line corresponds to a nonadiabatic process (see text). (b)
A single band of energy levels E;(¢) with ¢ period n =4. (c)
Energy levels of a single band with ¢ period n >>1, shown in a
neighborhood of $=0 and of ¢=m. The levels are labeled by
their phase winding numbers which, in the figure, are restricted
to a small interval around a given W; at $=m and W,—m at

$=0.

where n denotes the smallest integer for which (13) is
satisfied. For the given Hamiltonian, » is the same for all
eigenvalues, and the energies may be degenerate only at
discrete values of ¢. The case n =1 is illustrated in Fig.
1(a). Note that here no eigenvalue is degenerate (i.e.,
there is one state per band). An example for the case

(c)

FIG. 2. Schematically shown examples of individual energy
levels, which are not periodic with ¢, i.e., no relation of type
(13) holds [but the spectrum still fulfills Eq. (11)]. (a) Parabolic
energy levels of a free particle. The level index is equal to its
phase winding number (which remains constant for all ¢). (b)
and (c) examples for asymmetric behavior of the individual en-
ergy levels.

Energy (arbitrary units)

I L ! 1

40 1 ]




3136

n =4 is shown in Fig. 1(b). The eigenvalues of all one-
dimensional Hamiltonians of type (6) with V' (x) different
from a constant belong to this class. We define the values
of the indices j such that, for energies within the same
band, we have

E; ¢+ D=E;($), j=0,1,...

see Fig. 1. For the first energy band j =0,1,2,...,n —1,
for the second band j=n,n +1,...,2n —1, and so on.
Within the same band E; , , is identical to E;.

For Hamiltonians of type (6) the number » in Eq. (13)
is related to the periodicity of the spatial potential V' (x)
on the interval of length L (circumference of the one-
dimensional loop): L /n is the spatial period (unit cell) of
V(x). The eigenfunctions of (6) (for ¢=0) are the usual
Bloch functions, and the corresponding eigenvalues E;(¢)
are the ¢-dependent Bloch energies forming bands, each
containing n energy curves E;(¢). Here on a flux interval
0< ¢ <1 each energy curve E;(¢) intersects at least two
times with each of the other energy curves of the same
band, i.e., it intersects at least 2(n — 1) times in this flux
interval. For a potential which is aperiodic (apart from
the trivial periodicity) there are no intersections and
n=1. This illustrates the Wigner-von Neumann an-
ticrossing theorem® for eigenvalues depending on one pa-
rameter (here ¢).

Figure 2 illustrates another class of spectra for which
no relation of type (13) holds for the individual energies
(with the energies being degenerate at most for discrete
values of @¢). A particular example of this class is a Ham-
iltonian of type (6) with V(x)=const. Here the energies
are parabolas [Fig. 2(a)]. This may also be considered as
the limit n — o of a periodic potential (all energies are in
the first band). Figure 2(b) and 2(c) illustrate more gen-
eral cases of this class, where the individual energy levels
are asymmetric as a function of ¢. Explicit examples will
be discussed elsewhere.

In this paper we are interested in the behavior of the
eigenfunctions ¢;(x) as a function of . We will see how
this is related to the ¢ dependence of the energies E;(¢).
First, we consider the case where a relation of type (13)
holds, and we seek the relation between dfj(¢+n) and
¥;(¢) for all ¢. To this end we consider the equation

,n—2 . (14)

H(¢+n)p(¢+n)=E(p+n)Y;(¢+n) . (15)
Due to the unitary transformation
V=9, (¢+n)exp[(i /A)F(x)], (16)

where F(x) fulfills Eq. (10’) with m equal to n, and rela-
tion (13), Eq. (15) is equivalent to

H($)W;=E;($)Y; . a7
Hence,

vi=v;(4), (18)
From (16) and (18) we obtain

Yi(¢+n)=1;(dlexp[(—i/AIF(x)] . (19)

