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We show that the spin-; Heisenberg model (the strong-coupling limit of the Hubbard model)
is also the strong-coupling limit of an SU(2) lattice gauge theory with fermions. The local SU(2)
gauge symmetry is manifest. The role of this gauge invariance is investigated in both the Hamil-
tonian and path-integral formulations. Off half-filling, our results reveal the existence of a lattice
SU(2) bosonic matrix field which is a natural candidate for a condensate order parameter.

The recent discovery of high-temperature superconduc-
tors! have renewed the interest in the theoretical study of
purely electronic models. Anderson and collaborators
have developed the idea of the “resonating valence-bond”
(RVB) states? in the framework of the Hubbard model at
strong coupling and near half-filling.> Magnetism prob-
ably plays an essential role in the new superconducting
mechanism. In addition to that, it has been recently
claimed that the Hubbard model in that limit (i.e., the
Heisenberg model) has a local U(1) symmetry* later en-
larged to a local SU(2) symmetry® after analyzing the
“spinon” degrees of freedom.

Very little is known about the Hubbard and the
spin=+ Heisenberg models in two and three dimensions.
We believe that the analysis of this local symmetry is
worthwhile since it may lead to the development of new
techniques to study these models (probably borrowing
some insight from the analysis of gauge theories in parti-
cle physics). In particular, there may be strong analogies
between the process of pairing in the Hubbard model and
confinement in lattice gauge theories. Also, the gauge
symmetry may help in the construction of order parame-
ters as shown below.

The purpose of this paper is to further discuss the
SU(2) local symmetry pointed out in Refs. 2-5 making an
analogy to lattice gauge theories in both the Hamiltonian
and Lagrangian formulations. In particular, we present
an exact expression for the partition function of the
Heisenberg model as a path integral resembling a lattice
gauge theory with SU(2) gauge variables and dynamical
fermions. In a recent paper, Affleck, Zou, Hsu, and An-
derson® have independently given a discussion of this sym-
metry from a somewhat different point of view.

The Hubbard model in the strong-coupling limit
(U>1) and at half-filling is equivalent to an antiferro-
magnetic Heisenberg model (spin 3 ) with a Hamiltonian
given by

HHeisenbcrg’%ZSx'Sx+i s 1)
x,1

where J > 0, x labels sites of a d-dimensional cubic lat-
tice, and 1=1, 2, ..., d are unit vectors in the different
directions. This result can be easily deduced using degen-
erate perturbation theory. The spin variables at every site
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are defined as

Si=1%ct.08Cxs, 2)

where 6%(a=1,2,3) are Pauli matrices and ¢} ;,c5q are
fermionic operators. The index a represents spin
(a=1,!). The coupling J is related with the standard pa-
rameters of the Hubbard model through J=2:%/U. In
this strong-coupling limit, the fermionic variables satisfy
the constraint c¢)lj,cxt+ei cx;=1 at every site. The
model defined by Eq. (1) has a well-known SU(2) global
symmetry that corresponds to simultaneous rotations of
the spin degrees of freedom. This model is supposed to
describe the CuO; planes’ of the undoped La;CuOy as
well as the insulating phase of Y;Ba;Cu3;07-; At low
hole concentration these materials become superconduc-
tors so from the study of the undoped limit we may get
some insight about the superconductivity mechanism.

We will prove below that there is another hidden (local)
SU(2) symmetry in the Heisenberg Hamiltonian. To
prove this it is convenient to make a particle-hole transfor-
mation in, for example, the spin-down operators, i.e., we
make the operatorial change of variables

Cx i1 = U LWL Cx bl — Wi Wx2. 3)

The notation 1,2 is introduced here replacing the up and
down components because they will represent the “color”
degrees of freedom in the resulting SU(2) gauge theory.
Note that now the “vacuum” state (annihilated by v ;)
has N particles in the original variables (V is the number
of sites), i.e., the system is half-filled. This is like filling
the negative energy sea of the Dirac equation. Using the
transformation Eq. (3) the Heisenberg Hamiltonian can
be exactly rewritten as

