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Internal strain and dynamic effective charges in CuC1 and CuBr
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Self-consistent local-density theory has been used in the embedded-molecular-cluster framework
to study the internal strain and response of the electronic charge distribution to external fields in

CuC1 and CuBr. The piezoelectric response and dynamic effective charges have been determined
following the formalism developed by Martin. We find that rather small clusters are able to repro-
duce energy-level features deduced from experiment and band-structure models. The bulk lattice
constant is reproduced to within 4% and calculated deformation properties show that the
Cu-halogen bond is relatively rigid.

I. INTRODUCTION

The tetrahedrally coordinated halides of Cu and Ag
are isomorphic with the diamondlike semiconductors.
The isolated metal and halogen atoms have nominally
d ' s ' and s p outer electronic configurations: in the
compound, the loosely bound s electron of the metal is
mostly transferred to the more electronegative halogen.
Now the completely filled outer at shell of the noble metal
is not corelike as in the valence metal levels of alkali
halides; the spatial extent of the d levels is large, they re-
side near the Fermi energy, and they are close to the
halogen p levels so that their hybridization significantly
influences the chemical behavior of these compounds.
Consequently, over the course of the last decade, the
halides of copper, namely CuC1, CuBr, and CuI have ac-
quired a wealth of intriguing literature, primarily because
they refuse to follow well-defined trends in electroelastic
properties and due to the peculiarities in their physical
properties and phonon dispersion relations. They crystal-
lize in the zinc-blende structure and are among the most
ionic of the AB-type compounds that have tetrahedral
covalent structure; their Phillips ionicity values' range
from 0.746 for CuC1 to 0.735 for CuBr to 0.692 for CuI.
In Martin's parametrized model of the elastic and
piezoelectric properties in zinc-blende and wurtzite struc-
tures, these halides exhibit a striking decrease in the
elastic-constant in variants such as the reduced bulk
moduli and the reduced shear constants: for instance,
their bulk moduli are only —,

' of the values typical of II-VI
semiconductors. This is in agreement with the basic idea
of the Phillips theory, that crystals with an ionicity
greater than 0.785 occur in the rocksalt or CsCl struc-
ture. Thus, the Cu halides seem to approach an elastic
instability as the critical ionicity is reached. Hanson
et al. have measured the piezoelectric constant of CuC1,
e&4 ——0.34 C/m, to be the largest among the entire group
of zinc-blende and wurtzite semiconductors; CuBr and
CuI are not far behind at e&4 ——0.27 and 0.13 C/m . Oth-
er observations of anomalous properties of CuC1 (Ref. 4)
include a breakdown of the Lyddane-Sachs-Teller rela-
tion at ambient pressure, a 10 change in resistivity at
moderately high pressure, an unusually large diamagnetic

susceptibility anomaly above 90 K in rapidly cooled sam-
ples, superionic behavior, irregular value of the thermal
expansion coefficient with temperature, and a number of
structural transitions with pressure.

With the recent advances in thin-film technology,
Wong et al. have succeeded in fabricating a novel semi-
conductor compositionally modulated structure (CMS),
CuC1/CuBr, grown along the [111]direction. The lattice
mismatch between the two constituents is small enough
(5.3%) to be accommodated by a coherency strain, which
when coupled with the difference in piezoelectric con-
stants causes the CMS to exhibit a net measurable per-
manent ferroelectric moment. Further, the wavelength
modulation in composition produces new Bragg planes
which result in additional optic modes corresponding to
acoustic and optic phonons folded back to the zone
center by the CMS periodicity; these modes can be
coherently driven by the electric field of a far-infrared
light wave, thereby making possible the generation of
tunable coherent high-frequency phonons in piezoelectric
transducers. The present study was motivated by these
experimental developments. However, before proceeding
to the understanding of the physics in this CMS, one re-
quires an adequate characterization of the host materials
themselves. In the present work we have focused on (a)
structural properties —lattice constant, cohesive energies
and bulk moduli, (b) self-consistent determination of
internal strains, and (c) electrooptic parameters that em-
body the response of a piezoelectric to local and macro-
scopic electric fields under applied stresses, e.g., the
transverse (or Born) effective charge er, the quadrupolar
induced charge density g, and the piezoelectric constant
e14

II. THE PIEZOELECTRIC FORMULATION

The piezoelectric effect refers to the production of the
electric polarization by application of stress to a crystal.
The change in polarization P produced to lowest order
when a strain S& is applied is given by
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Fx,(r Rig)=—
&R
Bp(r)

IKa
(3)

Then the total induced charge density 5p is the sum of all
the contributions caused by the displacements of each
atom

5p(r)= g u&x
Bp(r)

