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Auger neutralization rates of multiply charged ions near metal surfaces

N. N. Nedeljkovic
Faculty ofNatural Sciences and Mathematics, University ofBelgrade, P.O. Box 550, YU 1-1001Belgrade, Serbia, Yugoslavia

R. K. Janev and V. Yu. Lazur'
Institute ofPhysics, YU 1100-1 Belgrade, Serbia, Yugoslavia

(Received 1 February 1988)

Transition rates for the Auger neutralization processes of multiply charged ions on metal surfaces
are calculated in closed analytical form. The core potential of a multiply charged ion is represented
by a pseudopotential, which accounts for the electron screening effects and allows transition to the
pure Coulomb case (fully stripped ions) ~ The relative importance of various neutralization channels
in slow-ion-surface collisions is discussed for the examples of He ++Mo(100) and C'++Mo(100)
collisional systems.

I. INTRODUCTION

Recent development of new types of ion sources able to
produce intense beams of low-energy, multiply charged
ions' has opened the possibility of extending the studies
of low-energy ion-surface inelastic processes into the re-
gion of higher ion charge states. The first experimental
results in this field of research have already emerged.
Besides their intrinsic scientific interest, the low-energy
collision processes of multiply charged ions with solid
surfaces also play an important role in the edge plasmas
of present-day magnetic fusion devices.

In the present article we shail study the Auger neutral-
ization processes occurring in a slow collision of multiply
charged ions (A +) with metal surfaces (M). The sys-
tem A ++M(Z && 1), at relatively small ion-surface dis-
tances R, can be regarded as a "superexcited" complex in
which the upper (metallic) electron levels are filled, and
the lower (ionic) levels are vacant. The complex can relax
nonradiatively through a host of Auger-type processes,
which involve simultaneous (partial) neutralization of the
ion and emission of electrons into continuous spectrum.
Although when the charge Z is high, where Auger relax-
ation processes with capture and emission of many elec-
trons are possible, in the present work we shall consider
only those processes in which only two electrons are in-
volved. The most prominent two-electron Auger process-
es are (i) proper Auger neutralization,

++M(e&, ez)~ A ' ''+(e& )+M+e2,
(ii} one-electron capture into an excited ionic state, fol-
lowed by Auger relaxation with emission of either a me-
tallic electron or the captured electron itself.

A ++M(e„e,)~(A' "+)'(e, )+M(e2)
—"+(e,)+M+e, ,

A ' "+(e2 )+M+ e i,
(1.2a)

(1.2b)

and (iii) two-electron capture into a doubly excited ionic
state, followed by its autoionization decay

A ++M(e e )—+( A ' '+ )'*(e e )+M-~"-"+(e,)+M+e, , (1.3)

where by e &, e2 we have denoted the two active electrons,
and by e; (i =1,2) the emitted electron. The first step of
the reaction (1.2) is a resonant process whose probability
at low collision velocities becomes unity already at large
ion-surface distances. For this reason, the Auger relaxa-
tion channels (1.2) can effectively compete with the prop-
er Auger neutralization (1.1}. The same is true also for
the Auger channel (1.3), when the charge Z is sufficiently

high.
The two-electron capture channel (1.3), however,

differs from the Auger channels (1.1) and (1.2). Namely,
the Auger relaxation dominantly takes place in the isolat-
ed ion while in reactions (1.1) and (1.2) the relaxation
occurs during the collision. Since the autoionization of
doubly excited ionic states is a suSciently well-known

process, and since the two-electron capture in ion-
surface collisions requires a separate study unrelated to
the dynamic Auger neutralization, in the present paper
we shall confine ourselves to processes (1.1}and (1.2). We
note that the proper Auger neutralization (1.1) and the
second step of the reaction (1.2b} have already been stud-
ied ' under the assumption that ion A z+ is fully

stripped. For an incompletely stripped ion, the short-
range, non-Coulomb part of the ionic potential may have
a significant effect on the Auger transition matrix ele-
ments, which, as we shall see in the following sections,
are dominantly influenced by the behavior of electron
wave functions in the vicinity of the ion. The field of the
incompletely stripped ion shall be described by a pseudo-
potential which includes the short-range screening effects
and has a proper asymptotic behavior. The known eigen-
functions and eigenvalues for this potential and the di-
pole approximation for the interelectron interaction in
the configuration space giving the main contribution to
Auger matrix elements will allow us to calculate the tran-
sition rates for processes (1.1) and (1.2) in closed analyti-
cal form.
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The article is organized as follows. In Sec. II, we shall
calculate the matrix elements and the associated Auger
rate for the neutralization channel (1.1}, while the analo-
gous calculations for processes (1.2a) and (1.2b} will be
done in Sec. III. In Sec. IV we discuss the relative role of
the considered Auger neutralization channels as mul-

ticharged ion approaches to a metal surface. Finally in

Sec. V some concluding remarks will be given.
Atomic units (m, =fi=e =1) will be used throughout

this work, unless otherwise explicitly stated.
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A. Transition rate and relevant wave functions )
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The electron transitions taking place in the proper

Auger neutralization channel (1.1) are schematically
shown in Fig. 1(a), from where it follows that the follow-
ing energy conditions apply for this process: U
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E; &U—o, i=1 and 2,
—Eo) —E;, i =1 and 2,
Es„E;„=E'—E (E—, +—E )=0,

(2.1a)

(2.1b)

(2.1c)

where P is the metallic work function, Uo is the depth of
the metal potential well (the metal being treated in the
Sommerfeld model}, E, is the energy of the ith metallic
electron, E2 is the energy of the emitted electron, ED is
the energy of the captured electron in the ground state of

(Z —1)+ion A, and Es„,E;„are the total final- and initial-
state energies. We place the coordinate origin in the
center of the ion and define the position of the metallic
surface by z = —R. Denoting by r; and r;M the radius
vectors of the ith electron with respect to coordinate ori-
gin (0,0,0) and the point (0,0, —R ), respectively, one has

r;M ——R+r, . As shown in Ref. 7(a} (see also below) the
dominant contribution to the Auger matrix element
comes from the region of configuration space in which
r2// —1, r, —1/Z, and r,M-R »rzsr. Bearing this in
mind, the two-electron Hamiltonian of the A ++M sys-
tem can conveniently be written in the form

H(12)H(1)+H(2)+V) t(12) (2.2)

where H(i) is the Hamiltonian of the ith electron in the
field of the ionic core and the metal,

HM(i), z; & —R
H(i}= '

H„(i)+ V;(i)+ V, (A) z; & —R+5R, (2.3b)

(2.3a)

withi =1 and 2

O, z, , (—R

V t
—— Vi2, zi (z2)& —R +SR, z2(zi )& —R

Vi(2)+ V2(1}-+V(2, zi q & —R+M .

