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Upper critical magnetic field of superconductors with a dielectric gap on the Fermi-surface sections
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In the framework of the model describing a superconductor with a dielectric gap on the Fermi-
surface sections, the equation for the upper critical magnetic field 0,2(P in the dirty limit is ob-
tained and solved. It is shown that due to the electron spectrum dielectrization, the quantities

H, 2(0) and [ ~
dH„/dT

~ ]r r increase and the curvature [d H,z!dT']r r may become positive.
c C

These results are in good agreement with experimental data for a number of substances with charge-
and spin-density waves, e.g., Chevrel phases, layered transition-metal dichalcogenides, antiferro-
magnetic organic metals (TMTSF)2X, Crl, Re„alloys (where TMTSF is an abbreviation for
tetramethyltetraselenafulvalene), and the heavy-fermion superconductor URu2Si2.

I. INTRODUCTION

Recently it became clear that for a number of impor-
tant (especially high-field} superconducting materials the
temperature dependence of upper critical magnetic field

H, 2 is substantially different from the dependence of Wer-
thamer, Helfand, and Hohenberg' obtained by them in
the framework of BCS theory. Namely, in a wide-
temperature region starting from T = T, (the latter being
the temperature of superconducting transition when the
magnetic field H =0) the curve H, 2(T), contrary to Ref.
1, possesses zero or even positive curvature. Here are
some superconductors with d H,2!dT )0: ternary
molybdenum chalcogenides (Chevrel phases) ' layered
group-V transition-metal dichalcogenides '; NbSe& (Ref.
7};oxide systems Rb„WOs (Ref. 8}, and BaPb03-BaBiO&
(Ref. 9); A 15 compounds Nb3Sn and VsSi (Ref. 10); pseu-
doternary boride Ho(Iro iRho s)4B4 (Ref. 11); heavy-
fermion superconductor URu2Si2 (Refs. 12 and 13); low-
dimensional organic superconductors (TMTSF)2X (Ref.
14), and p-(BEDT-TTF)213. '

Various explanations of this fact have been proposed.
But their applicability was confined in every case to a
definite class of superconducting materials. In particular,
anomalies of H, 2(T) may be caused by macrostructural
distortion in superconductors with low dimensionality, '

Fermi surface (FS), and order-parameter anisotropy, ' '
compensation of the external magnetic field by localized
magnetic moments, ' size effect in layered or granular
systems with Josephson coupling between constitu-
ents, ' ' enhancement of the Coulomb pseudopotential
p* in weakly "' and strongly " ' disordered metals due
to Altshuler-Aronov effect, magnetic-field influence on
the diffusion coeScient in the vicinity of the Anderson
transition, fluctuation renormalization of the coherence
length, and bipolaronic mechanism of superconductivi-

24

At the same time most superconductors with devia-
tions of H, z(T) from the BCS behavior' show a partial
dielectrization of the electron spectrum. Namely, the FS
of such superconductors involves sections with nesting.
There electron and hole branches of the quasiparticle
spectrum are degenerate [see Eq. (7)]. The degeneracy
disappears when a structural or an antiferromagnetic
phase transition occurs, so that a dielectric gap X
emerges on the formly degenerate FS sections.

The coexistence on the FS sections of a superconduct-
ing gap and a spin-singlet dielectric gap X was discovered
in Chevrel phases, ' layered transition-metal dichal-
cogenides, the quasi-one-dimensional metal NbSe3, the
bronze Rb„WO3, solid solutions BaPb, Bi 03,
Laves phases, and 315 compounds. Unlike Chevrel
and Laves phases where the dielectrization is accom-
panied ' by a negative-temperature coefficient of resis-
tance R, the curves R ( T) for the compounds Nb3Sn and
V3Si with A 15 structure involve only cusps when T is
equal to the temperature Td of the structural transition.
The latter is the Peierls-type transition in A 15 structures
and leads to the easily measured tetragonal distortion e,
of the crystal lattice, the quantity e, being proportional
to the dielectric gap X. Weak manifestation of the gap-
ping effects here is due to the small portion of the dielec-
trized FS sections. This conclusion is testified by a small
enhancement of T, (=0.3 II } in V3Si after the structural
transition is suppressed technologically.