, K a IKa RE
(4)

where u&Ka is the displacement of the atom at RtK. From
V P= —4m5p(r), the kth Fourier component of the po-
larization is given by

1—ik P= —P f d r e '"'FK (r Rfx)u&x, .—
K, a

Here, a, P, and y are Cartesian coordinates, and E is the
macroscopic electric field. The piezoelectric constant
e & is the polarization produced per unit strain at con-
stant E, and 1 p ——( I /4m. )(e p

1—) is the dielectric suscep-
tibility. In the long-wavelength limit of a phonon mode
of wave vector k propagating through an infinite crystal,
Martin ' has shown that the polarization can be ex-
pressed in terms of the dipole and quadrupole moments
of the charge density induced by displacement of indivi-
dual atoms

1
P~ = (Q~p Sp +e~~puxp)+X~pE

0

The derivation of the expressions for e' and Q
proceeds as follows. Let the induced charge density
caused by displacement of the atom at R&x in cell I be

Then the longitudinal and transverse coefficients are re-
lated by

1
eKsp(eL}x p=

Eay

1
QL )~pr Qspr

~au

(10a)

(lob)

Several comments are in order regarding the above for-
mulation. In both geometries, the integrals in Eqs. (7)
and (8) are convergent and uniquely defined. The results
hold also for a uniform unsymmetrized strain in a finite
crystal. A purely macroscopic strain S generates a
piezoelectric polarization only through the quadrupole
moment Q [see Eq. (2)] since the dipole moments of
different atoms K cancel identically. Since in general a
strain is accompanied by internal optic displacements u

which can be determined by minimizing the total energy,
Q is only a part of the piezoelectric constant. The trans-
verse effective charge is the exact coefficient of the
internal-strain term. We have thus identified the contri-
butions to the piezoelectric constant from (a} the motion
of the ions and (b) the delocalization of charge amongst
positive and negative ions when the crystal is strained.

A convenient method of obtaining e and Q is to calcu-
late the self-consistent charge density of the crystal with
just one lattice plane of atoms, say P (z=0), displaced in a
widely spaced manner so that we can write eL' and QL in
terms of well-defined integrals over the two-dimensional
function

Hxp(r)= Q Fgp(r Rx ), —

In the long-wavelength limit of an optic mode for which
utx uz ex——p(ik R&x ), the average over the entire crys-
tal in Eq. (5) is independent of cell m and can be written
to lowest order in k as

k P= g fdr(k r)Fx (r)ux, ,
0

1.e.,

and

(eL )xp f dz z fd——r Hxp(z)

f8~(QL)~prkr= g f dzz f d rHxp(z) .

(1 la)

(1 lb)

where Vo is the volume of a unit cell. By comparison
with Eq. (2),

ex p
——fd r r Fxp(r) (7)

is the effective charge for atoms of species K, and satisfies
the neutrality condition gx ex =0. Also,

In zinc-blende structure, a purely longitudinal
piezoelectric effect appears for uniaxial strain e along the
[111] direction, P =(2/&3}e,4e The subl. attice dis-
placement is now a linear function of the macroscopic
strain e and, following Kleinman, ' is given by the con-
ventional dimensionless internal strain parameter
With z as the coordinate along the [111]direction, the
piezoelectric constant can be written as

Q pr
——f d r r g F&p(r)r

K
(8)

is the quadrupole moment tensor of the induced charge
density.

It is essential here to differentiate between cases when
the polarization P is perpendicular to k and when it is
parallel to k. In the transverse geometry klP, the macro-
scopic electric field vanishes. In the longitudinal
geometry, k~~P, E= —4mP, so that E can be eliminated
from Eq. (1}giving

e,4 ——— d rz[f„(r)—fz, (r)]
0

f d rz [fi,(r}+f2,(r}]
4 Vo

or more compactly in dimensionless form as

2

e,4
——g(ez'. /e) —EQ .

e

III. METHODOLOGY

(12a)

(12b)

1 1
(PL ) =

V (Qsprepr+exspuxp) .
VO eaS

The LCAO-MO method for embedded molecular clus-
ters within the framework of the Hartree-Fock-Slater
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FIG. 1. The basic clusters. X denotes the halide atom in the
chemical formulas Cu4X4, Cu7X7.

local-density formalism used in this work has been de-
scribed in detail in the literature. " The successes and
limitations of extracting the cohesive energy within this
framework for several simple solids have also been ex-
plored in a recent thesis ' and in studies on NaC1-
structure oxides. ' We shall thus limit our discussion
here to the specific aspects of the present calculation.
Our particular interest in the geometry along the [111]
direction has led to the choice of two unusually shaped
basic clusters. A neutral 14-atom ellipsoidal-shaped clus-
ter, Cl