This means, in particular,
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|¥i(d+n)| =|9;($)] (20)

and using (10),
Wi(g+n)=W,$)+n . @D

Remark: At first, Eq. (18) in the above derivation only
holds for all ¢, where the energy is not degenerate. But it
is also valid for a value ¢, where E y is degenerate, since
at such a point we have defined ¢; as the continuous limit
¢—¢' of Y;(¢). If we omit the index j in the above
derivation [i.e., we do not make use of an equation of
type (13)], then, as a consequence of (11), for any two
nondegenerate values ¢ and ¢+m (m any integer), for
which E(¢)=E($+m), we have

W(pg+m)=W(d)+m (211
for the corresponding eigenfunctions at ¢ and ¢ +m. But
these two energies and winding numbers do not have the
same label j, if m is different from an integer multiple of
n, see Fig. 1(b), or if no relation of type (13) holds (Fig. 2).

Summarizing, we emphasize that the spectrum S(¢) of
any Hamiltonian H(¢) of type (2), which depends on one
or several flux variables ¢, is periodic with respect to
each flux variable ¢ separately with period 1 [Eq. (11)].
The phase winding number associated with two nonde-
generate eigenvalues E(¢)=E(¢+m), m any integer,
obeys Eq. (21'). If a relation of type (13) holds, the phase
winding number of an eigenfunction ¢;(¢) of H(¢) obeys
the law (21) [¢/;(¢) is defined as a continuous function of
¢, and n is fixed for all eigenfunctions of the same Hamil-
tonian]. If H(¢) depends only on one spatial variable x,
then L /n is just the spatial period of the potential V(x).
Further, in all cases of aperiodic energy levels E;(4) [i.e.,
where no relation of type (13) holds] known to the au-
thor, the winding numbers W; do not change with ¢ [e.g.,
Fig. 2(a)].

It is important to note that as soon as a symmetry
which causes degeneracy of the energy (crossing of levels)
at certain values of ¢ is destroyed by a perturbation with
reduced symmetry, a definite number of formerly inter-
secting levels now anticross at these ¢ values. For in-
stance, the free-particle parabolas of Fig. 2(a) are
modified by a potential V(x) with spatial period L /n
such that the perturbed levels anticross at the Bloch band
edges, leading to energy levels E;(¢), which obey Eq.
(13). The presence of a totally asymmetric potential des-
troys all degeneracy (in accordance with the Wigner—von
Neumann theorem?®) and, as a consequence, leads to Eq.
(21) with n =1.

If relation (13) holds, Eq. (21) gives the difference of W,
for discrete ¢ values lying A¢=n apart. It means that
over a long ¢ interval much larger than n the average W,
change per flux unity is always equal to 1 for a given
function ¢¥;(¢). On the other hand, Eq. (21) says nothing
about the effective ¢ dependence of W; for flux values
within an interval A¢=n. Here various scenarios for the
change of W; as a function of ¢, which are compatible
with (21), are possible. If n =1, the simplest case of a W
change is an increase (decrease) by unity in each consecu-
tive flux interval of length 1, occurring for all eigenstates
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¥;(¢) of the Hamiltonian. Such a behavior has been
found® for the wave functions of the Aharonov-Bohm
effect and the two-dimensional Aharonov-Bohm ‘bil-
liard.””> Here phase singularities [nodal points of ¥(x,y)],
each forming the center of a phase gradient vortex with
individual winding-number unity, migrate across the
two-dimensional domain from its external boundary into
its hole, where one vortex center enters per flux interval
Ap=1.

