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Critical exponents at the three-loop level from stochastic continuum regularization
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We compute the next-to-leading contributions to critical exponents using a recent method based
on stochastic continuum regularization. Our best estimates are y = 1.2313 and g=0.035.

I. INTRODUCTION

The behavior of thermodynamical quantities at
second-order phase transitions is determined by the criti-
cal exponents. ' The theoretical computation of these ex-
perimental quantities is a test of our understanding of
critical phenomena. By now, a wide variety of different
techniques have been employed in attacking this program
with considerable success. Some methods consist of the
study of different models formulated on different lattices
by resummation of the high-temperature series or Monte
Carlo renormalization-group calculations. These results
give evidence in favor of universality. Another class of
methods uses the framework of renormalized Euclidean
quantum field theory. In this case the critical exponents
are related to the anomalous dimensions of certain opera-
tors computed at the infrared stable zero of the P func-
tion of the corresponding field theory. The position of
this zero is of order @=4—co and one can employ pertur-
bative techniques in the vicinity of four dimensions.
One is, however, interested in computing at a=1 and
therefore resummation techniques are needed when com-
puting to suSciently high orders. Another possibility is
to work directly in three dimensions and employ resum-
mation methods to long perturbative series.

Recently, new methods have been proposed ' to com-
pute the critical exponents in the context of renormalized
quantum field theory. These new techniques are based on
stochastic quantization. This formulation of quantum
field theory has led to new regularizations of the theory.
One of them was introduced by Breit, Gupta, and Zaks'
and modified by Alfaro" to remove a dimensioned cutoff
in favor of a dimensionless parameter. A simi1ar
modification was introduced by us to the regularization
of Bern, Halpern, and Sadun. ' The methods of Refs. 7
and 8 are essentially identical, differing only in the fact
that they are based on the regularizations of Refs. 10 and
Ref. 11, respectively. The main purpose of this paper is
to extend the results of Ref. 8 to next-to-leading order.
These results are given in the next three sections, ~here
the method is reviewed for completeness. For a more de-
tailed account the reader is referred to Ref. 8. Finally,
the results and conclusions are collected in the last sec-
tion. Comparison with other methods and comments

upon further progress are also included. The main inter-
mediate computations are presented in the Appendix.

aa, (x, t) 5S= —Tp +( b) —~2(p(x, t) .
4p x, t

(2.1)

@p(x, t) being the stochastic scalar field in cp dimensions,
S the classical-action functional for this field, and gp(x, t)
the bare Gaussian stochastic noise

(g,(x, t)) =O,

(gp(x, t)gp(x', t') ) =2T,5(t —t')5' '(x —x'),
where 6 stands for the Laplacian and o. is a dimension-
less parameter.

The perturbative solution of Eq. (2.1) yields 4p as a
functional of the stochastic noise. Then, we define the
perturbative regularized Green functions as

G„, (x„.. . , x„)= lim ( 4p(x, t), . . . , 4p(x„, t ) ) .
f —+ oo

(2.2)

The value for the stochastic correlation functions can
be obtained from the usual nonregularized stochastic dia-
grams by substituting the ordinary crossed propagator
by the following one:

—K2( f —f') T

(g 2)++1 (2.3)

where everything else is unchanged. t and t' are the sto-
chastic times at the ends of the crossed line and K is the
momentum Sowing through it.