&
Cu3C13Cu3C13Cu, has no central region and no

cluster atom whose fourfold tetrahedral coordination is
complete within the cluster. A neutral eight-atom cluster
C13CuC1Cu3 [see Fig. 1(b)] has one Cu atom and one
halide atom with full tetrahedral coordination within the
cluster. Each cluster has C3„symmetry about the princi-
pal z~~[111] axis; atom species placed at different z values
constitute inequivalent sets. Since the layer-pair stacking
sequence is 012012. . . along [111],the repeating cell is
conveniently chosen to consist of one atom in each of the
three-layer pairs. The microcrystal, i.e., the set of crystal
atoms around the cluster providing a self-consistent crys-
tal field in which the cluster is embedded, is correspond-
ingly molded to the shape of the variational cluster; it is
cylindrically shaped along the [111]axis and depending
on the lattice parameter consists of between 200 and 225
of the nearest Cu and halide atoms. Experience has
shown that a near-minimal atomic basis set, consisting of
say three variational orbitals per atom (e.g., 3d, 4s, 4p for
Cu and ns, np, nd for the halide), is adequate for charge-
density analysis and for obtaining the density of states.
For calculating the total energy and for extracting the
cohesive energy, a more complete basis set is selected
in which to expand the crystal charge density and crys-
tal potential: 3s 3p 3d ' 4s '4p Ss Sp for Cu,
3s 3p 3d 4s 4p for Cl, and 4s 4p 4d 5s 5p for Br. To

control lattice-sum convergence while maintaining varia-
tional flexibility in a solid, the tails of the extended orbit-
als are severely compressed by means of a potential well
of depth 3.0 a.u. extending out to a radius of 4.0 a.u. and
truncated sharply at 6.0 a.u. For each atom the lower-
lying orbitals. constitute the nonvariational or "frozen"
core. The legitimacy of this step comes from the asser-
tion that the shift in energy of the deepest-lying core or-
bitals that do not participate in the self-consistency pro-
cedure is given to satisfactory precision by the first-order
approximation fpo(r)b, V(r)dr, and numerous tests on

molecular systems.
The self-consistent potential and the charge density are

averaged over the different Cu atoms and the different
halide atoms separately in the cluster in order to mini-
mize size effects. The coefficients in the charge density
expansion are determined by a least-squares fit to the ex-
act cluster charge density obtained from the occupied
wave functions that are solutions to the system Hamil-
tonian. These coefficients are then attributed also to the
appropriate atoms in the microcrystal external to the
cluster; thus the crystal potential generated varies from
cycle to self-consistent cycle so as to rnatch the potential
from the cluster atoms. When coupled together, these
two steps ensure a perfectly periodic crystalline solid.

The electrostatic crystal potential and the electrostatic
energy are evaluated using a combination of real-space
and Fourier-space computations, by a generalized Ewald
summation, such that the largest term neglected in the
Coulomb potential summation is of the order of 3 )& 10
a.u. The value of the parameter a in the HFS-Xa ap-
proxirnation to the local exchange potential is maintained
constant at a =0.70 in all our calculations. About 600
sampling points per cluster cation and 650 points per
cluster anion are distributed between a Gauss-quadrature
grid around the nucleus of 12 angular points at each of 40
radial steps out to 1.5 a.u. and a quasirandom diophan-
tine set of points in the interstitial region. The cohesive
energy is converged to only -0.75 eV with respect to this
particular sampling operator density; we estimate that an
increase to about 1200 points per atom is required to con-
verge to cohesive energy to within 0.04 eV. This would
be a computationally heavy step, rendered moot by the
fact that the absolute position of the cohesion curve on
the energy axis is equally sensitive to the values of other
model parameters discussed below. Fortunately, the
quantities of interest depend essentially upon differences
in energy and charge density, which are not very sensi-
tive. The cohesive energies per formula unit have been
calculated using various volumes of integration corre-
sponding to a primitive cell with one Cu —halide-ion pair
or a proper unit cell with four Cu-halide pairs or a re-
peatin cell along the [111] direction with parameter
c = 3a. These different integration volumes give identi-
cal results, lending confidence to our numerical pro-
cedures. Indeed once the self-consistent charge densities
and cluster eigenvalue spectra have been obtained in the
fully periodic solid, we are at liberty to employ clusters of
any shape and size to compute the discrete-volurne-
integral terms in the expression for the total and cohesive
energy.
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IV. RESULTS CUC1 — 14-ATOM CLUSTER

A. Structural properties 6.70-

We first present the cohesive energy versus lattice
volume parameter calculations. The cohesive energy was
evaluated for 5 —7 values of the lattice constant and the
points closest to the minimum were fitted to a second-
order polynomial from which the equilibrium properties
of the solid are derived. The calculated values for the
equilibrium lattice constant, cohesive energy and the bulk
modulus are presented in Table I. These calculations are
performed with the halide sublattice at the ideal position
—,
' way along the body diagonal: we shall see later that the

shape and size of the cluster chosen strongly influences
the equilibrium position of the sublattice and must be ac-
counted for before deformation properties of the crystal
can be extracted.

