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Diffusion path and Haven s ratio of mobile ions in a-Ag2Te

M. Kobayashi and K. Ishikawa
Department of Physics, Niigata University, Ikarashi, Niigata 950-21, Japan

F. Tachibana
Information Processing Center, Niigata University, Ikarashi, Niigata 950-21, Japan

H. Okazaki
Department of Genera! Education, Niigata University, Ikarashi Niigata 950-21, Japan

(Received 9 December 1987; revised manuscript received 24 March 1988)

A molecular-dynamics method is applied in a study of silver diffusion in superionic conductor
Ag2Te for several temperatures with use of effective pairwise potentials. The static and dynamical
structures are calculated. The density distribution map of silver ions suggests that a Ag ion, located
at a tetrahedral site for most of the time, moves to a neighboring tetrahedral site via the vicinity of
an octahedral site —a result which is consistent with the explanation of Haven s ratio proposed by
Okazaki. The activation energy for a ionic diffusion also is obtained from the Arrhenius plotting of
the self-diffusion coeScient of Ag+.

I. INTRODUCTION

Superionic conductors are characterized by their high-
ly ionic conduction compared with that of a liquid elec-
trolyte. Many electronic and ionic properties, such as the
conductivity, Hall coefficient, and thermoelectric power,
and galvano-magnetic and therrnomagnetic behaviors, of
the superionic conductor a-AgzTe have been measured
by Miyatani. ' To explain many of the above-mentioned
experimental observations, Yokota has developed a mac-
roscopic theory of mixed conduction which includes elec-
tronic and ionic conduction. He also proposed a theory
of a caterpillar mechanism of mobile ions in the superion-
ic conductors to interpret the remarkable deviation from
the Einstein relation in silver chalcogenides, which was
observed by one of the present authors. Many authors
have tried to construct realistic models to explain the
characteristics of superionic conductors. The major
difficulty in so doing is to determine a way to take into
account the anharmonicity of lattice ions. Inclusion of
the effects due to collective motion of mobile ions is even
more difficult.

Recently, molecular-dynamics (MD) calculations have
been used for the study of condensed-matter systems.
Rahman and Vashishta have succeeded in describing the
nature of ionic motions in AgI and CuI using MD tech-
niques.

We have studied structural and dynamical properties
of the superionic conductor Ag2Te using MD simulation.
The MD method provides us a microscopic picture of the
diffusion process of silver ions in a system. The calcula-
tions presented are based on the assumption that
Newton's equation of motion with a two-body central-
force interaction can give a reasonable description of the
motion of ions in a-Ag2Te. In practical computations,
the following restrictions are imposed: (l) the interaction
potentials have to be restricted to the main terms, namely

the soft-core repulsive interaction and Coulomb interac-
t'ion, and (2) the number of particles in the systetn has to
be kept rather small, as for a 324-particle system.

II. METHOD OF COMPUTATION

The soft-core repulsive potential is quite important in a
description of the thermodynamic properties of inert
gases, alkali metals, and alkaline-earth metals. This po-
tential also plays an important role in characterizing the
dynamic properties of a high-density monatomic classical
liquid. When we consider the superionic conductor sys-
tem, we have to include the Coulomb potential in addi-
tion to the soft-core potential. For Ag2Te we use the fol-
lowing effective pairwise potential:

4;J(r)= A,I
O'I. +O'J.

It

ZIZJ e
+

where i,j describe the type of ions, A; the repulsive
strength, o.;,crj the particle radii, z;,z the effective
valence, and e the elementary charge. We assume
A; = A. The values of oT, and sr~ are determined so as
to avoid the overlapping of ions, that is, these are defined
as follows:

A =0. 1 eV, zTe= —2z~g= —1. 1 .

cr T,+o T,——Te-Te nearest-neighbor distance,

o.T,+o.
~z

——Te-Ag nearest-neighbor distance .

If the fcc lattice constant is taken to be 6.6 A, we get
o.T,——2.21 A and o.~g=0. 65 A, assuming the Ag posi-
tions to be the tetrahedral sites of the fcc lattice. We take
n =7 so as to realize the crystal stability overcoming the
van der Waals potential, which is not included in Eq. (l),
for the particle contact. The values of other parameters
used are as follows:
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These values are chosen so as to reproduce the diffusion
constant at 550 K and the ionic conductivity of AgzTe
measured by Miyatani' and Okazaki. The simulation
gives reasonable values for the cohesive energy U,
compressibility ~, and elastic constants C», C, 2 as fol-
lows:

55IIK
II

850K I

Te Te

U =46.4 kcal/mol,

K=5.71 && 10 " cm'/erg,

C» ——1.74X 10» dyn/cm

C]2 =0.235 X 10» dyn/cm

The calculations were performed on a 324-particle sys-
tem in a cubic cell 19.8 A long in which the Te ions form
a fcc lattice with the lattice constant 6.6 A. Coulomb in-
teractions were calculated with use of the Ewald summa-
tions. ' The integration time step was 9.3X10 ' s. In
order to avoid the surface effects, the usual periodic
boundary conditions were imposed on the system. The
calculation was initiated by allocating the Te ions on the
fcc lattice points and the Ag ions on the tetrahedral sites.
Since we did sufficiently long initial aging, of the system,
namely 1000 time steps, the starting conditions have no
effect on the results reported here. For the calculations
of the average quantities of interest, 12000 time steps
were performed. The calculations were carried out for
several temperatures.