Let us choose an arbitrary stochastic diagram. As in

II. LANGKVIN EQUATION WITH
NONLOCAL NOISE TERM

In a previous papers following Ref 12 we gave a
modified version of Langevin equation which allows the
regularization of stochastic correlation functions for a
scalar field through a dimensionless parameter. This new
Langevin equation is
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S =fd.x,'a„e,(x, t)a„e,(x, t)+
,

C—',(x, t) (2.4)

any loop of this diagram there is, at least, one crossed
propagator, it is obvious that the uv behavior of the loop
can be improved by choosing a large enough positive o.
More precisely, considering (2.1) with the classical action
S

III. THE P FUNCTION
AND THE ANOMALOUS DIMENSIONS

This section is devoted to the computation of the P
function and the anomalous dimensions of the field 4 and
the operator 4 . Let us start with the function defined as

(3.1)

as our starting point, one may verify (Ref. 8) that the
overall degree of divergence D of a stochastic diagram
with E, outgoing or crossed legs and E; incoming lines is
given by ~0 ~RA Z2. (3.2)

Following the standard procedure, it is obtained from the
identity

D =(to —4—2o )L +6+2cr —(3+2tr )E; E, , — (2.5) where Zz has been computed to order A,a,

where L is the number of loops. Therefore, relying only
on power counting, the diagram is rendered ultraviolet
finite for some 0 ~0.

From now on we will work with both the cr complex
and the co complex and will assume that there is some
domain in these two variables where all the integrals are
well defined. These assumptions have been checked up to
the order worked out in this paper. Furthermore, at
o =o'=(co —4)/2= —e/2 the theory is strictly renor-
malizable by power counting. In fact, from (2.5), the
number of types of diagrams with D)0 is finite. For
E; =E,=1 we get D=2; for E, =2, E, =0, D =+a; and
for E; =1,E, =3, D=O.

In order to regularize the theory we introduce a new
parameter,

C) Cq
Zz ——1+ + 2 +O(p ),

P p
with

~R
C) =Ra 3R + ( —20+2Rq, +R~)

C2 ——3!—', R A,tt,
and 0, R@,R„and R are given by

F(1,2 —e/2; 3 —e/2; —1/3)
3(4—e)

F(1,1 e/2;2 e/2—; —1l3—)
4

(3.3)

(3.4)

p=2(0 —o'), (2 6)

so that the uv infinities of the above-mentioned theories
manifest themselves as poles in p. These infinities can be
reabsorbed by renormalization of the parameters in the
generalized Langevin equation (2.1},and, to do so, a MS
prescription (subtraction of the pole part from divergent
integrals) has been used.

Again, as in the previous case, there is no general proof
of these statements though they have been checked at the
three-loop level. Anyway, for a somewhat more general
discussion of the subject, the reader is referred to Ref. 8.

We conclude the section with the renormalized
Langevin equation

@R
Z, + T„Z(—h4„)

C}t

+ —,', (1—e/2) J,3

(4 )e/2 —2

R= I'(2 —e/2) '

(4m')' F(1, 1;2 —e/2; 1/4)
I (1—e/2) (2 —e)

1 (4m )'
2 I'(1 —e/2)(4 —e)(2 —e)'

X [(12—e )(2 —e)F(1,1;2—e/2; 1/4)

—2F (2, 1;2—e/2; 1/4)],

(3.5)

(3.6)

(3.7)

(3.8)

Aug

p +'T Z4 +Z( —b, )

((„(x,t)g„(x', t'})=2Ttt 5' '(x x'}5(t t'—), —

4g —Z~ 4 p& Z@—Z&ZZ i

Z& go Z& ZZ

TG —Tg Zf

)(o—Az(P)P Z&, Z& ——Z„Z Z, 'Z&,

(2.7}

(2.8}

(2.9)

J, 24f dx f dyx' '
y

'~ [(1—x)(3+x)
G G

—4x y(y —1)]

.(3.9)

and F is the hypergeometric Gauss function (for more de-
tails see the Appendix).

Substituting (3.3) in (3.2), one gets the P function to or-
der A,g,

where the scale p has been introduced to render A,z(p)
dim ensionless.