(2.4a)

(2.4b)

(2.4c)

In Eqs. (2.3) and (2.4), H„(i) and Hx/(i) are the Hamil-
tonians of the i-th electron in the ionic and metal field at
R ~ &x, respectively, V;(j) and V, ( A ) are the interaction

I
E
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FIG. 1. Schematic representation of energy levels of an ion-

surface system involved in the two-electron Auger neutraliza-
tion processes: (a) proper Auger neutralization [reaction (1.1)];
(b) resonant electron capture, followed by a dipole-allowed
deexcitation [reaction (1.2a)]; (c) resonant electron capture, fol-

lowed by Auger deexcitation [reaction (1.2b)].

potentials of the i-th electron with the electrostatic im-

ages of the jth electron and of the ion A +, respectively,
and V&2 is the interelectron interaction. The distance 5R
( —1) defines a near-surface layer in which the iinage po-
tential representation breaks down. The repulsive forces
arising from the interpenetration of electronic clouds at
small ion-surface distances (and due to the Pauli ex-
clusion principle) are also restricted to this layer. We
shall see, however, that the uncertainty of potential in-
teractions in the region 5R is not essential for determina-
tion of the Auger neutralization rate.

In the chosen coordinate system, the specific forms of
H„(i) and HM (i } and potential interactions are
(i,j =1,2)
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H„(i)=——,'V;+ V„(i), V„(i)-——as «, ~oo .
l

(2.5a)

H~( i}= ——,
' V, + V~ (i ) = ——,

' V; —Uo, z, (—R,
(2.5b)

V;(i)= ——,'(z, +R )

V;(A)=Z[x,. +y; +(z, +2R ) ]

[V;(j)](;~)= —[(x;—& ) +(y; —y )'

+(z;+z~+2R ) ]

(2.5c)

(2.5d)

(2.5e)

(2.5f)

ZV„(r)=——+ g 8, , —
1=0 r

(2.5g)

where PI is the projection operator projecting onto the
subspace of a given orbital angular momentum l.

The transition probability per unit time for the proper
Auger neutralization is

Wr(R )=2m f f f ~ Vf ~
n(pr)n(p2}g(pz)

Note that in some previous papers the electron image
potential was erroneously a factor of 2 larger than in Eq.
(2.5c}.

There are many ways to represent the interaction of an
electron with the screened Coulomb potential of an in-
completely stripped ion (e.g., use of the Thomas-Fermi
potential, Yukawa-type model potentials, etc.). A con-
venient representation of the type V„=—Z/r
+QI V,&P& has been proposed by Simons

(H„+bE)Q=E(R)g

separate in the spherical coordinates («, 8, y),

tp=R(r)YI (O, y) .

Eigenenergies of the Hamiltonian H„+bE are

(2.8a)

(2.8b)

E(R)= — +bE,
2

(2.8c)

and R =fr(r)/r, where fr satisfies the radial Schrodinger
equation

eludes integration over the states of both electrons in the
metal. ]

Due to the inequality (2.1b} and yoR && 1

[Eo———yo/2+O(1/R)], the product g„(1)g,(1) in Eq.
Pl

(2.7a) is localized dominantly in the ionic region
(r, —1/Z), while due to exponential decay of the func-
tion g„(2) outside the metal, the product g„(2)g,(2) is

P2 P2 p2

localized in the region r2~ —1. in this region of two-
electron configuration space, the wave functions f„(1),Po

P& (2), and g (2) can be well represented by their unper-
P2

turbed forms. r"' " However, the wave function g„(1)P)
of the metallic electron in the region r, -1/Z is strongly
perturbed by the field of ion A +, and it has to be deter-
mined by solving the eigenvalue problem of Hamiltonian
H(1) given by Eq. (2.3).

The wave functions P„(1)and P„(1)in the atomic re-
Pp Pi

gion are the eigenfunctions of the Hamiltonian
H =H„+LE, where AE is the first term in the expansion
of the image force potential V; (i)+ V, ( A ) into the inverse
powers of R: bE=(2Z —1)/4R. The variables in the
Schrodinger equation

X ~(Efi Ei )dP1 dP2 dP2 (2.6) 2z 2cI l(l + 1)+,+, +r' fr( )=o (2.9)

V~f ( y„,(1)q (2——)~ V;„, ~ q„,(1)y„(2)), (2.7a)

where n(p;) (i =I and 2) and g(pz) are the population
numbers and statistical weight of the metallic and contin-
uum electrons, respectively, p, (i=1 and 2) and pz are
sets of quantum numbers (discrete and continuous)
defining the state of the metallic and ejected electrons,
and the integration symbols in Eq. (2.6) include summa-
tion over the discrete quantum numbers. The wave func-
tions entering in Eq. (2.7a) are normalized as (po is the set
of ground-state quantum numbers for A' "+)

Zy= —,p=p+1+sI, p =0, 1,2, . . . ,
p

+[(l+ 1 }2+2c ]i/2

(2.10a)

(2.10b)

where p is the effective quantum number. The
coefficients c& in Eq. (2.5g) can be determined by fitting
the lowest energies EI ———

y& l2, (2.10a), for each l series
and a given spin to the experimenta1 data

Y& (H, y} are the spherical harmonics.
The solutions of the above equation, regular at zero

and exponentially decreasing when r ~ 00, correspond to
a discrete spectrum:

(lit„~ p„)=5(p; —p, ), 1=1 and 2,
&0„ lW„- &=g '(i Z@(V2—PZ»

(2.7b)

1 Z +1
2

Z —I —1, 1=0,1,2, . . . .
Fl

(2.10c)

in which the 6 function reduces to a Kronecker symbol
for discrete values of im, ,p, We note that Eq. (2.6) for
W, takes into account the identity of two metal electrons.
[The result follows after antisymmetrization, averaging
over the initial and summing over the final spin states,
and keeping in mind that the matrix element (2.6) in- Z

P, I (r}=R,r(r «)YI (~,V» r=
p

(2.11a}

The normalized wave functions of the potential (2.5g)
for the discrete spectrum are given by'
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sl
R~&(y, r }=B~r 'e y" (F((—p, 2s&+2;2yr),

' 1/2
(s, +1)(2s,+2)

(s(+p + 1 )p!I (2s(+ 3 )
B~=(2y) '

(2.11b)

(2.11c)

(a)~=a(a+I)X . X(a+p —1), with (a)0——1,
(2.11d)

gion can now be performed by its expansion in the former
region in the spherical basis and then smoothly linked to
the solution in the atomic region. This procedure is per-
formed in the Appendix. We quote here only the result
for g for n( ——0 in the region r( —1/Z and for conveni-

Pl
ence designate it by PM„[we note that p(—:(y, , n, , m ), of
which y] is continuous and n], m are discrete quantum
numbers]:

where (F((x,y;z) is the confluent hypergeometric func-
tion.