An important system for the following is a charged
particle on a one-dimensional domain [Eq. (6)]. Here the
possible scenarios of W, change are determined by the
numbers n of Eq. (13) [i.e., by the periodicity of the spa-
tial potential ¥ (x)] together with the energy index j. At
the flux values, where the levels anticross, Wj jumps. In
the intervals between the energy anticrossing point the
phase winding number W;(4) of a solution can be derived
from the corresponding free-particle spectrum by follow-
ing the parabolas E;(¢) of Fig. 2(a) piecewise as a func-
tion of ¢, such that, instead of level intersections, one ob-
serves level anticrossing after each flux interval A¢=n /2
(except for the ground state, where A¢=n).* Here, n is
the periodicity number of the potential ¥ (x) in the Ham-
iltonian under consideration. Between adjacent an-
ticrossings the winding number W, is then identical to
that of the corresponding free-particle curve.

For a spatial potential with n =1, the values of Wj(¢)
in the intervals between the energy anticrossing points
¢=p /2, p an integer, are indicated in Fig. 1(a). Here, W,
is equal to 1 for —1 < ¢ <0, then it jumps to —1 at ¢=0,
then it jumps to 2 at d):%, and soon. If n > 1, the Wj of
a Bloch function ¥;(¢) jumps only after a flux interval
A¢p=n /2, except in the lowest band, where A¢ =n. The
jumps occur at the band edges (except for the ground
state). For instance, Wy, =0 for —n /2 <¢ <n /2, then at
é=n/2 it jumps to n, at ¢=3n/2 it jumps to 2n, etc.
W,=1 for —n/2+1<d<n/2+1, at ¢=n/2+1 it
jumps to n +1, at $=3n/2+1 it jumps to 2n +1, etc.
W_, (which is identical with W,—1) =-—1 for
—n/2—1l<¢<n/2—1,at $=n/2—1 it jumps to n —1,
at ¢=3n/2—1 it jumps to 2n — 1, and so on.

In the case of a one-dimensional system the behavior of
the phase 7;(x) with the periodic jumps of its winding
number W; can be visualized® by extrapolating the phase
function 7;(x) of a given state ;(x) into the plane, into
which the one-dimensional domain of length L
(represented as a circle) can be embedded, see Fig. 3:
Here, by drawing the lines of constant phase one obtains
a picture of vortices, whose cores (the phase singularities)
lie inside, outside or on the perimeter (e.g., a plane-wave
state shows a single, symmetric vortex whose core is in
the center of the circle). These vortices move in the plane
as a function of ¢. At a ¢ value, where the energy levels
anticross, one or several vortex centers (phase singulari-
ties) cross the perimeter, which causes a jump of the
phase winding number W; (defined along, the perimeter).
(If the dimension of the domain of the system is greater
than 1, the phase gradient vortex structure is usually visi-
ble without extrapolation.) Figure 3 illustrates a typical
vortex structure of the ground state of a Hamiltonian of
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type (6) where the potential has spatial period L /2 (i.e.,
n =2). We remark that, for given ¢, the relevant topolo-
gy of the vortex structure of an eigenstate with a given in-
dex j is the same for all Hamiltonians of type (6), whose
potentials ¥ (x) have the same periodicity n (cf. Ref. 3).

III. APPLICATION TO QUANTUM TRANSPORT

The general behavior of W as a function of ¢ discussed
in the preceding section is important since it constitutes
the common theoretical origin of various quantum effects
occurring in different areas of physics. As a first exam-
ple, we mention the oscillatory properties of normal and
superconducting loops and micronetworks as a function
of magnetic flux. These are due to the periodic passage of
phase gradient vortex centers across the branches of a
network.’ In the present paper we will emphasize the
relevance of phase singularities and vortex motion to
quantum effects in charged-particle dynamics. We will
discuss here mainly one-dimensional systems. Applica-
tions to other systems will be treated in forthcoming pa-
pers.

In the presence of an electric field E, along the one-
dimensional domain, the vector potential 4, = A, de-
pends on time, i.e.,

A,=¢/L , (22)
with

¢=—cE,Lt (¢ in cgs units) . (23)

The knowledge of W;(¢) represents then the adiabatic
time evolution of the phase winding number of the func-
tion ¢;(x,¢) in the presence of an electric field E,. Adia-
batic functions are very useful for the description of par-
ticle dynamics, even in the nonadiabatic limit (see below).
Let us first discuss the physical properties of the adiabat-
ic solutions.

