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Ground-state properties of the free surface of liquid 4He
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We report quantum-mechanical calculations of the properties of the ground state of a slab of
4He. Both variational Monte Carlo and Green's-function Monte Carlo (GFMC} methods are ap-

plied to systems of different sizes. The values for the surface tension at zero temperature ob-

tained with different estimators give excellent agreement with experimental results. The density
distributions and the thickness of the interface are also studied. We conclude that the He-He po-
tential is accurate enough and GFMC precise enough to calculate a nontrivial inhomogeneous sys-

tern.

A very significant issue in condensed-matter physics is
the extent to which more or less complex systems can be
quantitatively explained by our knowledge of the basic in-
teractions and by our ability to compute their conse-
quences accurately. A major challenge is an inhomogene-
ous quantum fluid such as a film or a layer of liquid He
with a free surface. By now, the bulk properties have been
computed with the use of the HFDHE2 interatomic po-
tential of Aziz et al. ,

' and found to be in good agreement
with experiment. But the properties of a free surface are
sensitive to critical details of the He-He interaction and
pose a significantly greater challenge to the computational
method.

Recently, the surface tension liquid He was measured
by means of a surface-wave resonance method, 2 and the
relative variations with respect to y, the extrapolation of
its value at absolute zero, showed excellent agreement
with those obtained by a precise capillary-rise method in a
previous approach. 3 The value of y was measured in Ref.
2 as 0.257 K/A. 2, which is 6% smaller than the value 0.274
K/A2 adopted in Ref. 3. Thus, the experimental situation
is clear enough to justify a serious computation.

Previous attacks on this problem have left it in an un-
resolved state. The results on droplets4 were not com-
pletely satisfactory, in that it is impossible to be sure
whether the discrepancy in the surface tension resulted
from the form of the potential or from the geometry of the
system that was studied. Accordingly, we undertook a
calculation of a slab of sHe with a free surface. The re-
sult is very good agreement with experiment, showing that
the potential is accurate enough and Green's function
Monte Carlo is precise enough to calculate a system of
this complexity.

Both variational Monte Carlo (VMC) and Green's
function Monte Carlo (GFMC) have proved very success-
ful in the study of the ground-state proprties of quantum
systems, and are described elsewhere. A reason for the
success of this study is that the variational wave function,
also used as an importance function in the GFMC, con-
tains appropriate three-body terms,
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where rit corresponds to the walls of the box and r, and ra

are variational parameters, and the pseudopotential u (r;J )
is chosen to be of the McMillan form, u(r) (b/r) 5. All
the parameters in e38 are those for the equilibrium densi-
ty and will be published elsewhere.

The film we consider has two surfaces situated symme-
trically with respect to the plane z 0, with periodic
boundary conditions in the x and y directions. One-body
factors are included in the wave function to stabilize the
system, and the trial wave function becomes

-e ~gh(;), (2)
i

where, for N )54, we take It (z) f(z;k, zp), with

f(z;k, zp) {I+exp(k(~ z —z, ~
-zp))}

For smaller systems (N ~54), we use instead h(z)
f(z;k, zp)f(z; k, —zp), to com—pensate for the effects

of the use of the absolute value. The parameter zp con-
trols the interface location and k determines its thickness.
To guarantee translational invariance, the z component of
the center of mass of the system, z, m, is subtracted from z
in h(z).

We have studied systems with N 27, 54, 108, 216, and
324 particles variationally, and with N 27, 54, and 108
particles in the GFMC runs. The simulation area was
taken to be A 580.6 A.2. We have also run a system with
half this area to study size effects.

A first estimator for y can be obtained directly from the
values of the energy. If we represent by e and eN the en-
ergies per particle in the ground state of the uniform and
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slab systems,
respectively,

the surface tension at zero tem-
perature is given by

Ny- —(a —aN) . (3)

(4)

(5)

Once we have fitted this expression to energies corre-
sponding to different values of N, we can calculate the
surface tension, which is the coefflcient y.

The pair interaction is usually truncated at a finite dis-
tance in Monte Carlo simulations, and its effect is usually
estimated by a tail correction. In this case we only have
periodic boundary conditions in the x and y directions,
and we shall consider a truncation only in those directions,
both for the total energy and for the estimator from the
virial theorem. In the first case, when one assumes that
the particles are uncorrelated in the region

J(xi —x2)'+(yi -y2) +L/2,
the corresponding two-particle density distribution factor-
izes to p(2)(r~, rz) p(l)(r~)p&l&(rz). The contribution per
particle to the potential energy from the density beyond
the cylinder of radius L/2 can be expressed then as
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Another estimator can be obtained fram the virial
theorem. In the quantum case,
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where the first term is a kinetic contribution, and has no
classical counterpart. s

Finally, the study of systems with different N allows us
to analyze the bulk, surface, and higher-order terms in the
energy per particle. 4 If we define x A/N one has

E (N) s +yx+8'x +
N

A similar expression is obtained in this way for yt„l from
Eq. (4).