III. RESULTS AND DISCUSSION

Te—Ag

2- 1

I

I

I

I

I

I 4 I

Ag-Ag

FIG. 1. Radial distribution functions at two temperatures,
550 K (solid line) and 850 K (dotted line). The transverse axis is
scaled by the lattice constant a.

A. Radial distribution functions

For a one-component system, the radial distribution
function g(r) is related to n (r)5r, the average number of
particles at distances between r and r +5r from a given
particle, by

g(r)=—V n(r)
N 4~r' '

where V is the volume of the box containing the N parti-
cles and n(r) is the number density. The extension of
this definition to the partial radial distribution functions
for our system is obvious, e.g. , gz, ~s(r) is defined by
placing a Te ion at the origin and restricting n (r) to Ag
ions. A similar definition is given to g~s ~s(r) and

gr, r, (r) These radia. l distribution functions, gz, z, (r),
gr, ~s(r), and g~s~s(r), are shown in Fig. 1 at two
diFerent temperatures, 550 K (solid line) and 850 K (dot-
ted line). From these figures we see a proper
configuration of ions, namely, the Te ions from a well-
defined fcc structure and the Ag ions are distributed in
liquid as at tetrahedral sites.

B. Density distribution of Ag ions.

Since the Te ions form a well-defined fcc structure, it is
reasonable to use its lattice as a reference frame to see the
position of the Ag ions. The most interesting region is a
(110) plane of the lattice and the presence of Ag ions in a
block of thickness &2a/16 (=0.58 A, a is the lattice con-

stant). The block is shown in the solid lines in Fig. 2 and
is divided into 32 X 32 rectangular pieces with the
(&2a/32)&((a/32) as shown in Fig. 2. The number of
Ag ions included in each piece is calculated and is aver-
aged over time. Points 8 and C are the tetrahedral and
the octahedral site, respectively. The Ag-ion density dis-
tribution on the (110) plane at 850 K is shown in Fig. 3.
A, 8, C, D, and E express the corresponding positions
shown in Fig. 2.

Figure 4 shows the Ag-ion density distribution on the
( —,00) plane. The Ag-ion distribution at point E is zero.
Then the migration of Ag ions does not take place
through point E, i.e., Ag ions do not move from one
tetrahedral site to another directly.

Figures 3 and 4 suggest that Ag ion stays at the
tetrahedral site for most of the time and moves to its
neighboring tetrahedral site through the vicinity of the
octahedral site. The calculated Ag distribution supports
the jump-diffusion mechanism of cations along the wavy
lines consisting of alternating tetrahedral and octahedral
sites in the (110) plane, as suggested by Okazaki. This
result is compared with the x-ray data.

Koto, Schulz, and Hug gins' have made x-ray-
diffraction measurements on PbF2. They have found that
the diffusive F ions left from one of the tetrahedral sites
through the tetrahedral faces and moved through the oc-
tahedron in the center of the unit cell and then returned
to a tetahedral site. There was no pronounced local po-
tential minima along the diffusion path of F ions. Our
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~
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where the time averaging ( . ) is to be understood as
an average over time and the summations are over either
anions or cations. The mean-square displacement was
calculated for Te and Ag ions and is shown in Fig. 5 for
several temperatures. The MSD of Ag ions increases
with time, whereas that of the Te ions remains nearly
constant. The linear regions in the functions (r (t))
may be related to the diffusion coefficients D by the
well-known equation

f0

6—

(r'(t)) =6D r+C, , (4)

DAg Doe

Here, Do is a constant with the dimension of the diffusion
coefficient and kz is Boltzmann's constant. The quantity
c denotes the activation energy for an ionic diffusion.
From the gradient of the straight line of lnD~g with Eq.
(5), an e value of 0.17 eV is obtained, which is in good
agreement with the experimental value, 0.14 eV.

where C is a constant term. The large-time behavior of
the MSD shows that Ag ions have a large liquidlike self-
diffusion coefficient. The asymptotic value of the MSD of
Te ions is a measure of the Debye-Wailer factor. From
the gradient of the straight line in Fig. 5, the self-
diffusion coefficient D~g of Ag ions is obtained for each
temperature. These are shown in Fig. 6 with experimen-
tal results. The temperature dependence agrees well
with experiments.

When we plot lnD~ against 1!T, we see that it has
Arrhenius-type behavior with a straight line. Then we
can express the diffusion coefficient as follows:

B (5)

1200

T(K)
FIG. 6. Temperature dependence of the self-diffusion

coefficient D«of Ag ions. The MD results and experimental
values (Ref. 8) are shown by the open circles and solid circles,
respectively.