First it is important to note the discernible dispersion
of the calculated energy values about the fit in Figs. 2(a)
and 2(b). The explanation for this lies in the values of the
self-consistent occupation numbers that result for the
"unoccupied" excited-state diffuse orbitals of Cu, Cl, and
Br. In Table II, we have summarized the features of the
charge-density analysis and the derived density of states
(DOS). The least-squares-fitting procedure gives sizeable
occupations (both positive and negative) of 4p, 5s, 5p for
Cu, 3d, 4s, 4p for Cl in CuC1, and 4d, 5s, 5p for Br. This is
an outcome of a purely mathematical unconstrained
fitting procedure minimizing the mean-square error. The
only really relevant quantity is the sum charge carried by
all the diffuse orbitals, e.g., q (4p +5s +5p) =0.44 for Cu
and q(3d+4s+4p)=0. 413 for Cl in CuC1, which are
reasonable numbers. The charge density corresponding
to these amplitudes resides well away from the nucleus
and the atom-centered sampling-point generator is better
geared towards the core and valence regions. So as the
lattice parameter is varied, changes in these amplitudes
are an order of magnitude greater than the changes in the
occupations of the nominally occupied orbitals and it is
that much more difficult to attain their convergence.
More importantly, this also implies that the Coulomb po-
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FIG. 2. (a) Cohesive energy in CuC1 vs lattice volume param-
eter. (b) Cohesive energy in CuBr vs lattice volume parameter.

tential and the charge density do not have the same r-

space cutoff; even then any reasonable radius at which
such an extended charge density is terminated will be the
source of large truncation errors in the p' functional
form of the exchange-correlation potential. The too large
value of the bulk moduli we obtain for these compounds

TABLE I. Structural properties of CuC1 and CuBr: a is the equilibrium lattice constant in A, E, is
the lattice cohesive energy, and B is the bulk modulus (Mbar).

a (A)

Cluster
description

Calc.
Expt. '

Cu7C17

5.24
5.41

CuCl
Cu4C14

5.38

CuBr
Cu48r4

5.39
5.69

E, {eV) Calc.
Expt.

6.78
5.51

9.62

6.62 7.o9
t

S.O} ]

9.37

with respect
to neutral
free atoms
with respect
to free ions

8 {Mbar)

'Reference 5.

Calc.
Expt.

0.55
0.38

1.05
0.39
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TABLE II. Equilibrium properties of CuC1 and CuBr. The values in parentheses are experimental
results taken from Refs. 15 and 16. All energy values are in eV.

Cluster
description

Ionicities
from LS fitting

Mulliken
ionicities

Nearest-cluster-atom-
volume ionicity

Band gap (eV)

Cu 3d-band
center

Halide p-band
center

Halide s-band
center

Cu 3d-band
width

Halide p-band
width

Cu7C17

+0.43

+0.40

+0.23

1.65

1.70

4.70

15.60

2.5

3.0

CUC1

(3.3)

(1.9)

(4.9)

(15.8)

(3.0)

(3.0)

Cu4C14

+0.74

+0.57

+0.47

1.05

1.40

3.40

14.70

2.0

3.0

CuBr
Cu4Br4

+0.71

+0.53

+0.24

0.90
( —3.0)

1.5
(2.05)
3.5

(4.5)
13.9

(15.0)
3.0
(3.0)
4.0
(3.0)

is traced to the truncation of the diffuse exchange density
in the lattice sum. Such a problem is minimized in the
more conventional diagonal-weighted Mulliken analysis
of the charge density. For these reasons, an extended
basis set, enlarged by the inclusion of unoccupied atomic
orbitals, subjected to a least-squares-fitting procedure is
not as good a scheme as smaller near-minimal multiple
basis sets (atomic and ionic) around each atom.