More information on the interface is provided by the
single-particle density distribution p&t)(z). For instance,
its profile along the coordinate z determines the width of
the interface, 8; which is usually defined as the distance
in which p(~)(z) decreases from 0.9p to O. lp, where p is
the density well inside the liquid.

Table I lists the various systems and their energies and
widths. We have obtained for all sizes in the VMC
minimizations the same value k 1.0 A of the thick-
ness parameter.

The single-particle density p(l)(z) computed in the vari-
ational runs is shown in Fig. 1. Two noticeable trends are
that the interior density is lower than the bulk value
(0.0218 A 3) for the small systems, but it reaches this
height for slabs with 10 or more atoms across (z (/2 ~ 20),
and that the surface thickness W increases with the slab
thickness zl/2. There are no discernible oscillations in the
surface profiles within our statistical errors.

In Fig. 2 we have plotted the density p(t)(z) obtained
from GFMC calculations. This GFMC density shows
large fluctuations after a few hundred iterations, a behav-
ior that has been noticed in all previous GFMC simula-
tions. Presumably, the cause of these fluctuations is the
presence of low-lying excited states that require a large
number of GFMC iterations to die out. Here, the low-

lying excitations of our system have energies of the order
of the two-ripplon state with total momentum zero9 that is
consistent with our boundary conditions, which has an en-
ergy of about 5.5 K. For 108 particles and E,/N 25 K,
where E, is a constant added to the Hamiltonian to make
the spectrum positive, s each GFMC iteration will reduce
this excitation by 0.997. Therefore, we expect conver-
gence and autocorrelation times of the order of 300 itera-
tions.

The values of the root-mean-square displacement from
the plane z 0, z~„are well determined by both
methods. As one can see in Table I, for all the systems
studied z, , is linear with N. This is to be compared with
the linear regime (N & 20) in the behavior of the root-
mean-square radii of the 4He dropletss as a function of
N i/3

Figure 3 shows a plot of energies versus x A/N for
both variatianal and GFMC calculations. For both

TABLE I. Energies of various He slabs calculated using VMC and GFMC. jV is the number of particles, o jV /A, zs is a varia-
tional parameter, E is the energy, z is the root-mean-squared displacement, z&pz is defined by p(z&y2) p(0)/2, W is the surface
width, and y& and yz are the estimators given by Eqs. (3) and (4), respectively. The standard deviation of the energies is 0.03 K.

Method

VMC
VMC
VMC
VMC
VMC

27
54

108
216
324

cr (A ')

0.047
0.093
0.186
0.372
0.558

zp (A)

1.8
3.6
7.3

14.6
22. 1

E (K)

—2.43
—4.06
—5.31
—5.98
—6.16

2.22
3.48
5.84

10.28
14.70

Z 1/2

3.3
5.6
9.8

17.6
25.6

w (A)

2.8
3.1

3.5
4.3
5.0

0.198
0.244
0.257
0.264
0.296

y2

0.19
0.27
0.29
0.30
0.28

GFMC
GFMC
GFh4C

27
54

108

0.047
0.093
0.186

—2.75
—4.65
—5.69

2.27
3.47
5.86

3.3
5.6

10.0

3.0
3.1

3.7

0.203
0.230
0.266
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TABLE II. Results of the fit of the energies from Table I to a
second-degree polynomial, according to Eq. (5). The case
N 27 with VMC has not been included.

Method

VMC -6.68 +' 0.03 0.272+' 0.011 —0.0027+' 0.0011
GFMC -7.11+0.02 0.265+ 0.006 -0.0029+' 0.0003

whole term has to be considered instead, since the expan-
sion is in x A/N. Fits to higher-degree polynomials'2
indicate that the truncation of the series at the x2 term
may be warranted.

As mentioned previously, other calculations have been
done in the past on finite He systems. A slab was calcu-
lated by Liu et al. 7 using VMC. Their results are in qual-
itative agreement with our results, but since they used the
Lennard-Jones potential quantitative agreement cannot
be expected. Furthermore, their wave function did not
contain three-bod correlations. Their calculated surface
tension is 0.21 K/

Pandharipande et ttl. 4 have done simulations of 4He

droplets with both GFMC and VMC using the HFDHE2
potential. These simulations have the advantage that no
tail corrections or periodic boundary conditions need to be
introduced. Although they were mostly concerned with
questions of droplet structure and saturation, they fit their

energies for these spherical systems to a polynomial in

N 't and extracted a surface tension of 0.30 K/A . The
slow convergence of the spherical system with particle
number makes extracting a surface tension more diflicult.
Further, the area to use is obvious in the slab geometry,
but is less obvious for the spheres. Their surface profiles
also show qualitatively similar structure to ours, though
we find the thickness &closer to the value by Liu et al.

It is very reassuring that our knowledge of the He-He
interaction and our numerical techniques are now good
enough to permit the calculation of properties of inhomo-
geneous quantum systems. We plan to extend our calcu-
lations to "He on a substrate.
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