On the other hand, superconducting transition in
metals with spin-triplet dielectric gap X is observed
in Ho(Ir„Rh, „)4Bz (x )0.6), ' Cr, „Re„alloys (x
)0. 18}, organic conductors (TMTSF)2X (X=AsF6,
PF6, C104), ' ' ' "and URu2Si2.

No doubt, the development of the dielectric gap on the
FS sections should influence the electromagnetic proper-
ties of superconductors. The effect of electron-spectrum
degeneracy on H, 2( T} in a simplified quasi-one-
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dimensional model with a complete dielectrization of
electron spectrum was considered earlier for spin-density
waves (SDW) (Ref. 35) and charge-density waves
(CDW). Unfortunately, in our view the main results of
these papers are erroneous. This statement can be easily
proved if one notes that the corrections to the elec-
tromagnetic kernel obtained there are proportional to
(X/EF) (SDW case } or (X/EF) (CDW case ), where

EF is the Fermi energy. They cannot be taken into ac-
count in principle by the BCS-type theory. ' The
correct calculation of H, 2( T) in the same quasi-one-
dimensional model for a SDW superconductor with Neel
temperature Tz & T, was carried out in Ref. 37. In con-
trast to the work of Ro and Levin, the present work in-
volves the model of more realistic partial dielectrization
rather than the full one. Moreover, we study the case
T~& T„whereas in Ref. 37, T, & Tz. Finally, the upper
critical field of CDW superconductors is considered here
as well as the critical field of antiferromagnetic supercon-
ductors. Only the latter case was studied in Ref. 37.

In this paper the dependence H, 2(T) is calculated
analytically in the limiting T regions [T~O and
(T —T, )/T, « 1] for the model of partial gapping2s 3s

for superconducting anisotropic metal with CDW or
SDW in a most realistic case when X is much greater
than T, in agreement with the experiment. It is shown

that electron-spectrum dielectrization always leads to in-
crease of H, 2(0) and the slope

~
dH, 2/dT

~

near T, in

comparison to the BCS theory. ' For certain values of the
model parameters the quantity d H, 2/dT can change its
sign. Our treatment is quite different from those (Refs. 5,
7, 16, 17, 19—22, and 24) described above and has the ad-
vantage of making possible the consideration of elec-
tromagnetic properties of various types at first glance,
unlike superconductors from the unified point of view.

The plan of the paper is the following. In Sec. II, using
the anisotropic metal model due to Bilbro and McMil-
lan, we obtain the self-consistency equations for a su-
perconductor with nesting sections on the FS in the pres-
ence of the magnetic field. The electromagnetic kernel
taking into account various impurity scattering processes
in the "ladder" approximation is calculated in Sec. III.
The dependence H, 2 versus T provided that T~0 or
T~T„ is obtained in Sec. IV. Finally, Sec. V contains a
discussion of the results and comparison to the experi-
mental data. Short letters with some results of this paper
were published previously.

II. SELF-CONSISTENCY EQUATIONS

The Hamiltonian of the electron subsystem in the pres-
ence of impurities and external magnetic field H has the
form (R=kz ——1):

4= g fdr[&; (r)e;(P)g; (r} p~(a H) —
&P; (r)P,&(r)]+ g V, & fdrat (r}gt&(r)g &(r)PI (r)

a, p, i

+ g fdr fdr'gt (r)W; ~(r, r')g &(r') .
a,p

a,p
i,j,l, m

Here P;,(r) and f; (r) are the creation and annihilation operators of an electron in the ith band with spin projection
a= —,

' at the point r, p~ is the effective Bohr magneton, o are Pauli matrices, V;, and W; (r, r') are matrix elements
of the contact interaction (including electron-phonon as well as Coulomb contributions) and the electron-impurity in-
teraction, respectively. The quantity

(2)

is the electron energy in the ith band. The following notations were introduced in Eqs. (1) and (2): p is the chemical po-
tential, 't=p —(e/c) A(r) is the generalized momentum operator, A is the vector potential, e is the electron charge, c is
the light velocity, and m; is the quasiparticle mass in the ith band.