First, we consider a free particle. The energies Ey, (¢)
are given by the parabolas of Fig. 2(a):

Ey=(h*/2mL*)(q¢/hc —W)* . (24)

Here the energies are labeled according to their phase

25
i

-
1-€ 1 14€ 2
FIG. 3. Typical vortex structure for the ground state of a
Hamiltonian of type (6) with a potential ¥ (x) with periodicity
n =2, shown for different flux values ¢ (given in units of hc /q).
The one-dimensional periodic system is represented by the cir-
cle. Shown are the lines of constant phase 7 in the extrapola-

tion plane, with a difference of 7/6 between neighboring lines.
7 increases in the direction of the arrows.
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winding number W, which is related to the wave vector
by

k=2mW/L . (25)

The center of a wave packet formed of free-particle func-
tions (1/V'L )exp(ikx) moves with the velocity®
dE,

——=(h/mL) kLW /2m—qd/hc) (26)

1
k=% Tak

=(A/mk+(q/m)E,t . (27)

As usual, in Eq. (27) k is understood as the mean k value
of a narrow wave packet in k space; further, L is sup-
posed to be sufficiently large, such that the energy levels
are closely spaced. In the absence of inelastic processes
the numbers k (or W) are constant with ¢, i.e., according
to (23), constant for all times. Equation (27) is the classi-
cal law of motion of a charged particle in the presence of
an electric field £, (Newton’s law), which is thus ob-
tained from quantum mechanics by following the con-
tinuous adiabatic solutions. (The generalization to three
dimensions is obvious by considering the energy hyper-
paraboloids depending on three flux variables.)

There is another method of deriving a dynamical equa-
tion which directly uses the periodicity (11) of the spec-
trum together with the law (21’) for the change of the
winding number W with ¢ [or with ¢ by virtue of (23)].
This method is applicable whenever there are many close-
ly spaced energy levels, as in the case of a Bloch band of a
particle in a periodic potential V(x) with periodicity
number n >>1. Consider the fixed flux value ¢,, =nhc /q
and a small interval of winding numbers W(4¢,, ), see Fig.
1(c). Within this interval the energy levels at ¢ =¢,, can
be labeled by their winding numbers W(4,, ), i.e., we have
E(W,¢,,). Due to the periodicity (11) of S(¢) these ener-
gy curves at ¢=¢, can be mapped to other energy
curves E(W',0) at $=0, which have the same energies,
ie.,

E(W ,00=E(W,s,) , (28)

and whose winding numbers W’ are shifted according to
(21"):

W=W-m. (29)

The translated levels have the same functional depen-
dence on ¢. We therefore have (in the limit n — o)

1 3E(W,9)
A oW

1 3E(W,¢)
R 14

(W —m,0)

Since W=kL /27 and according to (23) the right-hand
side of (30) is the velocity v (¢) at the time

(30)
(W, mhe /q)

t=—mh/qE L . (31
From the left-hand side of (30) we obtain
1 OE (k)
- 32
V=% "ok B2

where the derivative is taken at
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k(t)=2n[W—m(t)]/L=20(W+tqE,L/h)/L . (33)
Equation (33) reads, in differential form,
dk _ 9
dt  #
Equation (34) is the continuous limit of Ak /At, where
Ak =27 /L, and At is defined with (23) by
Ap=hc/q=—cE, L At
whence At=—h/qE, L =7sgn(At) . (35)

(34)

Equations (32) and (34) are the well known equations of
quasiclassical dynamics.’ They describe the velocity of a
Bloch wave packet (following the evolution of the Bloch
functions adiabatically as a function of ¢) by the velocity
of another wave packet made of Bloch functions at ¢t =0,
which has the same velocity. We have shown that (for
large periodicity n) these equations follow immediately
from the general ¢ periodicity (11) of the spectrum of a
Hamiltonian of type (6) together with its corresponding
law of winding-number change (21').