From Table I, we see that the equilibrium lattice con-
stants calculated from all three clusters are within 4% of
experimental values. ' The results for the cohesive ener-

gy for both CuC1 and CuBr with respect to free neutral
atoms are overestimated by about 1.27 and 2.08 eV, re-
spectively, when compared to experiment. ' The quality
of these results is of the same order as for other solids we
have studied. ' Cohesive energies are conventionally re-
ported in the literature with respect to free gaseous ions
(9.62 eV for CuC1 and 9.4 eV for CuBr); the ionization
potential of Cu (7.72 eV) and the electron affinity for the
halide (3.61 and 3.36 eV for Cl and Br) are invoked
within the Born-Haber cycle' to refer the cohesion to
free atoms. It is instructive to analyze the effects of our
model parameters on these results. It is known that the
local-density approximation is less well suited for describ-
ing the isolated atom than more extended and continuous
solid systems. Also the calculated cohesive energy for
CuBr exceeds that for CuC1 by 0.31 eV, contrary to the

experimental values, a difference which is well within the
computational uncertainty.

The densities of states for CuC1 and CuBr at the calcu-
lated equilibrium lattice constant are displayed in Fig. 3.
The discrete energy levels have been broadened with a
0.40-eV full-width-at-half-maximum I.orentzian function
to simulate solid-state bands, so band dispersions in our
model are uncertain by this amount. Our results show
that for both CuC1 and CuBr, the uppermost valence

band is narrow and mainly metal d-like and separated by
a small gap (1.65 or 1.5 eV for CuC1 from the two clusters
and 0.90 eV for CuBr) from the Cu 4s conduction band.
We observe no splitting of this d band into subbands.
This filled d' shell which participates very actively in the
electronic self-consistency interactions underlies the con-
tinued interest in the cuprous halides and their fascinat-
ing properties. However, both materials are transparent
which suggests that they are semiconductors with large
gaps of the order of 3.3 eV for CuCl and 3.0 eV for CuBr,
based on the optical (UV) absorption spectra results of
Cardona. ' The large discrepancy in our ground-state
determined value for the optical gap is to be expected
since the local-density approximation invariably underes-
timates the optical gap in semiconductors. The 0.60-eV
difference in the two values of the band gap calculated for
CuC1 using two different clusters is partly due to the
differences in equilibrium lattice constant at which they
are evaluated and partly due to the very different coordi-
nation geometries within the clusters. For completeness,
we mention that the calculated gap is closer in agreement
to the measured activation energy [-0.39 eV (Ref. 4)],
which in the context of discrete cluster eigenvalues is
probably more relevant.

Below the Cu 3d band is a slightly broader halide p
band, 3—4 eV wide and exhibiting very little d-p hybridi-
zation; from the area under the DOS structures, we esti-
mate the p-in-d overlap to be —15%%uo in CuC1 and -25%%uo

in CuBr. About 14 eV below the Fermi energy is the
halide s band. Except for the optica1 gap then, these
broad features of the valence DOS, such as the ordering
and placement of the valence bands are in good agree-
ment with the photoemission data of Goldman and co-
workers' in the UPS and XPS regimes. There the ener-

gy distribution curves (EDC) in all Cu-halide spectra are
composed of two main peaks, each about 3 eV wide,
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B. Deformation properties

In this section we report the results of self-consistent
calculations performed on CuC1 and CuBr under a trigo-
nal uniaxial strain along the [111]axis in order to deter-
mine the internal-strain parameter g. For the uniaxial
compression in the [111] direction in the zinc-blende
geometry, the [111] bond becomes inequivalent to the
other bonds along the [1 1 1], [111],and [1 1 1] direc-
tions. Consequently, the energy of the crystal can be
minimized if the position of the second atom in the primi-
tive cell shifts not just with the homogeneous deforma-
tion but rather relaxes in accordance with the internal
strains. For an applied stress along the [111]axis, the
volume-conserving trigonal uniaxia1 macroscopic strain
tensor can be written as

0 1 1

e=e 1 0 1 (13)
1 1 0

The effects of this strain on the vectors from a central
atom to its four tetrahedrally coordinated neighbors is
given by

ao ao
r& —— (1,1, 1)~ (I+2a', 1+2cr, 1+2cr),

4 ' ' 4

ao
rz —— ( —1, —1, —1}2 4

7

ao
( —1 2eg, —1 2eg—, 1 —2e —2—eg),

separated by a gap which decreases as the atomic number
of the halide increases. The peak in the 0—3-eV range is
found to have predominantly d-like character; the 3—6-
eV peak is recognized as the halogen p band; an upper
limit to the p admixture with the upper metal d band is
obtained as 23% for CuC1 and 35% for CuBr. The 14-
atom cluster gives slightly better results than the eight-
atom clusters. The DOS are also in qualitative agreement
with the band-structure OPW results of Overhof, ' and
the self-consistent energy band structures obtained by the
ab initio LCAO and LMTO calculations of Freeman and
co-workers. ' Other calculated values for the optical gap
in CuC1 range from 0.80 ev (Ref. 18) to 3.5 eV for
CuBr, Overhof obtained E -3.1 5 eV. A MS-Xa crystal-
line cluster calculation for CuC1 by Guimares and Para-
da, ' using five atoms to 18-atom clusters, which presages
this portion of our work, accurately reproduces the band

gap and is further confirmation that at least in highly ion-
ic crystals such as CuC1 cluster-size effects are not large
enough to modify the qualitative behavior of the cluster
energy spectrum.