The regular solution f&(r) of the radial equation (2.9)
that satisfy the asymptotic condition

P~„(r ()=DM(R;Z, y„m )(p~„(r,), (2.15a)

f&(r)-r /yey"+const Xr /ye y" as r~ &n, (2.12)
XP&' ! (cos8, )e (2.15b)

1s

~ + (+z/r I ( I +sl Z /—y } ., + (

f((r)=(2y) '

I (2s(+2

DM(R;Z, y, , m )= ( —1 ) —z/y( (/4y(' 2e
2m [2(m!}]'/

]/2&1 —(m +1)/2 (2Z —])/4P&
X(2y )

' e

XQ (R Zy() (m= ~m ~), (216)

X (F((1+s(—Zly, 2s&+2;2yr), (2.13) Z/y(+1/4y( —(m + ()/2 —y(Rm»yl e (2.17)

where s( is given by Eq. (2.10b) and y belongs to the con-
tinuous spectrum (y&Z/p, ).

The wave function P„(1)is the eigensolution (2.11) of
Pp

the atomic Hamiltonian (corrected by bE). The wave
function f„(1}is the solution of the Schrodinger equa-

Pl
tion

[H(1)—E((R)]Q„(1)=0 (2.14)

analytically continued from the metallic region into the
atomic region.

In the underbarrier region, where the effects of image
potentials V, (1) and V((/I ) on particle motion are com-
parable with the electron-ion interaction, the electron
wave function exponentially decays in the direction per-
pendicular to the z axis. Therefore, it is sufficient to solve
Eq. (2.14) in a cylindrical region around the z axis (with a
radius p) in which, within an accuracy of O(p/R), the
variables in Eq. (2.14}can be separated in parabolic coor-
dinates.

For the case of the pure Coulomb potential V„, the
separation of variables in parabolic coordinates can also
be done in the atomic region, and, thus, the solution of
Eq. (2.14) can be analytically continued from the metallic
(through the subbarrier) into the atomic region'"' (or
vice versa '" '). In the case when Vz contains a short-
range non-Coulomb part, separation of variables in Eq.
(2.8) in parabolic coordinates is not anymore possible in
the atomic region.

With V„given by (2.5g), the variables in Eq. (2.14) in
the atomic region can be separated in spherical coordi-
nates (r 8 ,(p ().(T(he connection of g„ from the metallic

Pl
and subbarrier regions (where it can conveniently be
represented in parabolic coordinates) into the atomic re-

where the functions f&(r() in (2.15b) are the regular (in

the origin) solutions of the radial Schrodinger equation
(2.9), with an exponentially increasing behavior in the
subbarrier region [Eq. (2.13)]. The function (2.15a) is
normalized by the condition (2.7b).

It should be noted that in the region z &&1, the ex-
ponentially small terms in Eq. (2.12) cannot be neglected,
since in the summation (2.15b), the exponentially increas-
ing terms in this region cancel each other (if the correct
asymptotic form of f( valid both for large argument and
large index is used). In the case of the pure Coulomb po-
tential ( V„&=0), f&(r, ) are well-known solutions of the
radial Coulomb equation (2.9).' In that case, the func-
tion QM„, Eq. (2.15b), expressed in parabolic coordinates,
is given by Eq. (Al) of the Appendix, and along the z axis
and for m =0 it takes the form

g~„(z)=DM(2y() ' I (1—Z/y, )e ' h(z), (2.18a)

1, z&0
h(z)= .

,F, (Z/y, , 1,2y, z), z &0 . (2.18b)

In the calculation of the matrix element Vf for the
transition of electron 2 from the metal into the continu-
um, the wave function (t„(2) is taken from the Sommer-

feld model for the metal' and g, (2) is represented by a
Pp

plane wave.
In that case (u~=kz, pz ——(E2, Qz), Qz being the solid

angle of yz ——(y2„,y~y, y~, ) with E2=Y2 /2; k~

=(k2„,kz~, k2, ), with k~„+kzr+k2, =2UO yz. The
vectors k2 and yz are the momenta of electron 2 in its ini-
tial and final state, respectively. The corresponding wave
functions, normalized by the condition (2.7b), are
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~k2z p2z
exp(ik2, zzsr )+

2ik2z
k2

X
(~U )'"

exp( P2 z2M) 2M +

1
i(„( r, iir) = exp(ik, „x,~+ik»y, M )2~

tk2z +p2z

2ik2z
exp( —ik2, z2M ), zz~ &0

(2.19)

where p2z=2UO —k2z and

P, (r2sr ) =(2n ) y2exp(iy2. r2~) .
P2

(2.20)

Since g, is normalized to 5(yz —y z)5(Qz —0 2), we have
Pp

g (P2 }=
I dy2/dE2

r2

In the region ri —1/Z, r2sr-1 which gives the main
contribution to the integral (2.7a), the image potentials
V, (2) and V2(1) can be neglected with respect to the in-
terelectron interaction V12, which in the considered
configuration can be expanded in powers of 1/R. Due to
the above-mentioned orthogonality of the initial- and
final-State wave functions, +; and 4f, the leading term of
this expansion is (we present only the terms that give
nonzero contribution to the matrix element Vf)

1 w

R'
+1

( —1)"+ (1+4))d i/2.
v= —1

where d;, are multiplicative operators of the form
' 1/2

(2.21a)

4~
IV r; Y;„(8;,ip; ), i = 1,2M (2.21b)

By a direct calculation, one can show that the partial
functions in the sum of Eq. (2.15b) are orthogonal to all
eigenfunctions in the potential V„(ri ) with absolute
value of eigenenergies greater than y i /2. For that
reason, the two-electron wave functions 0'; =ti& (1)g„(2)
and qif ——i( (1)i(,(2) of the initial and final states areI"0

I 2

mutually orthogonal.

B. Matrix elements in dipole approximation

where Y;„(8;,y; } are the spherical harmonics, and
(r;, 8, ,y, ) are the spherical coordinates of vector r, .

Within the dipole approximation (2.21) for V,„„the
matrix element (2.7a} is factored

V~f
——LM„(yi, Z)R Qo(R;Z, l i)

+1
X g ( —1)"+ '(1+5~)7~„(1)JI'(2)

v= —1

where

1 —z/y&+ i /2y& l/2y& —i /2
MA yl& yi4n

1 4yl (2Z 1)/4ylX(2e) 'e

&My(1}=&i(r,i, ,(ri) I di. I qsrg(r]))

&M'(2}= & i)/„(r2M }
I d2. I i}/„,(r2M ) &

(2.22}

(2.23)

(2.24)

(2.25)

and Qo(R;Z, yi) is given by Eq. (2.17).
In writing the expression (2.22) we have taken into ac-

count that the main contribution in W, (R) give electrons
with m =0; the terms with m &1 give corrections on the
order of O(1/R), which have also been neglected in the
expansion (2.21). Now we turn to calculation of matrix
elements P~„(1)and P~'(2).