From (32), expressing k as a function of ¢, using (23)

and (33) one obtains
JFE

I=qv/L= cad’ . (36)
The last expression is just the expectation value I of the
current operator in a state y¥(¢) of the one-dimensional
system of length L, which is valid for any ¢ and any po-
tential V(x) (i.e., also if n =1), whereas Eqgs. (32) and
(34), which describe the time evolution of the velocity of
the center of a wave packet composed of Bloch functions,
are only meaningful if n>>1, such that there are
sufficiently many states per band, allowing the limit to-
wards a continuous variable k. In the presence of disor-
der, n =1 and the k vector at ¢=0 is no longer a mean-
ingful time-dependent variable (in the strict adiabatic lim-
it). Here there is only one state per band; hence dk /dt
would vanish, in contradiction to (34). In this case the
average velocity of a wave packet (case of weak disorder,
where one can still speak of wave packets) or, more gen-
erally, the current density in the system, is given by the
more general equation (36).

As a consequence of (13), due to Egs. (32) and (34) [or
(36)] [see Figs. 1(a) and 1(b)] the particle velocity v (z) (or
the current 1) oscillates in time with period
nt=n|h/qE,L| (Zener-Bloch oscillations). (This
means that, in the adiabatic limit, in our one-dimensional
system, only a free particle can be accelerated indefinitely
according to Newton’s law.) According to a current text-
book statement this is due to reflection of the wave vector
at the boundary of the first Brillouin zone. This is a
statement in the framework of the equivalent picture of
quasiclassical dynamics [Egs. (32) and (34)], where the ve-
locity of the true wave packet at ¢(¢)£0 (with k fixed) is
expressed in terms of Bloch functions ¥, (of the same
band) at ¢(¢)=0, but with a time-dependent k. In this
picture the wave function changes within the first Bril-
louin zone [defined for ¢(¢)=0] and never gets out of it
(with “‘small” discontinuous changes between Bloch func-



tions of neighboring k values and with periodic ‘big”
discontinuous changes whenever the k vector is
“reflected” at the zone boundary, i.e., when the k vector
jumps from a Brillouin-zone boundary to the opposite
one).

However, in reality, as we have seen, each wave func-
tion ¢¥;(4(¢)) changes continuously with time in a non-
periodic way, and it never comes back to the initial func-
tion. The modulus of a wave function ¢;(x ;¢) is periodic
with @, but its phase function n(x) is not [see Eq. (19)].
The subspace spanned by the 1;(x) of a single band is
continuously changed with ¢(¢) in a nonperiodic way.
We have seen that the true k vector, which is proportion-
al to the phase winding number W), changes in accor-
dance with Eq. (21). This equation says that, on the aver-
age, on a time interval which is much larger than nr,
there is a constant increase (or decrease) of W; with ¢
(time).

The true microscopic mechanism responsible for the
velocity oscillations is the periodic energy-level anticross-
ing at the band edge (the upper edge for the lowest band)
with time period equal to n |h/qE,L |, causing the
phase winding numbers W, (=k;L/2m7) to jump in in-
teger multiples of n at these values. As we have men-
tioned, these jumps are caused by singularities of the
phase function 7(x) (each being the center of a phase gra-
dient vortex), which cross the loop of length L, as can be
visualized in the plane embedding the loop.

If V(x) is asymmetric, n is equal to 1. Hence the veloc-
ity oscillations are extremely fast, with time period
7= |h/qE,L |, which tends to zero for L tending to
infinity. This means that the particle stays at the same
spot indefinitely. This result is true for any asymmetric
potential V' (x) whatever small. (We remark again that L
must be smaller than the distance a wave packet can
move before inelastic scattering occurs.)