H=%Z][M,‘Mx+i+2(BIB‘+i+ Bl4iBx)]
X,
—'I“dZ(Mx_;_), 4)
X

where antiperiodic boundary conditions have been as-
sumed for the fermionic operators and the “meson” and
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“baryon” operators M and B are defined as
My= E Wx aV¥x,a»

a=1,2

€ab
Bx= El 2_;_%(,:1 Vx,b = V¥x,1V¥x,2 - (5)
3. <M, corresponds to the total protectlon of spin S3 (plus
a constant). Usually, we are interested in the S =0 case.
Note that now the Heisenberg Hamiltonian is expressed
only as a function of the SU(2) gauge-mvarlant operators

at every site so the local symmetry is obvious.® In other
words, the theory is invariant under the change
Vxa Zng'//x.b > )

where the matrlx ¥ belongs to SU(2), i.e., it has the prop-
erties V1=V "1 and detV’=1 [note that the local U(1)
symmetry found in Ref. 4 is, in fact, only the diagonal
part of this larger SU(2) symmetryl. It is important to
note that the local SU(2) symmetry appears through a
transformation of the new vector w*col(q ¢]) (rewrit-
ing it in the original variables) and not in terms of the vec-
tor col(cy,c;). The constraint c,'{cx-l is, in the new
language, nx;=nyx, (wWhere ny, is the number opera-
tor corresponding to color a) or, in other words,
vio3wx=0. [In fact, this is equivalent to imposing the
constraints yjoiwx =0 (i=1,2,3) since the extra condi-
tions are s1mp1y cx?c ] =cyc; =0 which are automatically
satisfied in the strong-coupling limit.] This constraint
means that at every site we have the same number of par-
ticles with color 1 and 2. This is reasonable since at each
site we should have singlets under the SU(2) local symme-
try and |0),B1|0) are those singlets.’

Although the local symmetry is clearly present in the
Heisenberg model when it is written as in Eq. (4), it is
convenient to introduce a gauge field in this formulation
to make the local symmetry even more apparent. For that
purpose, we will first work W1th the Hamiltonian formula-
tion of lattice gauge theories'® and later with the path-
integral formulation.

Let us first remark that the Heisenberg Hamiltonian
can be obtained as the strong coupling limit of the Kogut-
Susskind (KS) Hamiltonian of a SU(2) lattice gauge
theory which is defined as

Z (Wx aleV’X'Hb H.C.), (7)

H= ESiES +
312 . 2x,l,ab

where x and 1 denote sites and directions of the same d-
dimensional lattice where the Heisenberg model is
defined. The operators U are gauge fields and E® are
momentumlike operators with the algebra

[E2iU%] = Sy "2‘, oo Uk, (8a)

shEfs] t&,,&i;Ze BTET}. (8b)
14

The relation between the Heisenberg coupling constant
and the couplmg constant g of the gauge theory is
J=16/3g2. For more details, we refer the reader to the
literature on lattice gauge theories. !

To show the equivalence of this model with the Heisen-

berg Hamiltonian we use perturbation theory in J
(“strong-coupling” limit). We consider as zero-order
Hamiltonian the electric term. Since the fermions do not
appear in it, then the ground state is highly degenerate
since (as mentioned before) at every site there are two
possible singlets (no fermions and a “baryon”). Then the
degeneracy is 2. The electric term is minimized by hav-
ing no flux of electric field at any link. Using degenerate
perturbation theory up to second order we can remove the
degeneracy. The intermediate states have a link with one
unit of flux. The corresponding intermediate energy can
be obtained using the result E°E°U|0)=2U|0). Fol-
lowing this method, it is easy to show that beginning with
the KS Hamiltonian and using perturbation theory in J
we recover the Heisenberg Hamiltonian Eq. (4) (up to a
constant).!2 Of course, the relation between these two
models exists only in the small J limit. The Hamiltonian
Eq. (7) has a local SU(2) symmetry if we dcﬁne that the
link operator transforms as U, j— VxeleH and the
matter fields as in Eq. (6).

