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Proposed NMR determination of the exchange parameters in hexagonal-close-packed He
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We calculate the relaxation times for an oriented single crystal of hexagonal-close-packed solid
He, which, according to the theory of Roger and co-workers, is dominated by triple exchange.

The anisotropy of the relaxation times is a function of the ratio of exchange rates in the basal
plane to those out of the plane and may be used to determine this ratio. Results are presented for
T& and T2 as a function of frequency as well as of crystal orientation.

The nature of exchange in solid 3He has been a topic of
investigation for many years. The low-pressure bcc phase
has received most of the experimental and theoretical at-
tention and it has been demonstrated that three- and
four-body-exchange processes are important to the mag-
netic properties of that phase. ' While much less attention
has been paid to the hexagonal phase, a recent experi-
ment2 has shown that the Neel temperature of this phase
is positive in agreement with the theoretical predictions
that three-body exchanges should make this phase fer-
romagnetic. '~ Here we suggest that NMR experiments
may be performed that can lead to better information con-
cerning the exchange constants in the hexagonal-close-
packed (hcp) phase.

Roger3 has estimated the exchange constants in both
bcc and hcp 3He. He finds that magnetic processes in the
hcp phase are dominated by three-particle exchanges
which will lead to a ferromagnetic spin alignment at low
temperatures. Pair and higher-order exchanges may also
take place. There are three types of triangles made up of
nearest neighbors in the hcp lattice: two completely in the
basal plane and the other having two particles in the basal
plane and the third out of the plane. The exchange con-
stants for these triangles are not identical because of the
different environments of the triangles.

A triple-exchange operator can be decomposed into
pair-exchange operators3 so that, if we neglect the four-
particle and higher-order processes, we can write an
effective exchange Hamiltonian for hcp 3He in the usual
form

H ——' g J"cr"o" (I)
i &j

where tx; is a Pauli matrix and J;i J for a pair of parti-
cles in a basal plane and J~~ J' for a pair of particles hav-

ing one member in the basal plane and the other out of the
plane. Roger's calculations give J=J'. There has not yet
been an experimental confirmation of this prediction. J
and J' can include the effects of real pair-exchange in-
tegrals in the hcp lattice. However, we will neglect any
second-neighbor pair exchanges.

We would like to show that anisotropy in NMR on an
oriented hcp crystal of 3He can lead to a strong indication
of the relative sizes of J and J'. We calculate Tt and T2
by using Gaussian approximations for the correlation
functions. To see the nature of our results we consider a
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FIG. 1. The adiabatic portion (tv oo) of the spin-spin relax-
ation time T2 as a function of angle P in radians between the c
axis and the external magnetic field [Eq. (2) or the first term of
Eq. (5)]. Triple exchange is represented by effective pair ex-
change integrals. The variable Y is J'/J where J is the pair ex-
change integral for two near neighbors in the basal plane, and J'
is that for particles in two different planes.

special simple case. The adiabatic part of the s )in-spin re-
laxation time is given by a standard expression'

(&2 ')sd J(tr/2)M)/M4,

where M2 and M4 are moments of the resonance line.
To treat an oriented crystal, we make a restricted angu-

lar average. If the magnetic field has polar angle P with
the c axis of the crystal and azimuthal angle pit with an
arbitrary direction in the basal plane, then we average
over just p8. T2 will be a function of the angle P. Experi-
mental verification of our predictions will require a single
crystal with the c axis in a known direction. General ex-
pressions that include results for Mz and M4 in this
averaging process will be given below.

Figure I indicates, that when the ratio Y J'/J is small,
there is considerable anisotropy in T2 while for larger Y
values the dependence on P is considerably reduced. To
understand this result physically we note that dipolar lat-
tice sums in the hcp crystal are mildly dominated by the
particles in the basal plane. In this regard, they behave
somewhat like those in a triangular two-dimensional (2D)
lattice. 5 Indeed the angular behavior of M2 here and in
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Ti Ji(co)+4Jp(co),

Tz '--,' Jp(0)+-,' Ji(co)+Jp(co),

(4)

where J (co) 42jrg /co exp(nt coz/2co ) are the spec-
tral functions and co (p /g )'j is a correlation fre-
quency, and co is the Larmor frequency. The spectral
function J is the Fourier transform of the correlation
function G (t) corresponding to the m-spin-ffip terms in
the dipolar Hamiltonian. The quantities g and p are
the coefficients of the zeroth- and second-order terms in
the expansion of G in t. It is not difficult to show the re-
lations go —,'Mp and po —,'M4. Equation (2) corre-
sponds to the first term in Eq. (5).