In the strict adiabatic limit, if an acceleration of a par-
ticle during a time much bigger than 7 is possible, this is
a consequence of the fact that each energy curve E;(4) as
a function of the parameter ¢ consecutively intersects
with many other energy curves [Figs. 1(b) and 2(a)], lead-
ing to a monotonic increase or decrease of the energies
E;(¢) as a function of ¢, with long pieces of similar cur-
vature. This happens for sufficiently high periodicity of
V(x), i.e,, n >>1. If this symmetry is destroyed, energy-
level intersections are excluded according to the
Wigner—von Neumann theorem,® and the energies
behave as in Fig. 1(a) (n =1). In two dimensions, where
the domain is a 2-torus, the eigenvalues depend on the
two flux parameters ¢é,=—cE,L,t, ¢,=—cE, L.t
Here, again, in the absence of symmetry, energy-surface
intersections are excluded by the same theorem. The ei-
genvalues as a function of the two flux variables are then
intersection-free, rippled, and, on the average, horizontal
surfaces which are periodic in each of the two flux vari-
ables separately. Therefore the motion of the center of a
wave packet can be decomposed into two perpendicular,
periodic one-dimensional oscillations with time periods
.= |h/qE,L,| and 7,=|h/qE,L,|. This leads to a
highly localized (in general, aperiodic) motion around the
same spot in the (x,y) plane. This means that macroscop-
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ically the particle does not move despite the electric field,
in complete analogy to the one-dimensional situation.

In three dimensions, however, where the eigenvalues
depend on three parameters ¢,, ¢,, ¢,, degeneracy of the
energy levels is possible according to the Wigner—von
Neumann theorem, even in the absence of spatial symme-
try. This means qualitatively that in three dimensions, in
the presence of disorder, we cannot exclude the possibili-
ty of wave-packet centers being accelerated over
noninfinitesimal times much larger than 7, Ty, OF T,
even in the adiabatic limit, in contrast to one and two di-
mensions. This behavior is reminiscent of the situation in
localization theory, according to which in one and two
dimensions, in the presence of any disorder, all states are
localized (hence nonconducting), while in three dimen-
sions both localized and delocalized (conducting) states
exist.

So far we have discussed the adiabatic limit of solu-
tions of the time-dependent Schrodinger equation. In the
presence of low symmetry this limit is realized only under
special conditions.  Consider V(x)=V"(x)+V!(x),
where V" is periodic with period L /n, n >>1, and V! (the
disorder potential) with period L. Here, in general, a
state which at an initial time is equal to the adiabatic
wave function develops at later times into a linear com-
bination of all adiabatic solutions. Since n =1 we have
pairwise anticrossing adiabatic energy levels [Fig. 1(a)].
Here two simple limiting processes are possible: one is
the adiabatic limit, which we have discussed. The other
is the Zener tunneling limit, where the time-dependent
solution develops as if the energy levels would intersect,
following the unperturbed adiabatic solution [the dashed
line in Fig. 1(a)], which leads again to quasiclassical be-
havior. For this to happen the matrix element
| {¢s | V'|¥,)| must be much smaller than
|E,,(¢')—E(¢") |, where E (¢) and E,(¢) are the un-
perturbed levels (corresponding to ¥'!'=0) assumed to in-
tersect at ¢ =¢’'. This guarantees that the adiabatic wave
function is sufficiently close to the unperturbed function
outside the level-crossing zone. Under this condition, we
can use the Zener formula'® for a rough estimation of the
conditions under which these two limiting situations
occur. According to this formula the probability P for
passing from point A4 to point B of the upper branch in
Fig. 1(a), instead of adiabatic anticrossing, is given by