The Dyson-Gor'kov equations for the normal G; (r, r', co„) and anomalous F; (r, r';co„) (nonzero-) temperature
Green's functions of a superconductor in a magnetic field, have the form [co„=(2n+ 1 }n T]:

[i co„—e;(P)]G;J.~(r, r', co„)+g ps(o" H)~„G,rj.~(r, r', co„)
y

—g fdr"[X, (r,rr")+ W, r(r, r")]Gg(r",r', co„)+ g fdr" 6, (r~, r")Ft"~(r",r', co„)=5(r—r')5,,5 &,
m, y m, y

[iso„+e;(& )]F;, ~(r, r', co„)—g p~(cr H) ~F~i~~(r, r', co„)
y

+ g fdr"[X,'. (r, r")+ W, ~(r, r")]F .~(r",r', co„)—g fdr"b; r(r, r")Gr~(r", r', co„)=0 .

(3)

(4)
m, y m, y

The normal X;~(rJ, r') and anomalous 5,. ~(rJ, r') self-energy parts are determined by the self-consistency conditions,
which in the considered case of contact interaction take the form
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X, ~(r)=T+g V, & GPg(r, r;co„)—5 &V, i+Gg(r, r;co„)
co I m

(6)

To describe the superconductors with a partial dielectrization of the electron spectrum, we use the Bilbro-McMillan
model, ' for which the dielectric gap X&2~ appears on that FS section, where the nesting condition for the electron-
and hole-spectrum branches is fulfilled:

ei(p) = —e2(p+ Q) =—e(p) .

The vector Q determines the period of the emerging CDW or SDW. On the rest of the FS the quasiparticle spectrum
ei(p) is nondegenerate. The following treatment will be carried out in the approximation of strong mixing of states
from the difFerent FS sections, when

V„;;= V, ;JJ
= V,;~3:——V&0 (i,j =1,2} .

As a consequence, a single superconducting order parameter b, develops on the whole FS. We regard its spin structure
as singlet in agreement with the experimental data available so far. On the other hand, the spin structure of the dielec-
tric order parameter matrix f. ,t may be either singlet or triplet for the existing substances, as was specified in Sec. I.
Then

2,2
——X[&o(1—a)+a&,],

where a =0 for the spin-singlet dielectric gap (CDW) and a =1 for the spin-triplet one (SDW).
In order to determine the upper critical magnetic field H, 2(T) in the self-consistency equation (6), it is enough to re-

tain only the terms linear in 5, so that the equation for b, taking into account Eq. (4), reads

b,(r)= VT g )dr'[2G~if(r, r', co„)G»~' ~(r, r', —co„)+2G ~&~(r, r', co„)G 2i~ ~(r, r', —co„}

+G 33(r, r', co„)G 33 (r, r', —co„)]b(r') .

Here G; ~(r, r';co„) is the normal metal Green's function in a magnetic field.
After the extraction of the standard exponential factor, the expression for the function G; ~ takes the form

G;"~(r,r';co„)=GJO(r, r';co„)exp i f 'A(s) —ds
C r'

(9)

where G,g(r, r';co„), according to Eq. (3), satisfies the equation
'2

i co„— p+ —(r —r') x H +p G, 0(r, r';co„)
2m] C

+ +Pa(cr H) „Grio(r, r';co„)—g Jdr"[X;r(r, r")+ W; r(r, r")]G,p(r", r';co„)=5(r—r')5 P; . (9a)
r my