Anderson and collaborators2 > have argued that opera-
tors such as A+(x, x+l)=c?(x)c}(x+l) may play the
role of order parameters in these systems (specially off
half-filling). In our notation A+ takes the form
A+(x,x+1) =y] x)y,(x+1). This operator is invariant
under the global SU(2) symmetry of the Heisenberg mod-
el. Under the local SU(2) symmetry discussed above A+
transforms nontrivially. Elitzur’s theorem, which states
that only locally gauge-invariant operators can acquire an
expectation value, rules out any possibility of a A+ con-
densate at half-filling.

Having studied the Hamiltonian formulation now we
show the existence of the SU(2) local symmetry in the
path-integral formulation. We begin again with the
Heisenberg Hamiltonian written in terms of the new field
v [Eq. (4)]. Following very well-known standard rules of
quantum field theory we can write the partition function
of the model as a functional integral over Grassmann vari-
ables: 13

ZHcisenberg =tr(e “PH) =

nf dwxdwdea]

xexpl—S(y,y,Up)], (9a)
where the action is

—-S(y,y,Up) "wa(l//x Uy0¥x+0)
— X it LT (M - 1), (o)
x,1 ’ 4 5

x=(x,t) is now a space-time index, ¢ is the new “time”
direction introduced in the partition function using the
Trotter formula: B =¢N, and € and NV, are the lattice spac-
ing and the number of layers in the time direction. 0 is
the unit vector in that direction. Equation (9) is an identi-
ty if we work in the limit ¢—0 and N,— . The
Grassmann fields have antiperiodic boundary conditions
in the time direction. The matrix U, g is a SU(2) matrix
that has been introduced to enforce the constraint that the
number of particles of each color at every site is the
same. 4

The operator 7 contains the spatial interactions and it
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is defined as

ﬂ,ﬁi-%w,Mﬁﬁ 2(BB, +i+B,+iB:)], (10)
i.e., we have simply formally replaced the fermionic
operators y' of Eq. (4) by the Grassmann fields . This
term is diagonal in time. !°

The quartic interaction is usually decoupled using a real
variable by means of the Hubbard-Stratonovich identity.
However, in our case, it is more useful to make the decou-
pling by means of an SU(2) matrix at every link. The ap-
proximate identity that we used is

exp(— eH, . +1)
iNJe (—
= fsu(z)deiexP [ :___2 € FxUyjwy+i—He) |
an
J

exp(—e#, ,+1) -dexjexp [ —te(Wiw, )+ % (FxW, jv +i—H.c) } .

This formulation is equivalent to Eq. (11) at low tempera-
tures. To understand this point, note that the matrix W

can be written as W=~/aa+pp U, where U is a SU(2)
matrix. At low temperatures, the “radial” degree of free-
dom will be frozen to a mean value given by the saddle-
point approximation. The fluctuations will survive in the
unbroken SU(2) sector. In this way, we recover Eq. (11)
(up to a constant). The local symmetries are present also
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To derive Eq. (11) it is necessary to expand both terms
and ?erform the integration over the SU(2) Haar mea-
sure.'S We have neglected terms of order J?2 that corre-
spond to density-density interactions.® The model rewrit-
ten as in Eq. (11) has the same local symmetries discussed
for the Hamiltonian version but now including the time
direction (i.e., using matrices ¥ that are also time depen-
dent).

Another possibility is to make the decoupling using a
more general matrix of the form

a B
e [ -p 6]
(where a and B are complex numbers) by means of the ex-
act identity

(12)

(13)

r

Combining Eq. (9) and (13), we arrive to an exact ex-
pression for the partition function of the Heisenberg mod-
el as a function of variables usually used in lattice gauge
theories. There are no assumptions on the value of J. The
final result is

Zﬂeisenberg'fﬂﬁtiffDWfSwz)ﬂUaexp(—S) ,

in this formulation (they simply do not affect the radial (142)
component). where
|
iVJe (— Jed 5 (-
—S=Y 7. (yx —Ux’wx+6)+2‘l, —te(Wiw, )+ - 2‘,6 (FxW, jvesi—Hece) |+ —:—g(w,w, -3 (14b)
X X5