The product 1Ir i ip~„ is mainly localized in theyo0 0

atomic region, where the function y~~ is given by
(2.15b). As the above product exponentially decreases
outside of the mentioned region, we may extrapolate its
range of validity to the whole space. Analogously, the
product f, i(/„ is mainly localized in the metallic region,

P2

and integration in (2.25) is over this region.
With the functions (2.11a) [with (y, I, m )

=(yo, lo, mo)], (2.15b) (with y=y, ) and (2.13), the ma-
trix element P~'„(1)can be calculated in the form

,,„„,r(1+s, —Z/y, ) r(si, +si+4)
M (y y Z)=8 (yo si )(2yi)

OO PO 0 I (2si+2) S( +S(+4
(yo+yi) '

XF2(sl +sl+4 po 1+si Z/y—
i »i, +»—»i +»2'yo/(yo+yi »2y i /(yo+yi»

I 1 1

&iira(1)—=&Ma(yi'yo Io~mo Z)=(4~)' g ( —1) '"[(2I+1)l ]'
m v 0 Mi', i, (yo yi»)

I= lo+1
(2.26)

I,„=max(lo, I ), (2.27)

where ( ) is the 3j Wigner symbol and F2(. . .;x,y) is the Appel hypergeometric function. ' As can be seen from Eq.
(2.26), for lo ——0, PM

—„"——0, and in the matrix element P~'„, the term with I = lo —1 has to be dropped.
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,
I (1+s,—Z/y, ) I (s), +s)+4)

~o) =&o(ros) )(2r))'
0 0 I 2s)+2 sl +sl+4

(y.+r, )
'

In some special cases, the expression (2.27) can be simplified. For the ground state of the ion A' "+,when pp=0,
the expression (2.27) reduces to

X 2F ) ( I+s) Z—/y» s), +s) +4; 2si +2; 2y ) /( y o+ y ) )), (2.28)

where 2F, (a,p; y;x ) is the complete hypergeometric function.
If, in addition, the ground state of the A' "+ ion is spherically symmetric (lo ——0), Eq. (2.28) further simplifies.

The entire matrix element in this case is (m =0, 1=1)
sp+3/2 s& + 1

2/y + +5/2 yo y, ' I ( 1+s, —Z/y, )I'(Sp+$) +4)
sr~(r) ro00'») = —4)(4~)'"(2y) ) 'o+' + r' (2s +3)r(2s) +2)yp+l )

X 2F)(1+s, —Z/y) so+s)+4;2s)+2;2r)/(ro+r))) (2.29)

When the ion A + is fully stripped [c&
——0 in Eq. (2.20)], the corresponding matrix element P~'„( I ) can be obtained

from expressions (2.26) and (2.27) by setting there si ——1, s) = lp and yp=Z/n p, where no is the principal quantum num-

ber of the final state. The resulting expression is

lp+ 3/2

P(~)coU)( . 1 0 Z) g (4 ))/2(2 ) )2 0 [(lp+ np )!]

+ )'0+4 2np(2lp+1)[(np —lo —1)!]ro+ r1

, I (1—1 —Z/y))[(lp+ 1+3)!]
X g ( —1)'1,„(2y) )'

) =(,+) [(21+1)'](ro+r )
)'

1/2
1

[(2lp+1)!]

XF2( 1p+1+4; (n p
——lo —1),1+1—Z/y, ;21o+2, 21 +2; 2yp/(yp+ y, ),2y, /( yp+ y, ) )

with 1,„=max(l, lp) .

(2.30)

For the capture into the ground state of a hydrogenlike ion A' "+(no=1,yp=Z, lp=0), the above expression
reduces to

Z — Z/y' 2

r1+ +3 1

(2.31)

The calculation of the matrix element PM (2) for the dipole transition of electron 2 from the metal into the continu-

um can be done in a straightforward manner "if the wave functions f (2) and g, (2) are taken in the form (2.19) and
P2 P2

(2.20), respectively. The result for PM)(2) is

&2

I
&'M'(2)

I

'=, 1~2 I
5(k2 y2 )@k2y y2y),

8m Uo

1 1
X +

k2„—y +2i p k2y —re ip—with P~O .

k2z+'P2z k2z —)p2z 2( —)) '"'k2z

(k2, —y2, +ip) " (k2, +y2, i p) ' —(p2, +iy2, )

(2.32)

(2.33)

The result for v=O has been obtained previously. "
C. Calculation of the transition rate

Having the analytic expressions for the matrix ele-
ments for Auger neutralization, one can calculate the
transition probability per unit time W, (R) by using Eq.
(2.6). Let us consider the Auger neutralization process ro —r1=r2+r2 =—2~2 2 2 i2 (2.34)

when the metallic electron 1 is captured into an s state of
the ion A' "+. In this case the matrix elements with
v=O only give a nonzero contribution to the transition
rate. Due to the delta function in PM'(2), and energy
conservation relation
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the integration over p2 in Eq. (2.6) can be performed
directly. The integration over the orientations of the
momentum yz of the ejected electron can also be carried
out analytically, reducing the integration over pz in Eq.
(2.6) to an integration over the energy E'2 of the ejected
electron, only. Finally, due to spherical symmetry of the
final state, the integration over p& is reduced to integra-
tion over y, . Omitting the details of the calculations we
give the result

f f,+MA(yl, z)Qo(R;z, y, )
Ez

X
I &MA(yl yo00») I

X I(y I,E 2 )n (IM I )n (IM2)

XE2g(E2)dy, dE2 (2.35)

where the factor I(y 1,E2), coming from the integration
over the orientations of ejected electrons, has the form

(y„E', ) = f,', I

&'2"
I
'd(cos&'2)

2z UO

Uo (2W —Up)(2E2 —W+ U11)
[E2'E2 w+ Up'] '+2(2E2)' w (w —Up) (W —Up)

)I/2+(E + U )1/2
—(3w —2Up} ln

( U )1/2 (2.36)

Whl ~~

max[0, w —Up]
El

k2, ——[2(Up —W+E2 cos 82)]'
(2.37)

(2.38)n(IM2}=1,
corresponding to the case of a free-electron gas.

The use of a similar form for n(III, I } would require dras-
tic additional approximations in the evaluation of (2.35).
For certain metal surfaces, however, surface-localized
states have been observed' [for instance W(100) and
Mo(100)]. For such surfaces we can take n(IMI) to be
sharply peaked at certain energy y I/2 =y /2, and
represent it by

[2( Uo —0)]'"
n (p )=IDp5(y I

—y ), Dp =
3y(2U y 2)l/2

The multiplicative factor Do is obtained from the condi-
tion g„(pl )=N, N being the total number of electrons.

With the distributions (2.38) and (2.39) the integration
in (2.35) can be carried out analytically, and the result is

(2.39)

WI(R)=/IIR Qll(R Z y) (2.40)

For further evaluation of the integral (2.35), it is neces-
sary to specify the functions n(IMI) and n(IM2}. For n(p2)
one can use the expression

I

where w is defined by (2.34), and

W, =W —P, W2
——Up —P, W3 ——W —Up (2.43)

The expressions for /MA(y, Z) and Qp(R;Z, y) are
given by Eqs. (2.23) and (2.17), respectively, and
PM'A(y;yo;Z) is given by Eq. (2.29) for incompletely
stripped ions, and by Eq. (2.30) for fully stripped ions.