The quasiclassical approximation consists in dropping the diamagnetic term in braces, which is suggested to be small.
It is valid until the penetration depth A,(T) of the magnetic field and the coherence length g(T) are much less than the
cyclotron radius r, . All the materials of interest for us are type-II superconductors. Thus in order to estimate the va-
lidity of the quasiclassical approximation for CD% and SDW superconductors it is enough to look at the relationship
between r, and )i.( T). First of all, note that even for the highest-field superconductors with H, i & 600 kOe (Ref. 30) the
diamagnetic corrections to the equations for Green s functions, which lead to the Landau quantization, are
insigni6cant, because eH, 2/m *c && UF/I. Here m * is the effective electron mass, vF is the Fermi velocity, and I is the
mean free path. For example, for PbMo6S8, where H 2 =600 kOe, i =.20 A, v~ = l. 6)& 10 cm/s, and m ' = 1.3m 0 (mo is
the free electron mass) we have eH, zl/m'cvF =10 « l. On the other hand, as was shown in Ref. 44 in the case of
highest possible contaminated or disordered superconductors, the quasiclassical approximation for large fields should
be used with caution. This remark does not concern the most interesting for us Ginzburg-Landau temperature region
near T„where H, 2(T)=—(1 —T/T, ) [see below, Eq. (37)], and A,(T)=(1—T/T, )

'~ . Then

A, (T) r/, ( H, i=}he(T}H,i(T)/m'vFc~0 .

At the same time, when T « T, the required relationship between r, and A,(0) is fulfilled with difiiculty, e.g. , for the
above-mentioned ternary compound PbMo6$s with T, =12.6 K we have r, =2X10 cm, and A,(0)=1.3&(10 cm.
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But fortunately, just in this temperature region the anomalies of the curve H, z( T) that we want to explain disappear al-
together. This behavior is reproduced in our theory as well [see Eq. (38}].

After the substitution of Eq. (9), Eq. (8) is transformed to

h(r)= VT g )dr'Kf ~(r —r', co„)exp[i(r—r')II]h(r) . (10)

Here

II =i V+ A(r),
C

Kp' (r —r', co„)=2[6))o(r—r', co„)G)ip' (r —r', —co„)+G)3O(r—r', co„)G3(p' (r —r; —co„)]

+G33p(I r co }G33O (r—r'; —co„)

2Kd~—jp (r r con )+Kndo (12)

The quantity EPO' P is the integral equation kernel in which the correlations inside an electron pair due to the multiple
scattering by the same impurity are not yet taken into account. Provided the Fourier transform of the kernel EPO' P is
introduced, we obtain from Eq. (10) the following differential equation:

1 —VT gKz~' ~(q= —II;co„) b,(r)=0 . (13)

III. CALCULATION OF COOPER PAIR PROPAGATOR
WITH THE ALLOWANCE FOR MULTIPLE IMPURITY SCATTERING

The unrenormalized pair propagator Ko(q) actually has to be replaced by the full kernel K(q) including contribu-
tions from the multiple scattering by one impurity. Our model is three dimensional, so we treat the impurity scattering
in a "ladder" approximation and neglect the localization corrections from maximally crossed diagrams and correc-
tions due to the interference of the electron-electron interaction and elastic impurity scattering. "" Furthermore, we
ignore also the interband impurity scattering and obtain

K~ ~(q;co„)=2Kg' ~(q;co„)+Kid ~(q;con ),
Kd' (nd)( q~n }'dip(ndp)( l ~n )[1+ d (nd)Kd' (nd)('q ~n )+ d (nd)Kd (nd)('q '~ }lp —p ~ p, —p p. —p —p.p

where

(14)

1 1 1

n Nd (0) rpd 3rLd'

1

3H„

2 1

3nNd(0) ex
(16)

1 1 1 1
b„d ——

3rnd ' " 3n N (0)ex nd nd ex

1 1 1

2mN„d(0) gPd 3+d'
J

Here Nd(0) and N„d(0) are the electron densities of states on the degenerate and nondegenerate FS sections; ~d („d),
rLd'(„d), r,„(" ' are the elastic relaxation times due to the nonmagnetic, spin-orbit (s.o.), and magnetic scatterers for the
same sections. (The explicit forms for rd (nd) can be found in Ref. 41.) In Eq. (16) a possible magnetic scattering anisot-
ropy was not taken into account. This approximation is valid for CDW superconductors (a=O}, if the paramagnetic
limitation of H, 2 is unessential, i.e., the paramagnetic limit H~ is much larger than H, 2. As to the antiferromagnetic su-
perconductor (a= 1), it is really characterized by four magnetic relaxation times r,„I(""',r,„)(" ', but in the case when
H &&H,3 the final results of the theory contain only isotropic quantities 1/r, „'" '= 1/rl, „t(""'+ 1/~, „~" '.