This result is valid not only for a square lattice but also for
a triangular lattice. Equation (14) can be the starting
point of a numerical simulation of the Heisenberg model
(it is also useful for the Hubbard model at half-filling if J
is small). In fact, Eq. (14) resembles a lattice quantum
field theory with dynamical fermions!’ (the main differ-
ences are that here the W fields have a “radial” com-
ponent and the hopping in the time direction is asym-
metric). We can integrate the fermions exactly. If the
determinant coming from the Grassmann integration is
positive then we can apply stochastic differential equa-
tions methods to attack the problem. '®

There are results in the literature of lattice gauge
theories that can be analyzed from the point of view of the
Heisenberg model. These are numerical and mean-field
studies for the SU(2) gauge theory with a chemical poten-
tial and a fermionic mass'’ in the strong-coupling sector®
all in 3+1 dimensions. They were obtained in the La-
grangian formulation of lattice gauge theories (recently,
they were also obtained in the Hamiltonian formula-
tion?’). The numerical results showed clearly that the
ground state of this SU(2) model (at zero temperature

T
and external field) in 3+1 dimensions has antiferromag-
netic properties (N¢éel state) since the “chiral” order pa-
rameter was nonzero ({Fy)=0) in the massless limit.
This order parameter of the staggered fermions corre-
sponds to a staggered magnetization ((—1)**r*2)g3)
for the Heisenberg model (see, for example, Ref. 21). In-
creasing the temperature and/or the external fields it was
found numerically and analytically in the SU(2) gauge
theory that the symmetry is restored. For more results see
Ref. 8.

Away from half-filling a hole kinetic-energy (KE) term
should be added to the Hamiltonian. In the presence of
an electromagnetic field, this term acquires a phase factor
at each link. After the particle-hole transformation [Eq.
(3)], it has the form

HKE’tzwid:;eiqu"iwxﬂ"*'l‘l.c. , (15)
x,1

where A, j is the gauge field at every link. The constraint

is now Q -Z,w,‘:agw,- —Né& (6<1) and the charge at

every site can take the values 0 or —1 (for a hole). Note

that in the new formulation the charge operator involves a
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o3 matrix and it is not simply given by y'y (in other
words, the two components of y have opposite charges).

Now the Hamiltonian H = H yeisenberg + HkE is gauge
invariant under electromagnetic gauge transformations.
However, it is not invariant under the local SU(2) sym-
metry previously discussed. This invariance can be
recovered by noting that any noninvariance can be regard-
ed as the result of an implicit gauge fixing. Take, for ex-
ample, the case of the Bardeen-Cooper-Schrieffer (BCS)
theory. Studying the Landau free energy in the London
gauge, where the order parameter is real, it is immediate
to see the generation of a mass term for the gauge field,
but this is not a good starting point for the analysis of or-
der parameters. To do that it is necessary to keep the
gauge symmetry intact.

Similarly, in our case we must introduce a set of de-
grees of freedom on sites such that, upon fixing the gauge,
it yields Eq. (15). This is very naturally achieved by the
introduction of an SU(2) matrix at every site and
redefining the kinetic-energy term as

Hkg ==t2;, V’ng03ew’A"gI+in+i+ H.c. (16)

X,
If the new field gx transforms as gx— gxVi and the fer-
mionic field as in Eq. (6), then Hgg is SU(2) gauge in-

variant. [If we fix the gauge where gy is equal to the iden-
tity, then we recover Eq. (15).] However, the field gx does
not commute with the electromagnetic link operator
e ”*_ Hence, it transforms nontrivially under elec-
tromagnetic (em) gauge transformations, ie., it is
charged. It can easily be proved that in order to preserve
both the SU(2) and U(1)em symmetries in the KE term,
the field g should, in fact, transform like g— Vge'** if
Ay j— Axitéx—0x+i. Then the local symmetry group is
finally SU(2)XxU(1)em. The field y only transforms un-
der SU(2) and it is neutral with respect to electromagne-
tism. 22

The field g may be a good candidate for a superconduc-
tivity order parameter since it is a charged site field nonin-
variant under SU(2). It also transforms nontrivally with
respect to the standard SU(2) global rotations of the
Heisenberg model so it can also describe antiferromagne-
tism.
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