Taking expression (2.17) for Qp( R;Z, y ) into account,
we represent W, (R) in the form

W, (R)= Al(yo, Z, w, Up, p, y)R

(2.44)

where the constant A
&

depends on the parameters of both
the ionic and metallic potential wells, but the R depen-
dence contains only the energy parameter y ( which also
depends on R) of the localized surface state
(E, = —y /2+DE). From Eq. (2.44) it follows that if
there are several surface states with different binding en-
ergies, the main contribution to the Auger neutralization
comes from the state with the smallest binding energy.

The Auger neutralization rate WI(R), as a function of
transition energy w, has an extremum (singularity) at
w = UO. The origin of this singularity is in the matrix ele-
ment (2.33) which for k2, ——y2, diverges. In most realis-
tic situations, however, w ~~ UO and then one has

'41 2 2 +MA(y») I &~A(y yp+») I
f(W 0 Uo»

2DO UO 2 — 0) —. . 2

N N3

(2.41)

o o

)&R ]'+' e (2.45)

f(w, ltl, Up) = —,'(w, W2)' (W+W, + —', W3)

+ 3(WIW2) (W+W3)W3

—[Wl(W+2W3) 2W3(W+ 2W3)]

( )1/2+ ( )1/2

X ln
1/2 (2.42)

For a transition into the ground state, the obtained
transition rate (2.44} can be compared with the corre-
sponding expression "valid for a Coulomb interaction
in the atomic region, but calculated with a variational
wave function. The present value of the factor Al tends
to the corresponding expression in Ref. 7(a) if the factor
PM'A is replaced by P~'A '"'G(Z, Z, y I ), where
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5/2
Z

Z*

Z —y1 Z+$1
Z* —y1 Z*+y'1

G(Z, Z*,y, )=2 1— Z
2Z*

(2.46)

exchange (b) channel.
For the channel (b), the wave function f„ is given byP2

Eq. (2.15a) [written as g~„(rz)], and for channel (a) it
may be taken (in the zeroth approximation) in the form of
Eq. (2.19). The population numbers n (p, ) and n(p2) are

Z* being the variational effective charge. Note that the
function f(w, p, Uo) in these two papers is somewhat
different due to a different averaging procedure used in
Ref. 7(a). A mean value of Do=1 has also been used
there.

III. AUGER REI.AXATION OF RESONANTLY
CREATED EXCITED IONIC STATES

NEAR THE SURFACE

A. Transition rates in dipole approximation

A multiply charged ion always possesses a number of
excited states that are isoenergetic with the metal con-
duction band and to which metallic electrons can be cap-
tured resonantly. An ionic excited state, created by this
resonant process usually at large ion-surface distance, is
subject to the Auger relaxation processes (1.2a) and (1.2b)
[see Figs. 1(b) and 1(c)]. The total relaxation probability
per unit time is

n(p, )= n(p 2)=1

for channel (a).

n(pl ) I n(p2) Dof(y2 y )

(3.3a)

(3.3b)

kE'= +DE,
2

(3.4a)

for channel (b). The second condition of Eqs. (3.3b) has
the same meaning as Eq. (2.39), i.e., we assume that un-
derbarrier transition takes place from a surface state with
energy E = —y /2+hE.

The functions g„and P„are the ground-state and the
Po »r

excited-state atomic functions, respectively [Eq. (2.1 la)].
The function P, (2) for channel (a) is represented by an

P2

outgoing wave [Eq. (2.20)]. The function f, (1), which»
belongs to the continuous spectrum of the model poten-
tial (2.20} (corrected by the image force factor b,E), has
the form of Eq. (2.11a):

~11= ~11 + ~11(a) (b)

where

(3.1)
p, (1)—:QE I. RE.(.(k, r——)YI (O, g),»

s, ,

RE&,(k, r)=BE,(k, s&, )r 'e
gJ(a), (b) 2~ V(a), (b) 2n p1 n p

X 5(Es„—E;„)g(P~,)dP~ dP~, ,

(3.2a}

Vf'" '=(g„(1,2)p, (2, 1)
~

V;„, ~
$„(1)g„(2)),

(3.2b)
where indices (a) and (b) refer to the channels (1.2a) and
(1.2b), respectively, P„and f„are the wave functions ofI'[r Pp

the upper (resonantly created) and lower ionic states, P,
P2

(f, ) is the wave function of the ejected electron from the»
metal (ion), and g„ is the initial metallic electron wave

P2

function. The functions P„are normalized by

( g,
~
g, ) =g '5(p, —p, ), f„ is normalized by the con-

l

dition (2.7b), and f„dang„are normalized to unity.I'o»r
The indices po, p1„and p1 comprise the set of quantum
numbers pa=(yolomo), p&,

——(ylm), and pI=(E'I'm'),
while pz ——(Ez, Q~) and p2

——k2 for the channel (a) and

p2 ——(y2nzm2) for the channel (b).
Eq. (3.1) [together with Eq. (3.2) for W„] takes into ac-

count the identity of two metallic electrons. This result
follows from arguments similar to those applied in writ-
ing W&, with the exception that the averaging procedure
(as well as summation in the final state) is performed over
the spin state of electron 2 only. The other electron is
resonantly captured into a given atomic spin state
without changing its spin projection. In writing Eq. (3.1)
we neglect the "interference" between the direct (a) and

X ~F&(sl + I+i(Z/k), 2s&. +2;2ikr ), (3.4b)
' 1/2

B (k' )= (2k)"' 2k
I (2s, +2)

e(nz/2k )

X
~
1(s,, +I+i(Z/k))

~

where k is the wave vector (E' =k 2/2+ 5E ) and

(3.4c)

as

'+ [(l'+ ')'—+—2c,.)'"-
In the dipole approximation (2.21), Vf ' can be written

+1
V'f ' ——R g ( —1)'+'(1+5„)P„'(1)PM'(2), (3.5a)

where

(3.5b)

1 1 r1 r2
int — — + 3 +

r12 r1 r1
(3.6)

Using the first two terms of this expansion and the ortho-
gonality of initial- and final-state wave functions, we ob-
tain

and PM'(2) is given by Eq. (2.32). In the calculation of
Vf ', the main contribution to the integral gives the
configuration when electron 2 is already in the vicinity of
the ionic core (r2-yo '}, and having in mind that the
state

~ p&, ) is a highly excited one (r, —y
'

&&yo '), the
interaction V;„, can be expanded as
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V f =X~g(y2 Z)Qp(R;Z, y2)NM&(y2 , y'p, lp, mp', Z)

x M'„'(E', I', m', y, I,I ), (3.7)

where Qo and X~„are, respectively, given by Eqs. (2.17)
and (2.23), and PM'„[defined by (2.24)] is given by Eq.
(2.26}. The matrix element M„' ' is

I.et us note that dipole approximation (2.21), used in
the evaluation of matrix element Vf for channels I and
IIa, presumes that

I r, —rzsr I
/R «1. For the channel

IIb, we assume that «2/«& « 1.
According to Ref. 8(a), the matrix element 9'J'(1), Eq.