In order to calculate the kernels Kp(q;co„) and K(q;co„), we make use of the electron normal state Green's func-
tions ' for a Bilbro-McMillan model

(co „*)'+e'(p)+X' (co „+-)'+e'(p)+&'
(17)

g tt (Li) [1 1 2a] G(t (li)
iQ „*—e3(P}

Here co „* and 0 „* are renormalized by the impurity scattering and the paramagnetic effect Matsubara "frequencies" for
electrons from degenerate and nondegenerate FS sections, respectively. In the most important and realistic case when
X &&T, and, moreover, X is the largest energy parameter of the problem, the quantities co „+—and 0 „+—have the form
(a=0;1}:
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1 1 1 1 ~. 1
N n =COn 1+ 0 + + ~ klh 1+

+d ' d ~ex n ' +d20
1 1

3rd' 2Q„
:—con +lh (18)

1 1 1 1Q„—= Iro„ I+— +,+
md nd rex

Q„=(co„+X)', h =ppH .

sgnco„+ih —=0„+ih, (19)

(20)

We substitute into Eq. (12) the explicit form of Green s functions (17) with allowance for Eqs. (18)—(20) and carry out
the expansion in small parameter qipF. So, taking into account that the typical nonlocality scale in BCS theory is
much larger than an atomic one —1/pF, where pF is the Fermi momentum, we obtain the expressions for K„d0 and
Ed~'0 ~. Since all the superconductors suitable for application of our theory are type-II dirty superconductors, the fol-
lowing calculations will be carried out in the so-called "dirty" limit, when qvd ~„dpd, „di ((1. Here v„d(vd ) are the Fer-
mi electron velocities for nondegenerate (degenerate) FS sections, and

~d (nd)

1 1 1
0 ~.o. ~ (nd)

~d (nd) id (nd) ~ex
(21)

In this case the solution of Eq. (15) for the kernels Ed, E„d taking into account the expressions for K„do and Kdo has the
form

2

&nd =~&nd(0) I~n I+ . + „,+
2 1 Dndq

3r'„d' 3r,"d

2 2

nd 3+ex

2iPh —sgnro„

3''
1

'2' —1

3~nd
ex

(22)

nod(0) aX P„p@f3 —P 1—
14"p I

'
1 1 1 1

2 rod 3r'd' 3r,„

aX P„p Ddq1—
I ((.p I

' 4&"d
2iPy—„

1 1 1
X 4n —

2 0+
7d 3

2

Ddq

3r,„4p„rdd +

X 1+aX

1 1

3r" r. —( — )
ex

1
4n 0

~d

Ddq

6~' + 6~„+4y ~

3T"d

1

3H„

2
'

2 2

1 —2 X
14'.p I

'

+—aX — +1 4 1 1 1

4
1 1 1+

rd ~d ~ex
I k.p I

T

+y'„ I+2aX', + . — 4. 14.p I

rd 3+d ex

(23)
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Here

2+2
P——„+2igy„, $„=($„+X )' 1—

2(co„+X )
(24}

heny„= 1+
(
—2 +X2)1/2

h X

2(g 2 +X2)2

D«[d] ———,'U„d [d]~nd [d] are the diffusion coefficients for electrons from the proper FS sections.

IU. TEMPERATURE DEPENDENCE OF THE UPPER CRITICAL MAGNETIC FIELD

After the substitution of kernels (22) and (23) into the self-consistency equation (13), the summation over discrete
"frequencies" for the kernel E„d can be carried out as usual, whereas for the kernel Ed the summation over ~„can be
replaced by integration over the continuous variable m due to the inequality X && T, :

g f(co„,X)= I f(co, X)den, (25)

where coD is the limiting (Debye) phonon frequency.
Thus, the self-consistency equation takes the form

R(q= —II, T)b,(r) =Eh,(r),
1 1 a —(» —h )'