@~tt p}= p~z+&(~z»—
P(A„)=3R)(a+Att( 2Q+2Rq +Rt )

(3.10)

(3.11)
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Note that, as it should be, p(AR, p) is finite when p~0.
In fact it can easily be seen that up to A,z order,

~@R 20+a
+ TR Z( —~@R ) = —4R R R

which means that the double pole contribution vanishes.
Note as well that froin Eq. (3.10) one gets a fixed point
A, R of order p:

where

—TRZMMR4 „(x,t)

+( —&) "fR(x,t),

(3.19)

p 20 —2R @
—R,

+ 2

3R 27R
+O(p ) (3.12)

Mo =Z~2Mg ~ Z~2 =Z~Zr Z (3.20)

and this assures the validity of perturbation theory for
A, R =)(,R and p-0.

Let us go now to the subject of the anomalous dimen-
sion yz, (A,R,p), defined as

The computation of ZM to order A, R yields (see the Ap-
pendix for details)

where, according to (2.9),

ZZr Z 1

and

(3.13)

(3.14)

RR, R2 R aM
ZM —1+ +AR 2 2—

p p p

1 F(1,2 —e/2;3 —e/2, —1/3)
Qjg 4—e

+ —,'F(1, 1 —e/2;2 —e/2; —1/3),

(3.21}

a) a2
Z l + + + I ~ ~

p p

Z, =1+b, /p+b2/p +
Zi ——1,

~ ~ ~ (3.15)

and from (3.20) and (3.21) and the definition of y 2,

y@&——(u lnZ 2,
P

one finally gets

(3.22)

with a „a2, and b „b2 computed up to the three-loop lev-
el. As a2 and b2 do not contribute to the y+(A, R,p) func-
tion, only the expressions for a

&
and b

&
are given as

R,
y 2(AR )= ARR +BR —2R aM+ ——R~

2 2
(3.23)

al al ~R+a l ~R bl bl ~R+bl ~R
(2) 2 (3) 3 (2) 2 (3) 3 (3.16) and once again the double pole contribution vanishes. At

the fixed point A,R ——A, R

where a',2', a', ', b',2', and b', ' are collected in the Appen-
dix.

From (3.13) and (3.16) one gets
20 —2R@—R,

y 2(A,R)= —p/3+ 2R aM—
9R 3

y~(}(R,p) = —2~R(a'l' +bI" ) —3~R(b I"+a l" )

and taking into account (3.12)

2Rr+R~,
ye(~R ) =p'

9R

(3.17)
+ ——R@

IV. CRITICAL EXPONENTS

(3.24)

p3 2(20 R~ R(}(R(+Rq )
+ 27R' 3R

3(a(3)+b( )) (3.18)

Our aim is to apply the results of previous section to
the computation of critical exponents in three dimen-
sions. They will be obtained from renormalized quantum
field theory, in an analogous way to Ref. 4.

To begin with, let us define the critical exponents q, y
for general p, e:

Finally we will be concerned with the computation of
the anomalous dimension y &. For that purpose we add

to the classical action S appearing in Eq. (2.1) a mass
operator piece ,'Mo@0(x, t } Aft—er renorma. lization we

get

7/(p, e) =y~(A. R ),
P

y~z(&R )

y(p, e)= 1+
2 rt(p, e)—

(4.1)
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where the physical point corresponds to p= e= 1.
As we have just seen, perturbation theory allows the

computation of g(p, e) and y(p, e) in powers of p for arbi-
trary e T. hus, defining a new variable e=e +(1—e')p,
r/[p, e'+(1 —e')p], and y[p, e'+p(1 —e')] can be com-
puted as power series of p and, after that, the physical
limit p = 1 should be taken.

Bgz(e')
'r/phy~( e )= /rp( e }+r/3( e )+(1—6 } (4.2)

where

In doing so, Eqs. (3.18), (3.24), and (4.1) lead, after a
straightforward calculation, to

R, +Rg
r/2(e*) =

9R

1

27R
(e')= 2(20 —2Rq —R, )(R(+R~)

3(nI3)+b(3) ) (4.3)

1 1 1
+6+2 lg

2Q —2R+ —R,
2R aM — +—R, ——R

9R

where 0, R, R„R+, a'& ', b'& ', and a~ have been defined
in Eqs. (3.5)-(3.8), (3.16), and (3.21). It is worth noticing
that the above obtained expressions are a family of physi-
cal critical exponents, parametrized by e'.