(3.5b), can be represented as

(1):9g(y I m yp lp mp)M„''=, r& 3 p r, (3.8a)
I

( 1) max+ (I )1/2
l, 1

N 2

z &4„(ri) I dio I 0„, (r»& = — &'~c(1»
xM, 'i (y„y) (3.9)

(3.8b)

where n =R/R, and the Ehrenfest theorem has been em-
ployed in writing (3.8b).

where 1=lp+1, —m =mo+v, and I,„=max(l, lo). The
radial matrix element M 'I, calculated with the func-~0 0'
tions (2.11a), has the form

I (s, +s, +4)
M~'i (y, y)=B (y, si,), , B (y si)Fq(si +si+4' po —p'2si +»—2si+2'2yo/(yo+y) 2y/(yo+y))

(y.+y} '
(3.10)

where F2(. . . ) is fhe Appel hypergeometric function. Note that since po and p are positive integers, the function
Fz(. . . ) reduces to a polynomial. For transitions into the ground state (pp =0), Eq. (3.10) reduces to

M p', (yo, y ) =Bp(y p, y )B (y p, y )

r(s, +s, +4)
2F, ( —p, si +s, +4;2s, +2;2y/(yo+y)) .

(yo+y) ' (3.1 1)

24 PlP'„"(y1O, y,OO) =
(3Z'n')'" n' 1—n —1

n+1 (3.12}

where y =Z, and y =Z /n, n being the principal quantum number of the excited state.
The reduced matrix element p'~pcs(1) for the p, „(y,I, m )~pI(E', I', m ') has a form similar to 7'2'(1):

In the case of a hydrogenlike ion, one sets sI = I0 and s& ——I in the above expressions. Finally, for the
0

I = 1(m =0)~I =0(m =0) transition in a hydrogenlike ion, from (3.9}and (3.11) one obtains the well-known result'
' 5/2 n

p'zpci(1) = p'zpci(y, l, m;E', I', m') =( —1) '"
(Im,„)

I 1 I'
, M, '(y, k) (3.13)

where I,„=max(l, l'), I'=I+1, m'= —m, and

M~i"(y, k)=&REi(k «)
I

«
I
R i(y «)'I

is the radial matrix element. For the model potential (2.5g), R~i is given by Eq. (2.11b) while REi (k, «) ha, .s the form of
Eq. (3.4b).

The matrix element M I
' can be calculated analytically and has the form

r(s, +s, , +4)
Mpt'(y, )=Bp(y, i)BF(k,si)

XF2(si+si. +4; —p, s«+1 i(Zlk);2si+—2, 2si +2;2y/(y —ik), 2ikl(y —ik)—) . (3.14)

The results for hydrogenlike ions are obtained by setting
in Eqs. (3.13) and (3.14) si ——I, si, —I'.

B. Expressions for transition rates

take only the v=0 contribution)

Wrr' =8R
I
9'~'(y, l, rn;yolo mo}

I

X P~, 2 2g 2 dE2 (3.15)
With the matrix elements calculated in the preceding

subsection, the relaxation rate for channel (1.2a) is (we where I(y, ,E2 ) is given by Eq. (2.36). The integration in



38 AUGER NEUTRALIZATION RATES OF MULTIPLY CHARGED. . . 3097

UoX» f(w, P, Uo)
w (w —Uo)

(3.16)

where the function f(w, P, Uo) is given by Eq. (2.42).
The transition rate for the Auger relaxation channel

(1.2b) can similarly be calculated from Eq. (3.2}. Intro-
ducing the photoionization cross section,

2

(rph( Y I m +2 ) g I
~ ac(l, l, m; E», 1',m ')

~

1' m'
1

(3.17)

(c being the speed of light), the transition rate W((&' can
be represented in the form

3cN
WIt Do ——(r (hY, l, m;E»)X M&(y, Z)2.Z»

X
~

P(0) (
—. I m )

(»R»zlr+(~»Y —(e »Y~-
Mw y yo o~mo

(3.18}

It has to be noted that the R dependence of WgI and
WP&' written down explicitly in Eqs. (3.16) and (3.18) are
the dominant ones, but not the only ones. Due to the
image forces, the energy of an excited electron at a
distance R is shifted upwards, Eq. (2.8c), E
= —y /2+ (2Z —1)/4R, and through the energy conser-
vation relation (2.1c), the transition energy contains also
an R dependence. However, in the region of large R,
where the concept of image forces is meaningful, the R
dependence of w is weak compared to those which are al-
ready indicated in Eqs. (3.16) and (3.18). This remark
holds also for the rate W&(R) of the direct Auger neu-
tralization channel. The R dependence of y
(E, = —y /2+ hE, E, being the considered surface
energy level) is important only in the exponen-
tial: exp( —2yR ) = exp( —2y, R ) exp[ —(2Z —1)/2y],
y, =( 2E, )' . (Note—that the second exponential factor
cancels with the corresponding factor in XM„. Except in
the exponential factor, for the parameter y in the expres-

I

Eq. (3.15}over the energies F'» of ejected electrons can be

carried out analytically (see Sec. II), and the result is

'I &~(y I m yo Io mo}I

sions for W& and W((&' one can take [to within an accura-
cy of 0(1/R}] y=y, . Now the rates of all the three
Auger neutralization channels can be written as [cf. Eqs.
(2.45), (3.16), and (3.18)]

W, =A,R —'exp( —2yR) .
Pr(a) g (a)R —6

II II

WI&
' ——A I&

'R exp( —2yR ) .

(3.19a)

(3.19b)

(3.19c)

(3.19d)

IV. AUGER NEUTRALIZATION
PROBABILITIES FOR He + AND C'+

IONS ON THE Mo(100) SURFACE

In order to characterize more specifically the relative
role of the considered Auger neutralization processes
when an ion A + slowly approaches a metal surface, it is
convenient to introduce the probability PI, (R, vo) that
A + will undergo neutralization along the Auger chan-
nel k in the interval from infinity to R. Since the transi-
tion rates for different Auger channels are usually dom-
inantly localized in the separate R intervals (due to the
different exponential decay factors), the corresponding
transition probabilities P can be treated independently.
Thus, the transition probability for channel I can be writ-
ten as

P&(R, vo) =1—exp — W&(R')dR'
vo

(4.1)

where vo is the ion velocity component perpendicular to
the surface. In the case when Auger neutralization goes
through the channels (1.2a) and (1.2b), the probability
P(((R, vo) 's given by

2Z 1a= + —1,
y 2y

and AI, A(II), A(IbI) may be considered as constants. Since
the typical values of y, are around 0.5, the exponents in
(3.19a) and (3.19c) will dominate the R behavior of the
rates FI and FII' only at very large ion-surface dis-
tances. For smaller distances, the rate 8'I will be about
R times smaller than 8'II'. With increasing ionic
charge Z, the region of R in which the rate 8'II' is appre-
ciable becomes smaller.