R(q T) 1
2 2 1/2 1t/ +

(26)

1 a +(»2 h 2)1/2

2 (» h )' 2 2mT
1

2

Ddq 8ah ~ 2h mh 1+ 2 +, +(1—a)
4vrdX (2a+1) 15X v 105X v 4X v 2vd 3r"

d

(27)

E =ln 1K=
3 nd

ex

Dnd~ 1 2a—=
2 +3~'+3" (28}

Here 1I/(x) is the digamma function. Note that the ex-
pression (27) was obtained using the expansion in small
parameters (Xrd ) ', ( ud q /X ), h /X. In Eq. (27)
v=N„d(0)/Nd(0) and the quantity T, is expressed with

the help of a critical temperature T,* of the pure Bilbro-
McMillan metal ' as follows '.

1 1

8vX(a+1)
7r

4T» nd
c ex

—3m. /[8vXr, „(2a+1)]

K TcQ
Tc TcQ

yX[(1—a)+ea]

1/v

(30)

Here e is the base of the natural logarithm, y =1.78. . .
is the Euler constant, and

T Q

1

V[N„d(0)+Nd(0)]
(31)

is the system's critical temperature in the absence of
dielectrization. Note that according to Eq. (29), as was

shown earlier, ' the superconducting transition critical
temperature in metals with CD%' and SD% gro~s when
the nonmagnetic impurity concentration increases. This
phenomenon can be regarded as the consequence of the
renormalization of the electron density of states N(E)
due to the peculiar quantum-mechanical interference be-
tween two factors. One is the electron spectrum dielectri-
zation owing to the electron-electron interaction and the
other is the elastic impurity scattering. ' This effect
resembles one when the density of states N (E) of a non-
superconducting disordered metal is changed due to the
interference of the electron-electron interaction and elas-
tic impurity scattering.

Note, that the above-mentioned similarity of the two
effects has little to do with the role of the Altshuler-
Aronov interference in the enhancement of the Coulomb
pseudopotential p'. This enhancement can lead to the
reduction of T, and the distortion of the dependence
H, 2(T) similar to ones obtained in our paper (see, e.g.,
Refs. 21 and 48).

From the formal point of view Eq. (26) reduces to the
Schrodinger equation for a particle with a dispersion law
R ( —II, T) and "energy" E. The conventional method to
calculate H, 2( T) consists in finding the minimal eigenval-
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ln(T, /T)=e0(H, 2, T) . (32)

Equation (32) with the allowance for Eq. (27) gives full
information about the critical magnetic field of a super-
conductor with CDW or SDW. However, explicit calcu-
lations outlined below show that the dependence H, z(T)
changes qualitatively relative to one for the nondielec-
trized superconductors even in the simplest case when
only nonmagnetic impurities are taken into considera-
tion. Therefore, we shall consider below only the solu-
tions of Eq. (32}when

ue e0(H, T) of the operator P( —II, T) and solving the
equation

1/re ('e)=1/7 =h =0.

In this case the operator R(q, T) takes the siinpler form

l Dndl
2

R(q, T)=P —+
I

+
2 4vr&X (2a+1)

(33)

We choose the magnetic field direction to be along OZ
axis and the gauge is determined by the relation A=0, so
that A„=A, =O, A =Hx. Then eigenvalues eH of the
operator R( —II, T ) are determined by the equation

f(2)+—g 2+ 4 T

2 4 2 Dd
+ Hx +

dx c2 4vr&X2(2a+ 1)
+ H x 6(x)=ln h(x) .d4ezz Tc

dx c T
(34)

From Eq. (34} it follows that eH &0 if b, (x ) is the eigenfunction of the operator

d 4e2 2

~~2+ cz

Its eigenvalues coincide with eigenvalues of linear harmonic oscillator Hamiltonian with angular frequency AH =2eH/c
and unit mass. Thus eigenvalues of the operator R( —Il, g are determined from the transcendent relationship

D„deH DdeH
g(2)+g ——+ (n+ —,') + 2

(n+ ,'}=eH—(n=0 1 2, . . .}.
vreX (2a+1)c

(35)

Minimal value corresponds to n =0 and according to Eqs. (32) and (35) the upper critical field H, 2( T) in various tem-

perature regions has the form

4cT, (1—T/T, )

meD„~[1+2DeT, /(rrvX D~ereI2a+1I )]

1

T
l — 1—

Tc

28$(3)
~4

Dd Tc

rrvX D„ere(2a+1)
2Dd T.