P=exp(—7G?), (37

where G is proportional to the square of the matrix ele-
ment | V;, | . This means that for vanishing perturbation
V! we always have Zener tunneling and, hence, free-
particle (¥V"=0) or quasiclassical (¥ "5£0) behavior. As
an example, let us consider the case of a free particle
(V"=0) slightly perturbed by V!. For the levels in the
neighborhood of ¢=0, we obtain, from the general for-
mula,'©

7G2=mL |V} _ |*/(#’s|qE, |) . (38)

Equation (38) tells us that for a given system with finite
L and ¥V, _, there is always a threshold field E (s), such
that for E, >> E_.(s) one has Zener tunneling and, hence,
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classical dynamic behavior. On the other hand, for
E, << E_(s) the time evolution is adiabatic, leading to, as
we have seen, completely nonclassical oscillatory behav-
SN
ior.

As an example, for a spin- particle at the Fermi level
in a weak-disorder potential ¥!(x), we obtain (setting
7G ~1)

E =mh*b*d /4gmL? , (39)

where d is the one-dimensional particle density and b is
defined by

| V) _ | =b(E,, ($=0)—E,(¢=0))~bhd /4mL .
(40)

Here, s labels the free-particle state at the Fermi level be-
fore the perturbation ¥'(x) is present. We only consider
weak perturbation corresponding to b $0.1. for an elec-
tron, with 5=0.1, d=10" cm~!, and L =10"* cm, Eq.
(39) gives E,L~10"* where E.L is the potential
difference along L expressed in volts. This means that for
E,L <<10* V a wave packet at the Fermi level behaves
in an adiabatic oscillatory manner, whereas for
E,L >>107* V it behaves according to classical dynam-
ics. In the intermediate region, where E, is of the order
of E_, successive “branching” between adiabatic and
nonadiabatic orbits occurs, leading to a superposition of
many different adiabatic functions ;(x,?) after a time in-
terval much larger then 7. Such an intermediate situation
has recently been investigated numerically.'?

In principle, these different types of dynamical behav-
ior could be experimentally investigated on a suitable mi-
crophysical loop'? at sufficiently low temperatures, such
that the average time between two inelastic-scattering
events is much larger than 7. (Note, however, that self-
consistency effects and many-particle interactions have
been neglected in our estimate.)

IV. ON THE NATURE OF CONDUCTING
AND INSULATING STATES

The conducting or insulating nature of a state ¥/;(¢) of
the one-dimensional systems described by Eq. (6) depends
on the form of its energy E;(¢). Since the current I;(¢) is
equal to —cdE;(¢)/d¢, we define a state conducting (in-
sulating) if (I1;),,>>0 (<<0), where (I;),, is the average
value of /;(¢) between two band edges. In other words,
insulating states have flat energy curves. For monotonic
curves as in Fig. 1, this means that the current of an insu-
lating state is almost zero (or zero) for all times, i.e., a
particle which at r =0 is at a band edge and, hence with
velocity zero, cannot be accelerated sensibly for future
times, in contrast to a conducting state.

It is interesting to note that the criterion'* for localized
(delocalized) states corresponding to weak (strong) depen-
dence of the eigenvalues on the phase-boundary condition
is consistent with our definitions, since changing the
phase at the boundary in Ref. 14 is unitarily equivalent to
a change of the flux origin in our Hamiltonians, as we
have mentioned earlier.
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We found that the functional dependence of E i(¢)on
is related to the mathematical structure of the wave func-
tions () as follows: First, we repeat that for ¢ values,
where E;(¢) reaches a band edge [where OE i(4)/9¢
changes sign], one or several phase gradient centers
(phase-singularity points being nodes of the wave func-
tion) lie on the one-dimensional domain D (except at the
lowest band edge). Visualized in the extrapolation plane,
this means that they cross the perimeter for these ¢
values (except in the lowest band edge). Further, from
numerical calculations of a series of different examples
(see also Refs. 3 and 15) we have found the following gen-
eral behavior: conducting states are characterized by a
rapid passage of the vortex centers across the perimeter.
This means that this passage takes place during a time in-
terval much smaller than nr (corresponding to a flux in-
terval much smaller than nhc /q). The vortex centers are
then far away from the perimeter, except for this short
flux interval in the neighborhood of the band-edge values.
Further, outside this short flux interval, i.e., in the large
¢ intervals between adjacent band-edge values, the wave
functions are appreciably different from zero for all spa-
tial points of D and, in addition, are far from being real
functions.