V. CONCLUSIONS

One of the characteristic properties of our method is
that the whole procedure depends on an arbitrary param-
eter e'. It is natural to expect the best determination of
the critical exponents to lie in the vicinity of e' =1, since
in that case we lie closer to physical point e= l. Our re-
sults are shown in Table I and Fig. 1 for e' varying be-
tween 0 and 1.5 (at e' =2 our formulas become singular}.

Let us first consider the critical exponent y. The
lowest-order result is y= —', (independent of e'}. The
next-to-leading correction term is always positive and
varies slightly with e' in the region of interest. The best
estimate can be selected by choosing the value of e'
where the correction is smallest. The result is y=1.2313
obtained at e'=0.9. Notice, however that in the whole
region plotted, y only differs by 0.013.

For g the situation is very different. The next-to-
leading correction is, in general, very large. This correc-

I

tion is 10% or less of the leading-order term in a region
ranging from a*=1.125 to 1.16. Within this region the
correction changes sign from positive to negative. Our
best estimate r/=0. 035 comes from e"=1.143 where the
correction vanishes. Within the 10% correction region g
varies by +0.005.

Let us now compare our results with those of other
methods. The best results obtained up to now by
different techniques are y=1.239(3) and r/=0. 031(4). '

The results obtained with the e expansion to next-to-
leading order are y=1.244 and g=0.037. Relative to
the latter technique our estimates seem to be worse for y,
but better for g and even consistent with the best deter-
minations. The results obtained by series expansion only
become of better accuracy once care is taken with the
subleading confluent singularities predicted by the renor-
malization group. For comparison, we also show in Fig.
1 the result of Ref. 13. The error bar shown is due to nu-

merical errors in the evaluation of the integrals of that
method. One nice advantage of our method compared to
theirs (Refs. 7 and 13) is that the computations are sub-
stantially simplified.

We want to conclude this section with a few considera-
tions for possible future improvement. All the calcula-

TABLE I. g,h„, and y,h„, for some values of e*.

0.0
0.3
0.5
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

5.369x 10
5.087 X 10
4.496X10 '
4.227 x 10-
3.880X10 '
3.450 x 10-'
2.940 X 10-'
2.300x 10-'
1.480 X 10
5.310x 10-'

—6.92 x10-'
—2.38 x10

6.568 x, 10
5.068 x 10-'
3.991x10 '
2.733X10 ~

1.980X10 ~

1.080x 10
0

—1.370X 10-'
—3.180X10 2

—5.660x 10-'
—9.190x10 '

—0.144

9.080x 10-'
7.902X10 '
7.032X10 '
6.078 x 10-'
5.560x10 '
5.022 x 10
4.449 x 10-'
3.840x 10-'
3.192x 10-'
2.498X10 '
1753X10 2

9.504 x 10-'

gphys =gZ+ gZ+ g3
1

0.2101
0. 1805
0. 1551
0. 1303
0.1142

9.568 x 10-'
7.394x 10-'
4.771 X 10
1.491x 10

—2.629 x 10-'
—8.127X10 '

—0.1592

Vphys

1.2372
1.2347
1.2331
1.2319
1.2315
1.2313
1.2314
1.2318
1.2329
1.2343
1.2391
1 2AAA
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FIG. 3. Diagrams contributing to Z„.
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-0.1
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t2
e tt1 t2) -k ( t1 2)

t2

~-k 2)t1-t2l

() 2)~"

FIG. 1. The critical exponent g»„, as a function of e . The
curves (a) and (b) are, respectively, the contributions at the
three- and two-loop levels. (c) is the value given in Ref. 13.

tions done by now have been done by hand. If one wishes
to go to higher-loop orders one should rather employ
computers. Can one improve the result by computing to
one more loop order? In the case of the e expansion the
results to that order start departing from the best esti-
mates' according to the asymptotic character of the ex-
pansion. This may or may not be the case for the p ex-
pansion presented in this paper. Notice, for example,
that our results for y approach the best estimate from
below, while for the e-expansion case they oscillate
around it.