ao
r~= (1,—1, —1}

4

(14)

0-20 -15
I

-10 -5
E (eV)

ao
(1 2e 2eg,——1 —2eg, —1 2eg), ——

FIG. 3. {a) Total and partial DOS in CuCl from the 14-atom
cluster. {b) Total and partial DOS in CuBr from the eight-atom
cluster. {c)Total and partial DOS in CuCl from the eight-atom
cluster.

a()
r4= ( —1, 1, —1)

ao-+ ( —1 —2eg, 1 —2eg, —1 —2eg },
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FIG. 4. (a) Internal strain parameter g and change in ionicity
in CuC1 as a function of the Cu—Cl bond length under uniaxial
[111]strain. (b) Internal strain parameter g and change in ioni-
city in CuBr as a function of the Cu—Br bond length under uni-
axial [111]strain.

where o =e(1—g).
For the above geometry we have calculated the

changes in lattice energy as a function of the [111]Cu-
halide bond length (equal to b) on applying a strain
e- 2.125%. The calculated values closest to the
minimum are then fitted to a second-order polynomial.
The clusters employed are Cu7C17 and Cu4Br4, respective-

ly, with results shown in Fig. 4 along with the change in
ionicity for the Cu atom. For CuC1 the energy minimum
occurs at b=4 34 a. .u. which corresponds to (=1.26. It
implies that a small uniaxial compression along [111]re-
sults in the Cu—Cl bond elongating beyond its equilibri-
um length by 0.05 a.u. ; this is clearly an untenable result.
This is partly the consequence of using a football-shaped
cluster. To investigate this cluster-shape effect we re-
laxed the sublattice position in the unstrained lattice
from its idealized experimental position at —, along the
calculated equilibrium body diagonal (4.29 a.u. ). When b
is expanded from 4.29 a.u. to 4.32, 4.35, and 4.38 a.u. , the
cohesive energy increases by 0.0022, 0.0028, and 0.0006
eV, respectively; the minimum corresponds to a bond
length b=4.332 a.u. If g is now interpreted as the inter-
nal relaxation in the (111)cluster bond length and calcu-
lated with reference to b=4.332 a.u. , our new value of g

is 1.05. Within the limits of computational precision
which can be enhanced by choosing a larger value for the
macroscopic strain e, say e-4 0%. , this value indicates a
very rigid Cu—Cl bond. In view of this small softening
effect, there is no need to remap the a-b potential surface.
For CuBr the energy minimum occurs for b=4.40 a.u.
which translates into (=0.94. For the unstrained lattice,
two self-consistent calculations with the bond length b
expanded and contracted from its ideal length 4.41 by
0.03 a.u. show that for this cluster the [111]bond length
is 4.41 a.u. Considering again the dispersion of the calcu-
lated energy values we translate the limited resolution of
the exact position of the curve minima into error bars on
the values of g: +0.15 for CuC1 and %0.10 for CuBr.

Experimental determinations of g are based on the
measurement of the increase in intensity for forbidden x-
ray reflections upon application of uniaxial stress along
[111]. In zinc-blende structures, these forbidden
reflections are lifted due to the difference in atomic form
factors of the two atoms in the primitive cell so that one
has to rely upon theoretical values of g. From a simple
valence-forcefield approach, which utilizes bond-
stretching (a) and bond-bending (P) forces coupled with
effective point-ion Coulomb forces, Martin has derived a
value (=0.87 for CuC1 and (=0.85 for CuBr. More re-
cently, Christensen has calculated the deformation po-
tentials for uniaxial-strain-induced splitting in the top of
the valence bands as a function of the uniaxial strain pa-
rameter g for the cuprous halides. Although the scatter
in the experimental data is too large to allow an accurate
determination of g, Christensen concludes that g-I or
perhaps larger than 1 for both CuCl and CuI. These are
the only two direct calculations of g in CuC1 that we are
aware of. Our results for CuC1 are in agreement with the
above though it cannot be said that they determine g to
any greater precision.