PI&" '(R, vo) =P (R } 1 —exp — f
Vp R

(4.2)

where P~N(R ) is the resonant neutralization probability.
In Eq. (4.2), the resonant transition probability P" (R)

and the Auger neutralization probability are given in a
multiplicative form. The resonant neutralization is a pro-
cess "localized" far from the surface while the Auger
neutralization channels become operative closer to the
surface where P" (R) is close to unity. The approxima-
tion (4.2) implies that the resonant neutralization has al-
ready been (almost) finished when the Auger process be-
gins.

The resonant neutralization probability is given by

P (R)=g, 1 —exp — f W (R')dR'
vp R

(4.3}

where 8' is the resonant neutralization rate and g, is

the statistical weight of the state to which the electron is
captured. The expression for W has been derived ear-
lier '" and has the form"
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WRN(R ) A RNR 2z/y+1/2y —le —2yR (4.4a}

A aN —(2I+ 1)

2
v v I

—v v 0 A,"N, v=-,'(Z/y —1),

(4.4b)

A RN 21/y —11 —2 2z/y+ I/y —
&(2 )&/2yZ

y e
r

X(2U —y } (4.4c}

where E(R)= —y /2+(2Z —1)/4R is the energy of the
state

~

ylm ) of the captured electron at ion-surface dis-
tance R. The above transition rate W" was obtained for
electron capture in the pure Coulomb ionic field. The
same expression remains also valid when a short-range
potential is added to the Coulomb one. [The correspond-
ing y =Z/}M, iM being the effective quantum number, Eq.
(2.10a).] Namely, W" is determined as the probability
current Aux through a surface lying in the atomic asymp-
totic region where /sr„goes over into the parabolic func-
tion which describes the electronic motion in the
Coulomb field.

Note that the excited atomic level E(R) can be reso-
nantly populated only for R )RF where E(RF }=—P.
For R (RF, the resonant neutralization probability is

given by P" (R)=P" (RF).
A rigorous multichannel treatment of the considered

ion-surface collision problem takes into account a
coherent superposition of the incoming and outgoing
channels, which includes also the backcoupling to the ini-
tial state. The dominant occurrence of Auger processes
at different R distances leads, however, to an effective
decoupling of the channels. Moreover, predominance of
one of the reaction channels makes other channels in-
operative or even "closed." If a given process effectively
takes place at R )Rp, the corresponding backcoupling
process is "closed" for R (Rp ~ These statements apply
to the specific processes discussed below.

As two illustrative examples for the considered Auger
neutralization processes, we take the collisions of He +

and C + ions with the Mo(100) surface. There is a local-
ized surface state on Mo(100) having energy of E, =4.85
eV (Ref. 15) (i.e., y, =0.597) which participates predom-
inantly in the underbarrier transitions within the
He + + Mo(100) and C + + Mo(100) colliding systems.
In the case of He + projectiles, isoenergetic to the con-
duction band of the metal is the He+(n =3) level only
(with y= —,

' }, while in the case of a C + ion the lowest

isoenergetic levels with the conduction band are the
C +(p =2, I =0) and C +(p =2, I = 1 ) levels, with y
determined by Eq. (2.10a). [y(2,0)=0.833 and
y(2, 1)=0.776, respectively. ] The last two theoretical lev-
els correspond to the experimental C +(2s4s 'S) and
C +(2s4p 'P ) levels, with y4, =0.825 and y4 ——0.763,
respectively. The ground-state levels of neutralized ions.
He+( ls) and C +(2s 'S) have yp values equal to
yp(He+)=2 and yp(C +)=1.876. In the resonant neu-
tralization deexcitation channel (1.2a), only the
He+(3p)~He+(Is) and C +(2s4p 'P )~C +(2s 'S)
transitions participate within the dipole approximation.
The parameters cl (1=0 and 1) of the pseudopotential
(2.5g) for the C + ion have been determined by using the
expression (2.10c) with yp=1. 876 and y, =1.608 [y, cor-
responds to the C +(2s2p 'P) electron configuration].
The constants A, , A If' ', and Ayi of the rates Wk [see

Eqs. (3.19) and (4.4a)] are given in Table I.
The probabilities Pl, and P for He ++Mo(100) and

C ++Mo(100) systems, colliding with a velocity
up =0.01 a.u. , are shown in Figs. 2(a) and 2(b), respective-
ly. For channel (1.2b), transitions through both He+(3s)
and He+(3p}, [respectively C +(4s), C +(4p)], are shown
in Figs. 2(a) and 2(b), respectively. It is seen from these
figures that for low collision velocities, the resonant-
capture-Auger-deexcitation channel is by far the most
dominant neutralization process down to ion-surface dis-
tances of the order of R -2.

Auger neutralization processes may be characterized
by the radial rates P«of probabilities P&, defined by

Wk(R)
PI i(R, up)= Sk(R up)

Vp
(4.5)

where Si, (R, up) is the survival probability for the kth
channel

Si(R up)= e"p Wt(R )dR
Vp R

(4.6a)

SIt'(R, up)=P" (R)exp — J WIi'(R')dR'
Vp R

k=(a) and (b) . (4.6b)

Radial probability Pk, is taken [as was the case for the
probabilities (4.1) and (4.2)] for the inward trajectory
where PI, , = —dP 1'dR.

For the He ++Mo(100) and C ++Mo(100) collision
systems at vp ——0.01 a.u. , we have calculated the probabil-

TABLE I. Values of constants A in transition rates AR &, Eqs. (3.19), and (4.4), expressed in units of
eV (with R expressed in units of A}. a[+x ] means a X 10—.

A ++Mo

He'++ Mo

( g (Z —1)+ )+

3p
3$

1.29[—4]
1.29[ —4]

g (a)
II

1.24[ —4]

g (b)
II

2.65[—2]
4.60[ —2]

URNI

1.61[+2]
1.07[+2]

C ++Mo 4p
4$

8.25[ —7]
8.25[ —7]

1.87[ —5] 6.39[—5]
3.86[—5]

1.24[+2]
7.25[+1]
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ity rates P«of the Auger neutralization channels, and
they are shown in Figs. 3(a) and 3(b). The corresponding
probabilities P," (R, uo) are also shown in these figures.
All the probability rates P«exhibit a maximum at a cer-
tain ion-surface distance RI, , around which the whole
neutralization along the kth channel practically takes
place. The figures show that the resonant-capture—

Ho~Mo(100)
Vo 0.01 a.u.