If higher orders are computed, resummation methods
will presumably be helpful. However, notice that one
does not substantially improve with respect to the next-
to-leading result in the case of the e expansion. Never-
theless, resumrnation methods are helpful in providing er-
rors bars to the truncated approximations.

In conclusion, we think that our result exemplifies the
usefulness of the Langevin equation regularization ap-
plied to a classical problem as that of the computation of
critical exponents. The accuracy of our best estimates is
very encouraging, and add to the large class of methods
which have been employed in this task.

TR ARP~
3I

-(Zt —1) Q

gt1
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APPENDIX

In this Appendix we show the main steps leading to the computation of the Z s that renormalize the Langevin equa-
tion to order A,z.

By writing Eq. (2.7) as

R
—4~(x, t)+T~( —5)4g(x, t) ( ——b, ) (a(x, t}

Ti, p~= —(Z, —1)—4~(x, t) TR—(Z —1)(—b, )C)tt(x, t) —, Z„4 (x, t)+(Z, —1)( b) —~ gtt(x, t), (Al)

and following the standard iterative process one easily
gets the stochastic diagrams and their counterterms.
From these diagrams and using the rules of Fig. 2, the
stochastic correlation functions can be obtained. The
divergent diagrams contributing to the four- and two-
point stochastic correlation functions, up to A, )(( and A,„,
respectively, are shown in Figs. 3 and 4. The counter-
terms are chosen in such a way that they cancel the pole
part of the uv divergences.

Once the subdivergences have been subtracted from di-
agrams (1)-(6) by adding diagrams 7 and 8 (see Fig. 3),
the only remaining divergence is a local one. The contri-
butions from the different diagrams are listed below:

diagram 1:

—A,g Tt(p (3A, t( TttlnfI) ),

diagram 2:

—A,s Ttt p~(3!A,tt TttinfIz),

diagram 3:

~)t Ttt p' ( 3~s Ttt infI3»

diagram 4:

—A, )((Ttt y~(3/2A, tt TttinfI4},

diagram 5:

—At( Tt( p~(3ktt TR infI& ),
diagram 6:

—A,a Ttt p~(3/2A, tt TttinfI6),

where

(A2)

infI )
——— 2, infI2 ——R

p'
1 1 1 F(1,2 —e/2;3 E/2; —1/3)—

2p2 p 6 4

infI3 ——infI2, infI4 ——— F(1,1 e/2;2 e/2, —1/—3), —1 R

p

infI5 ——infIz+infI4, infI6 ——— (1—e/2)J)3,1 R
6 4

(4 )e/2 —2

R=
f'(2 —e/2)

J 4 z y z 1 6/2y 6/2 1 z 3+z 4z 2y y 1
0 0

Adding (A2) and the lower-order contribution, one gets the value of Z„at the two-loop level

C& C2
Z =1+ + +

p p

with

C2=3!(—,'R A~), C, =3AttR —AsQ

and 0 given in (3.5).
The single pole contributions to Z coming from the diagrams in Fig. 4 are the following:

(A3)

diagram 1:

—A.g a3 (1)

diagrams 2 and 3:

g3 (g(2)+g (2))

(A4)



38 CRITICAL EXPONENTS AT THE THREE-LOOP LEVEL FROM. . . 313

where

g(I)
(4g )6—3e/21 3(2 p/2)

J~
(1 6—/2)+F(1, I e/—2;2 e/—2; —1/3)

y+%(1 6/2—) F(1,2 —6'l2;3 —6/2; —1/3)
18 27(2 —6/2)