C. Piezoelectric parameters

Following the prescription of Martin and Kunc, we
have computed the longitudinal and transverse effective
charges and quadrupole moments for both CuC1 and
CuBr. The clusters employed for these calculations are
Cu4C14 and Cu4Br4. In these calculations the restraint of
full periodicity is removed, each layer of atoms along
[111] being allowed independent variation. For each
solid, two independent self-consistent calculations of the
electronic charge density are made, first with the layer of
the single Cu, atom displaced by + 0.05 a.u. along [111]
and then with the layer of the single halide atom dis-
placed by —0.05 a.u. along [111].This displacement pat-
tern is repeated in every third layer pair along [111],
—17.65 a.u. apart. It is assumed that this repeat distance
is large enough that the potential and charge density have
converged to their bulk values in the intermediate re-
gions. In addition a 0.05 a.u. displacement is assumed to
produce linear change in the charge density. Since these
small clusters contain only two layer pairs of the
012012. . . stacking, we have had to make approxima-
tions in the two layer pairs in which there are no atom
displacements by treating them on an equal footing.

In the actual calculation, once the self-consistent
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charge densities for the crystal with a single plane of dis-
placed atoms is required, eL and QI are obtained by com-
puting the numerical difference derivatives of the charge
density on a fixed grid of sampling points, that does not
move with the displaced atoms. For a small displacement
0.05 a.u. the error introduced thereby is insignificant.
We then use the known values of the static dielectric con-
stant e, =7.0 for CuCl and e, =6.6 for CuBr to obtain ez
and EQ from Eqs. (7) and (8). These results are presented
in Table III.

There have been several calculations of the macroscop-
ic effective charge in the literature. The magnitude
of ez can be obtained experimentally from the difference
between the squares of the long-wavelength LO- and
TO-mode frequencies

(15)
4mez2

NL =Np+
e„m Vo

where m is the reduced mass of the atoms in the primi-
tive cell, Vo is the volume of a primitive cell, and e, and
e„are the static and high-frequency dielectric constants.
Using coL ——196 cm ', cur ——141 cm ' (Ref. 26), and
6=3.61 we obtain e~= 1.11e for CuC1. With coL ——165
cm ', co&.——125 cm ', and e =3.71 for CuBr gives

ez ——1.16e.
In crystals which are predominantly ionic, the values

of these dynamic effective charges do not in general differ
appreciably from the static ionic charges, i.e., elf;,
where f; is the spectroscopic ionicity of Phillips and Van
Vechten. ' However, in zinc-blende-type crystals for
which covalent contributions are equally as or more im-
portant than the ionic contributions, ez is of the order of
2.0. Lucovsky and co-workers derive a value e~=1.12

for CuC1 by decomposing the TO-phonon frequency into
two components, one associated with short-range forces
giving a localized effective charge e, , and the other e~ as-
sociated with the dipolar interactions. The I-VI crystals
are found to have anomalously low values of ez- which,
unlike for the other zinc-blende structures, do not scale
with the Phillips ionicity.

We estimate ez/e for CuC1 and CuBr to be 1.30 and
1.40, respectively, from our self-consistent calculations of
change in the charge density induced from a small dis-
placement of a single atomic plane along (111). The in-
tegration errors are satisfyingly small so that the neutrali-
ty condition is seen to be preserved within the computa-
tional precision. Our values for ez- are slightly higher
than the experimental results by about 0.2 and 0.25, re-
spectively: it is worthwhile to investigate the sources of
this discrepancy since they are applicable to the discus-
sion of the quadrupole moments also. If the superlattice
constant along the (111)axis, a &3, is not large enough to
make the displacements of the atomic planes independent
of each other, in the true spirit of a supercell calculation,
then the more diffuse Br orbitals would cause the relative
integration errors due to truncation of our integrals to
exceed the error in the CuC1 calculation. We see, howev-
er, that the spread in eL le for CuBr is only in excess of
that for CuC1 by 0.003, an indication that the overlap
across the supercell boundary is small. The dominant
factor influencing our results is that the process of
averaging the atomic configurations over the two layer
pairs that are not subject to an atomic-plane displace-
ment in effect drives the charge density in the displaced
atomic-plane system more slowly from the equilibrium
charge density than if both these layer pairs were allowed
independent variation. This particular consequence is a

TABLE III. Results for the cluster calculations on CuCl and CuBr under a (111) strain, e-2.1%.
The atomic orbital populations are calculated using the value of g closest to the energy-minimized
value.