Auger-deexcitation process occurs dominantly at large R
[RIt' (He +)-6—7 a.u. and RIt' (C +) —8 —9 a.u.],
and most of the ions are neutralized at these distances
(for the given values of vo). The rest of the ions, which
survive, undergo neutralization very near to the surface
through the proper Auger neutralization and the
capture-resonant deexcitation processes. These con-
siderations show that the Auger electrons from these col-
liding systems will predominantly be ejected from the
moving ion and will have a relatively sharp energy distri-
bution. The energy width of the Auger electron distribu-

Ha+ Mo(100)
No=0.01 a.u.

10
Pk, l

10
1 10

R(a.u.)

(b) C+ Mo(100)
V+4.0l au

R(a.u.)

15

(b) C.Mo(100)
Vo 001 au.

20
R(a.g

FIG. 2. (a) Auger neutralization probabilities vs ion-surface
distance for the reaction channels (1.1) (P&), (1.2a) (P»'), and
(1.2b) (P~] ) in the He + +Mo( 100) collisions at ion velocity
vo ——0.01 a.u. The curves 3s and 3p for P&&

' correspond to Auger
deexcitation of [He+(3s)] and [He+(3p)]* states. (b) Same as
(a), except for C ++ Mo(100) collisional system. The curves 4s
and 4p for P~~ correspond to Auger deexcitation of
[C +(2s4s)]* and [C +(2s4p)]* states.

R(a u.)

FIG. 3. (a) Probabilities Pk „Eq.(4.5), vs ion-surface distance
for different Auger neutralization channels in He ++Mo(100)
collisions at Uo ——0.01 a.u. (See the text. ) (b) Same as (a), except
for C'+ +Mo(100) collisional system.
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tion will be determined by the width of the localized sur-

face state, as well as by the dynamical (broadening) effects
introduced by the finite value of ion velocity. ' At higher
collision velocities, the relative role of proper Auger neu-

tralization and capture-resonant deexcitation processes is

expected to be more pronounced.

V. CONCLUDING REMARKS

In the present paper we have considered three channels
of Auger neutralization of multiply charged ions slowly
colliding with metal surfaces: direct (or proper) Auger
neutralization, resonant capture of one electron into an
excited ion state, with emission of either a metallic elec-
tron (resonant deexcitation) or of the captured electron
itself (Auger deexcitation). The screening effects in the
incompletely stripped ionic core are taken into account
through a suitable model potential. The rates of the
above Auger neutralization channels have been calculat-
ed in closed analytical form within the dipole approxima-
tion for the interelectron interaction, the use of which is
justified for the considered processes. On the examples of
He ++Mo(100) and C ++Mo(100) collision systems at
a velocity of 0.01 a.u. it has been demonstrated that the
resonant-capture-Auger-deexcitation process is the dom-
inant neutralization channel in the low-velocity collision
regime. This process takes place at large R and is charac-
terized by a high probability. The other two Auger neu-
tralization channels are operative at very small ion-
surface distances. These conclusions, although derived
from a direct comparison of the corresponding probabili-
ties Pk and Pi, , [see Eqs. (4.1), (4.2), and (4.5)], remain

I

valid even in a coupled kinetic-equation description of
the three processes. Both Fig. 2 and Fig. 3 show that the
probability of direct (proper) Auger neutralization is at
least 3 orders of magnitude smaller than the leading neu-

tralization channel. The probability of the capture-
resonant deexcitation channel becomes comparable to
that of capture —Auger deexcitation only in a very narrow
region near the surface, but by the time this region is
reached, the excited ions created by single-electron reso-
nant capture wi11 ahnost entirely be deexcited by the
Auger deexcitation mechanism.

APPENDIX

The continuation of metallic wave function in the vi-
cinity of a perturbation Coulomb center, placed at a dis-
tance R from the surface, has been accomplished by
Nedeljkovic. ""' In the asymptotic atomic region, where
the electron interaction with the multicharged ion can be
approximated by a Coulomb potential, the obtained func-
tion can be expanded in a spherical basis and then analyt-
ically continued in the vicinity of the ion. In the con-
sidered asymptotic region, the main contribution to elec-
tron transition gives a narrow cylindrical region around
the z axis, where the separation of variables is approxi-
mately possible in the parabolic coordinates g, yt, and p.
The wave function that corresponds to the continuous
negative energy spectrum with an energy E(R)
= —y /2+(2Z —1)/4R, —y /2 being different from
any of the ionic levels (y&Z/n), and for a parabolic
quantum number n) =0, is (up to the unimportant phase
factor) given by

r)+ +1)(2 )1/2y —(m+))/2(2e)1/4y Zly+1+m
arm!(2 m!)

' /2 e y

XQ (R;Z, y)(gyt) e " 'y'& ')')F)(Z/y, m+ I; yyt)e™— (Al)

The above function is normalized to a 5 function of y.
For our further purposes, it is convenient to use the in-
tegral representation of conAuent hypergeometric func-
tion, F, (a,p;z) for noninteger values of a, and for in-

teger values of p ( & 0) (Ref. 18):

l

The function exp[ —yz(1 —t)] can be expanded as

1 }tn—yz(1 —t) ~ ~

( 1 t) —m

F (a P.z) (1 e 2iria) —1—
I (a)l (P—a)

X, f e "t '(1 t)~ 'dt, —(A2)r,
where I 0 is a counter enclosing the points t =0 and t = 1

in an opposite clockwise direction. In the parabolic coor-
dinates )=r +z, yt=r z, Eq. (A2) takes —the form

)F, (Z/y, m+1; —y2))

Xj,[iy(1 t )r]Pi (cos8),— (A5)

where Pt are the associated Legendre polynomials (8
being the spherical polar angle) and j,(p)
=(n/2p)'/ Jt+, /2(p) are the spherical Bessel functions.
The later functions are related to 1F1(a,p;z ) by'

where

e(y/2)(g —z))( 1 e
—(2az/y)i) —1

X
I (Z/y)I (m+1 —Z/y)

J(Z, y), (A3)
j i(i —y(1 t)r )= — (i yr ) (1—t )'e

2'E!

(2&+1)l

X )F) (l + 1,2I +2;2y(1 —t)r ) . (A6)

Expanding, F, (a,P;z) in a power series, and inserting

Eq. (A5) into Eq. (A4), we obtain

J(Z ) f —yz(1 t) yrt( Z—ly 1)(1 t) — yd—t-
r,

(A4)
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J(Z, y)= g (21+1)i'Pt (cos&)(2iyr)' g -'f t'~r '(-I t)'+t' z-~rdt .( —1) e [(I +p )! (2y r )~

y (gq)",[(2i+p+I)!](p!)

In the calculation of the contour integral in Eq. (A7), we can use again the integral representation (A2). Finally,

( —1) m! exp[(y/2)(g —ri)] + t
&

I (l+ I —Zly)
+ I —Ziy) t

1.(21+2)

X~F,(i+1—Zly, 21+2;2yr) .

Inserting Eq. (A8) into Eq. (A 1) and using Eq. (2.13) (with st ——I ) to introduce ft, we obtain the expression (2.15a).

(A7)

(A8)
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