1+
rrvX D„ere(2a+1}

7TCT c
H, z

——

2yeD„d

m.Dd 1;1—
4yvX D„er~(2a+ 1)

2 yT
Tc

(T~O),

(T & T, ), (36)

(37)

where g(x) is the Riemann g function. The critical tem-
perature of the system T, is determined now by Eq. (29}
with 1/r&' ——1/r,"„=1/r,"~=0.

It should be mentioned once more that unlike Eq. (36)
the formula (37) is applicable only to materials satisfying
the quasiclassical condition when T =0.

V. DISCUSSION AND COMPARISON
WITH EXPERIMENT

Equations (36) and (37) are the main results of this pa-
per. From them one concludes that the appearance of
the dielectric gap on the FS sections leads to the reduc-
tion of the effective electron-diffusion coeScient:

Deff ~Dfgd
D„dade

where A is a numerical factor of the order of unity. Such
a renormalization to a certain extent is analogous to the
diffusion coeScient reduction in the "dirty" supercon-
ductor due to the weak Anderson localization. ' From
Eqs. (36) and (37) we see that in metals with nesting parts
of the FS large values of H, z(0) and

~
dH, 2/dT

~ r r
should be observed. Furthermore, it follows from Eq.
(36} that near T„provided the ratio v=N„&(0)/Nz(0) is
small, the curvature positiveness for the H, 2(T) depen-
dence is possible, although not inevitable.
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These conclusions agree well with the experimental
data for several classes of substances reviewed in the In-
troduction. So, e.g., in agreement with Eq. (36), in the
tetragonal (partially dielectrized) phase of Nb3Sn with
2 15 structure the slope

~
dH, zld T

~ T T is always
C

larger than in the cubic one. Moreover, in this com-
pound the reduction of sample purity accompanied by a
suppression of the structural transition results in the
change of sign of d 0 z/dT from positive to negative. '

By the way, the observed' dependence of d H, zld T on
sample resistivity seems to rule out the earlier interpreta-
tion of the experimental data for Nb3Sn in the frame-
work of the theory taking into account the influence of
strong localization on the Coulomb pseudopotential p'.

Note that a change of sign rpay be achieved by an
external effect on the FS, e.g., by pressure or variation of
composition. The latter was realized for solid solutions
BaPb, „Bi„03. The following fact is of principle impor-
tance here: the positive curvature of the critical field ex-
ists here only for compounds with x & 0.20 (close enough
to metal-semiconductor transition when x =0.4} for
which the numerous experimental data show the
dielectric-gap appearance on the FS section. Moreover,
the reflection of light from the samples of BaPb& Bi„03
with metallic conductivity show that long before the
metal-insulator transition takes place one should change
the Drude-like expression for the dielectric function e(co}
in order to describe the experimental data successfully.
Namely, when x &0.15 it is necessary to suggest that
e(co) together with metallic contribution involves a con-
tribution from the excitations across the semiconducting
gap mG, although the substance transport properties
remain metallic. The composition dependence rules out
another explanation of the inequality d H, zldT &0 by
.the bipolaronic mechanism of superconductivity in
BaPb& „Bi„03. The inapplicability of this mechanism
here is supported by the relative smallness of the
electron-phonon coupling constant A,, „&l.

The other superconductjng oxide showing the partial
electron-spectrum gapping for some compositions is the
hexagonal tungsten bronze Rb„%03. Again, precisely
for these compositions the positive curvature of H, z( T)
and large values of H, z(0) are observed. This tendency
correlates well to the theory outlined in this paper.