Cluster
description

Orbital
populations
(from LS fitting)

Ionicities

eL(Cu)/e
eL (halide)
ez(Cu)/e
ez(halide)/e
&'QL

eVO

Cu 3s

3p
3d
4s

4p
5s

5p
Cl 3s

3p
3d
4s
4p

Cu7Clq

CuCl

2.066
5.966
9.840
0.239
0.414

—0.511
0.549
1.649
5.366
0.419
0.740

—0.737
+0.437

1.25
0.224

1.57

Cu4C14

2.032
6.008
9.815
0.641

—0.073
—0.441

0.286
1 ~ 595
5.319
0.633
0.892

—0.707
+0.732

1.05+0.15
0.180

—0.188
1.26

—1.32
0.006

Br 4s
4p
4d
Ss

5p

CuBr
Cu4Br4

2.046
6.005
9.705
0.830

—0.094
—0.585

0.425
1.897
4.737
0.976

—0.008
0.066

+0.668
0.94+0.10

0.209
—0.220

1.38
—1.45

0.014
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function of the atom coordination within the cluster and
there is no a priori way of determining the direction of its
effects. Secondly, the least-squares fitting of the cluster
charge density, which enables us to project the latter onto
superposed spherical atomic configurations, is not per-
fectly capable of tracking the charge redistribution due to
the displaced plane of atoms. Both these approximations,
in fact, serve to underestimate the induced charge density
and to bring ez closer to the experimental result.

Quadrupole moments of the induced charge density are
a measure of the charge-response delocalization and are
important in understanding the interatomic forces in ZnS
and diamond-structure crystals. Lawaetz has argued
from an empirical analysis of the piezoelectric constant
e&4 for a considerable number of materials having ZnS or
wurtzite structure that the quadrupole b, Q and dipole er
contributions in Eq. (12b) are related by b, Q =0.75er, a
seemingly intrinsic property of the fourfold coordination.
The scaled dimensionless quadrupole moments of the in-
duced charge density due to a single plane of displaced
atoms calculated in this work are distinguished by their
small values, 0.006 and 0.014 for CuC1 and CuBr, respec-
tively. The analysis of errors and approximations dis-
cussed above for ez are applicable here too. The main
contributions to the integrals for QL, using the model
charge density, comes from the charge-transfer term be-
tween the atomic layers, i.e., due to changes in the static
least-squares ionicities. Since changes in the ionicities are
inhibited by the averaging process discussed above, we
may conclude that our values for QL and Qr are underes-
timates of the actual quadrupole moments in the cuprous
halides. Even so, our results appear to suggest that the
quadrupoles decrease rapidly relative to the dipoles with
increasing ionicity as the rigid-ion behavior is ap-
proached. From Eq. (12b) for the piezoelectric constant
e&4, it is easy to see why the cuprous halides have the
largest piezoelectric constants among the zinc-blende
structures: charge redistribution due to internal strain
wholly dominates over the charge-transfer quadrupolar
contribution. Using Hanson's experimental values for el-
and our calculated values for g in Eq. (12b), we obtain
b,Q=0.54 for CuC1 and 0.55 for CuBr. The relative mag-
nitudes of QL determined here are even further apart
than these results.

Since the input specifications for cluster calculations
on both CuC1 and CuBr are identical, our results for ez
and Q do bear comparison in a relative sense. Thus in an

AB compound, both er and Q increase as, with A fixed,
8 is lower down in a column of the Periodic Table. The
sharp decrease in Q by a factor of more than 2 in going
from CuBr to CuCl corresponding to a comparatively
small increase in the spectroscopic ionicities from 0.735
to 0.746 is symptomatic of the anomalous rigid-ion be-
havior that is at the source of the structural instability
in zinc-blende structures near the critical ionicity
f I

=0.785.

V. CONCLUSION

In summary, self-consistent calculations of equilibrium
and deformation properties of the cuprous halides, CuC1
and CuBr, have been carried out using embedded clusters
within an LCAO-MO approach. We find that moderate-
ly large atomic basis sets on each atom species in reason-
ably small clusters oriented along [111]yield equilibrium
lattice constants within 4% of the experimental value and
cohesive energies with respect to free neutral atoms
which are overestimates of the bulk values by 1.25-2. 1

eV. The band structure from the cluster levels shows a
filled 3d ' band at the Fermi energy and is in good agree-
ment with experiment and band features from other mod-
els. Under a [111]compression of 2.1%, the internal rel-
ative relaxation of the halide sublattice is such that the
Cu-halide bond remains rigid and unstretched after clus-
ter shape and size effects have been accounted for, the
internal strain parameters are determined to be 1.05 and
0.94, respectively, for CuC1 and CuBr, in agreement with
previous estimates. Finally, the transverse effective
charge ez, computed as the first moment of the induced
charge density following the displacement of a (111)
atomic plane by 0.05 a.u. along [111],is estimated to be
1.30 for CuC1 and 1.40 for CuBr. The quadrupole mo-
ment contributions, i.e., the second moment of the in-
duced charge density are remarkably small, an indication
of very little charge transfer between the rigid-ion layers
and symptomatic of the anomalous behavior of the zinc-
blende structure near the critical ionicity.
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