D. Velocity autocorrelation function

The normalized velocity autocorrelation functions for
anions and cations are de6ned as

N

(v;(t) v;(0))

y (v;(0) v;(0))

a=+ . (6)

The Fourier transform 4 (co) of the function 4 (t) is
given by

4 (co)= f 4,(t)e' 'dt .
0

(7)

t(ps)
FIG. 5. Mean-square displacements of Ag ions (solid line)

and Te ions (dotted line) at (1) T =850 K, (2) T =750 K, (3)
T=650 K, and (4) T =550 K as a function of time.

Then the self-diffusion coefficient D may also be related
to the velocity autocorrelation function (VAF) by

k~T „k~T
D = f 4 (t)dt= 4 (co=0) .

M o a

The VAF's of the Ag and Te ions are shown in Fig. 7. It
is quite characteristic that the VAF of Te shows a larger
oscillating behavior than that of Ag. These reAect that
Te ions retain their vibrating motion around the lattice
sites, whereas Ag ions do their diffusive motion in a crys-
talline cage.

The Fourier transforms N (co) are shown in Fig. 8.
When the value of @As(co=0) is inserted into Eq. (8), we

get 1.15(1.13)& 10 ~ cm /s at T =550 K and
4.70(4.62) && 10 cm js at T =850 K as the self-diffusion
coefficient D~ . The numerical value in the parentheses
corresponds to that obtained from the MSD. The two
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FIG. 7. VAF s of Ag ions (solid line) and Te ions (dotted line)

at T =550 K (bold line) and T =850 K (thin line).

t( ps)
FIG. 9. Current-current correlation functions at T =550 K

(solid line) and at T =850 K (dotted line).

defined by

methods give more or less the same value. The numerical
value of the diffusion coefficient obtained by
differentiating MSD is more reliable than that obtained
by integrating the VAF because of the truncation in the
upper limit of the integral.

(J(r).J(0) )
(J(0) J(0)&

where J(t) is the charge current given by

NA NT

J(t)=e g z~sv, (t)+ g zT, v, (t)

(9)

(10)

E. Current-current correlation function

In order to obtain the ionic conductivity, it is necessary
to calculate the current-current correlation function.
The normalized current-current correlation function is

+(t}and its Fourier transform %(co) are shown in Figs. 9
and 10. The ionic conductivity a(co} is given by the
Kubo formula as follows:

e(co)= f ( J(t) J(0) )e'"'dt,
3Vk~ T o

gag /
g
I l

~ (1Q rad zs)
FIG. 8. Fourier transform of VAF's of Ag ions (solid line)

and Te ions (dotted line) at T =550 K (bold line) and T =850 K
(thin line).

I I I

~ (1Q' rad/s )
FIG. 10. Fourier transforms of current-current correlation

functions at T=550 K (solid line) and at T=850 K (dotted
line).
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FIG. 12. Calculated temperature dependence (circles) of
Haven's ratio are plotted with experiments (Ref. 3) (solid cir-
cles).

FIG. 11. Temperature dependence of static ionic conductivi-
ty o(0), shown by circles. Experimental values measured by
Miyatani (Ref. 1) (squares) and Okazaki (Ref. 8) (solid circles)
are also shown.

tors. Figure 10 gives 82 cm ' the transverse-
optical-phonon frequency.

IV. CONCLUSIONS

DAg
(12)

Here, D is the diffusion constant obtained by using the
Nernst-Einstein relation, is written as

kq Tcr(0)
D

Ag (ZAge )
(13)

where n A is the Ag-ion density, N&g /V. We show
Haven's ratio in Fig. 12 as a function of temperature.
Experimental values of Okazaki are also plotted. The
MD results agree well with experiment. The difference
from unity in Haven's ratio implies that this system has a
deviation from the Nernst-Einstein relation.

The peak of tr(co) is attributed to the transverse-
optical-phonon mode in a-AgI-type superionic conduc-

where V is the volume. The temperature dependence of
static ionic conductivity o (co=0) is obtained, as shown in
Fig. 11, with experimental values. ' The tendency of
temperature dependence is in good agreement with exper-
iments.

Next we calculate the Haven's ratio HR, which is
defined by

We have done the MD simulation for the superionic
conductor a-AgzTe. Calculated quantities such as the ra-
dial distribution functions, the density distribution of Ag
ions, the self-diffusion coefficient of Ag ions, DA, the
ionic conductivity, Haven s ratio, and the activation en-
ergy are in good agreement with experiment. These facts
ensure the validity of the present model of a-Ag2Te we
are dealing with.

Finally, we emphasize that the Ag ions in AgzTe do
not jump from tetrahedral site to tetrahedral site directly
on the ( —,'00) plane, but jump from tetrahedra1 site to
tetrahedral site through the vicinity of the octahedral site
along zigzag paths.
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