Among the superconductors with d H, zldT & 0 there
are many intercalated layered dichalcogenides of Ta and
Nb, ' where the structural transition exists ai some tem-
perature much higher than T, . Usually the supercon-
ducting properties of such systems are described in the
framework of Klemm, Luther, and Beasley (KLB)
theory' based on the idea of the Josephson coupling be-
tween the layers. However, KLB theory does not explain
the positive curvature H, z~(T) for the field normal to lay-
ers which is practically always observed in addition to the
positive curvature of H, ~~(Tz).

' ' ' As to the dependence
H, l(Tz), the experimentally determined inflection point
T' does not necessarily coincide ' with TKLz, calculated
from the equality condition between the vortex core ra-
dius g~(T) and the interlayer distance. It raises doubts
for the applicability of the KLB theory also in the cases

when the analysis of inflection-point location was not car-
ried out.

The dielectric gap X&~T, on the FS sections is ob-
served in the quasi-one-dimensional metal NbSe3. In
agreement with our theory, d H, z/dT & 0 there .Nor-
mal state properties of Laves phases Hf, Zr Vz are
quite similar to those of NbSe3. Unfortunately,
comprehensive measurements of H, z( T) in these systems
have not been carried out so far. But it is known that in
Hf& „Zr„V2 a small excess of the paramagnetic limit is
observed in agreement with the theory of the paramag-
netic properties of the superconductors with partial
electron-spectrum gapping. The existence of the latter in
Laves phases is confirmed also by the anomalously
small heat capacity jurnp when T = T„which was pre-
dicted theoretically.

Experimental situation for Chevrel phases where the
anomalies of H, z( T) were observed ' is rather complicat-
ed. For compounds SnMo6Ss and PbMo„Ss (Ref. 3}
without rare-earth iona our interpretation seems unique.
As to the compounds with Eu ion, the crucial role plays
the compensative effect of Jaccarino and Peter. ' It was
proved in famous experiments, where the magnetic
field-induced superconductivity of
Euo. vs»o. 2sMo6S7. 2Seo. 8

Recently the coexistence of superconductivity with
T, = 1.9 K and CDW emerging when T=25 K was clear-
ly demonstrated for quasi-two-dimensional purple bronze
Lio 9Mo60&7. For this substance, in agreement with our
point of view, the curvature of H, z( T}is positive.

In all compounds listed above superconductivity mani-
fests itself against the CDW background. At the same
time there are substances where at T =Tz above T, a
phase transition into the antiferromagnetic state occurs.
For antiferromagnetic superconductors (a= 1) Eq. (37) as
well as in the CDW case (a=0) forecasts the possibility
of the positive H, z(T) curvature. Such a behavior is ob-
served indeed in heavy-fermion superconductor
URuzSiz, ' ' Ho(Iro zRho 3)4B4,

" Cr, „Re„, and or-
ganic superconductors (TMTSF}zX.' It is significant
that in the alloy Cr78Re22 the positive sign of the curva-
ture d H, zldT after annealing transforms into the nega-
tive one. The width of the superconducting transition
in this case does not change, and H, z(0) decreases. The
decrease of H, z(0) indicates the reduction of the micro-
scopic defect concentration n; in the sample. These facts
are properly described by our theory. Really, the
diffusion coeScients Dd and D„d rise as n;

' and, accord-
ing to Eq. (36), the quantity 2Dd T, /3nvX D„de (which
determines the sign of d H,zldT ) decreases proportion-
ally to the reduction of n, .

To summarize, we should note that despite a good
qualitative agreement of the presented theory with the
numerous experimental data, a quantitative comparison
of the former with the properties of CDW and SDW su-
perconductors is now quite dificult. The main obstacle is
the lack of measured or calculated values of diffusion
coefFicients, dielectric gaps, and densities of states
N„d(0), Nd(0). The only exceptions are alloys Cr, „Re„
(Ref. 32) and the compound URuzSiz, ' ' ' for which
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the degree v of the electron spectrum dielectrization is
determined. In the case of URu2Si2 the gap X is also
known. Unfortunately, the data obtained by different au-
thors are contradictory. For instance, for URu2Si2, ac-
cording to Ref. 13, we have v=1.5 and 2=129 K,
whereas, according to Ref. 12, v=0.4 and X=115K.
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