On the other hand, for insulating states the vortex
centers pass across the perimeter slowly. They are situat-
ed close to their crossing points on the perimeter during
most of the interval between neighboring band-edge
values. (One can speak here of pinning or localization of
the vortex centers at the perimeter.) As a consequence,
the wave functions are nearly zero at these spatial points
for all values of ¢. We also found that insulating states
are almost real functions for all ¢. Our findings provide
new insight into the phase structure of insulating and
conducting states. In particular, the speed of motion of
the phase vortex centers (phase singularities) in the extra-
polation plane determines whether a state is insulating or
conducting. This is a new characterization of these
states.

We found further that for insulating states the follow-
ing qualitative relation holds for all ¢,

fic 9

g Ox 7;(x)
For these states Eq. (41) is valid at all points x, where the
modulus R (x) is appreciably different from zero. These
are the points which lie outside the neighborhood of the
nodes of 9;(x;$=0), since these nodes are just the
points where the phase singularities (i.e., the vortex
centers) cross the perimeter periodically (see also Ref. 3).
At the spatial points, where Eq. (41) holds, the effect of
the vector potential is thus compensated for by the phase
gradient and, hence, the current vanishes. In particular,
Eq. (41) means that if the vector potential increases
linearly with time [Eqs. (22) and (23)], the gradient of the
phase also increases almost linearly with time at these
points. We emphasize that such a relation, holding for
times ¢ > nr, is only possible because of the periodic ap-
pearance of phase singularities on points between the spa-
tial intervals, where (41) holds, corresponding to the pas-
sage of phase gradient vortex centers across the perime-

— A, ~0. 41)
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ter. In addition, this passage must be slow. In the limit
of a very strongly perturbing potential ¥!(x), expression
(41) exactly tends to zero for states with sufficiently low
energy. For example, in the ground state, in the presence
of a thin but infinitely high barrier, this is true for all x
outside the barrier.!® Together with (23), Eq. (41) then
becomes a relation of Josephson type, leading to mono-
chromatic oscillations of the current with frequency
1/7=|qE,L/h|. (However, in this limit the amplitude
of the current tends to zero.)

On the other hand, for a conducting state the wave
functions are similar to plane waves, with modulus and
phase nearly independent of ¢ for each flux period be-
tween two consecutive vortex-crossing intervals. But in-
side the small crossing intervals, R;(x) and 7,(x) qualita-
tively change in the same manner as for an insulating
state, only here this change is very fast.

The phase structure alone also gives information about
the modulus R(x) of the wave function due to the fact
that the phase singularities are located at zeros of R(x).
Whenever phase singularities are close to the perimeter,
the modulus R(x) is almost zero at these spatial points

on the perimeter. For an insulating state this situation
occurs for all values of ¢. This means that the modulus
of an insulating state is localized in disconnected regions
(situated between the vortex-crossing points) for all
values of ¢. For a conducting state this happens only in a
short ¢ interval each time E;(¢) reaches a band edge (ex-
cept the lowest band edge). This characterizes insulating
and conducting states of our periodic system in terms of
the modulus. We believe that, together with the charac-
teristic phase structure discussed in this paper, in particu-
lar with the nature of its time evolution in the presence of
an electric field, it provides a rather complete description
of insulating and conducting states, at least for the one-
dimensional periodic systems discussed in this paper,
where the potential V(x) is fixed (i.e., where no averaging
over a distribution of disorder is considered).
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