(1—6/2) J3+1 1 8 1 F(1,2 —6/2; 3 —e/2; —1/3 )
(4~)6—3e/21 2(2 6/2)1 (3 ~/2) 24 81 2 —e/2

)&F(2, 1 —e/2, 2 —6/2; —1/3)

4 1 F(1,2 —6'/2;3 —6/2; —1/3)F(2, 1 —6/2;3 —e/2; —1/3)
81 (2 —6/2)

F(2, 1 6/—2; 3 6/—2; —1/3 )[1—y —%(1—6'/2) ]
2 1

27 2 —e/2
7

+ 4 F(1,1 —l2;2 —/2; —1/3) F(1,1 —e/2;3 —e/2; —1/3)
27 4

a'"= 1 J4
6(4m) ' I (1—e/2)I (2—e/2) 2 2

2 F(1,2 —6'/2; 3 —e/2; —1/3)
12—3e

2 8J6+ J7F(1,1 e/2;2 e/—2, —1/3—)4—e 12—3e

4
6—3e

JB F(1,1 —6/2;2 —6'/2; —1/3)

4 F{2, 1 —6/2; 2 —6'/2; —1/3 )
12—3e

arid

6{4~)6—3e/21 3(1

o 3+x (3+x)(1—x) '
o (3+x) (3+x)(1—x)

J4 ——f dy f dza(y, z)b(y, z)ln 2, J& ——f dy f dza(y, z)b(y, z),y'z (1—z)
o o A2{yz) o o

'2

J6=f dy f dza(y,z},J7=f dy f dza(y, z)
o o

'
2A, y, z '

o o
'

2A,(y, z)

Js= f dy f dza(y, z),

(y z} y( 1 )QE 2 /1( 1 z) /2z 6/2

b(y z)= 1—

A, (y,z)=1— +y z(1 —z),(1+y)'

1 —e e/2( 1 )
—e/2( 1 )

e—/2 1d —d g ( g )
—E/2( 1 )

—e/2 2+4/2—
2 4b
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m =z(1—8)+(1 —z)n—(1—z8)
4

x y(1 —y) 3+x
4

In an analogous way, for Z„

C"3.

diagram 1:

—A,ab(",

diagrams 2 and 3:

0,
(A5)

with FIG. 5. Diagrams contributing to ZM.

(])
(4~)6—3e/21 3(2 ~/2)

J2
(1 e/2)+—F(1,1 —e/2;2 —e/2; —1/3)

F(1,2 —e/2; 3 —e/2; —1/3) y+ 4(1—e/2)
27(2 —e/2) 18

Taking into account the previous results and the
lower-order contributions

a,Z=l+ +O(p '),
P

grams that contribute are shown in Fig. 5. Their contri-
butions are

diagram 1:

Z, =1+ +O()o- ),
P

where

a] =a ] gg +a ] gg b] —gRb ] +$ ] Jpi„g
(2) 2 (3) 3 2 (2) (3) 3

(2) ta] ———,b]
2

'
2

a(3) (a(l)+a(2)+g (21) b(31 b(1)a] ———a a

(A6)
A,„infI2,

diagram 2:

A.z infI5,

diagram 3:

2 Ag infI

diagram 4:

(A7)

According to (A3) and (A6), and after some algebra,
one obtains (3.3). The contribution to the renormaliza-
tion of Langevin equation of diagrams with E; =2EO ——0
is zero because they are finite when a&0. Thus, Z, = l.

Finally, we compute Zst as defined in (3.19). The dia-

A, tt infI1,

where the meaning of infI], infI2, infI4, and infI5 has
been given before. From (A7) and the lower-order result
quoted in Ref. 8, one easily obtains (3.21).

'For an early introduction to the subject see H. E. Stanley, In-
troduction to Phase Transitions and Critical Phenomena (Ox-
ford University Press, London, 1971). For more recent exper-
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