After the restricted angular average described above we
find that

2

gm-4 &'y' $ e D ~ (P)tt ~,
m ~0

the 2D crystal are similar in that both reach a minimum
around P jr/4. To see this behavior, note that the angu-
lar dependence of Mq is just the average of —,

' (3z —1)
where z is the component along the field of a unit interpar-
ticle vector i;j. As shown in Ref. 5 in 2D, after an azimu-
thal angular average Mq is proportional to [1—3sin P
+ '8' sin 4P] which has a minimum at 42'.

Next, we repeat another argument from Ref. 5 in order
to understand the behavior of (Tq '),o Mz/co„where co,
is the correlation frequency. We expect that if there is an-

isotropy then the correlation frequency might be given by
something like

co, (p) —' (cot+ cot sinzp+ co coszp),

where cot and co& are correlation frequencies for motion
parallel and perpendicular to the basal plane. This result
might arise in the following way: In a strictly 2D system
(co& 0) with the magnetic field in the particle plane
(P jt/2), motion of the spins both radially and axially
modulates the interaction. On the other hand, at P 0,
the dipolar interaction is unchanged during rotational
motion at constant r;j and we have effectively lost a degree
of freedom with regard to motional narrowing. With co~
set equal to zero, Eq. (3) has this expected qualitative
dependence. On the other hand, in an isotropic 3D system
with cot coj, co, loses its angular dependence as expected.
The hcp system with Y 0 has (effective) two-particle ex-
change only in the basal plane and should behave some-
what like adsorbed 3He. With the suggested functional
forms we expect that (Tq '),o would drop off as P ap-
proaches jr/2 and have a minimum near n/4. This is pre-
cisely what we see in Fig. 1.

When co~ becomes larger than cot we expect, from Eq.
(3), that (Tz i),o will become large as P goes to jr/2.
Indeed, when Y is large, exchange out of the basal plane
predominates and we do see the expected behavior in Fig.
1. Note, however, that very large Y never leads to an ex-
treme anisotropy because J' implies both a parallel and a
transverse part of co, . This is easy to see by examining the
hcp lattice structure.

For the general case of both relaxation times for all fre-
quencies, we follow Landesman6 to show that

2

pm z ~ y $ &m'Dm'm(P)Um'
m ~0

where

U -(I/1V)g[R;, '[PP(y;j)]'G;jk
ijk

+R j Rjk Pp(ylj)Pp(yjk)Hljk]

The quantities G;jk and H~jk arise from doing compli-
cated spin traces in the correlation functions. Because we

are considering only effective pair exchanges, we can use

the results derived in Van Vleck's fourth moment calcula-
tion. We have

Gljk Jlk +Jjk +Jlk Jjk

and

Hijk 2Jij+ Jik Jjk Jij Jjk Jij Jik ~

2 (10)

Many of the lattice sums can be done analytically and
others must be done numerically.

In 1975, Deville9 treated the anisotropy of the NMR of
a single crystal of 3He both experimentally and theoreti-
cally. He assumed the isotropic case Y 1. He treated all
possible orientations, in contrast with our restricted angu-
lar average, and as a consequence was unable to include
the anisotropy of the three-body terms in M4 ("unlike
terms"). It is because we have averaged over the azimu-
thal angle pit that we are able to include these terms
without difficulty.

Our result for the adiabatic part of Tz ' corresponds to
co ~. Figure 2 shows Tq ' at the other extreme of co 0.
The anisotropy at small Y persists here although it is of a
different character. Note that at the theoretically predict-
ed value of Y 1, Tq

' is quite independent of angle.
We also present results for Tt at zero frequency in

Fig. 3. Here, the anisotropy changes character as Y
passes through 1. Actual experiments may be done at
some intermediate frequency. We would be happy to use
our programs to provide theoretical curves for the ap-
propriate experimental situation or to provide the pro-
grams themselves.

We have shown curves in the form of ratios. Of course,
the absolute values of T~

' and Tq
' depend on Yas well.

As J' increases for fixed J, each of these quantities de-
creases because the overall average exchange integral is

getting larger.
Deville, by comparing his data to his theoretical re-

sults, determined that all his hcp experiments were at

where e ~ —,
' for m' 0, —,

' for rn' 1, and —,', for m' 2.
Also, we have D (P) [[d~ (P)l +[d~ (P)] ]; the
d~ (p) are the polar-angle part of the rotation matrices
and can be found in many references. Finally, the last
factor is

tt (I/1V)QR;j PP(y;j), (7)
lj

where R;, is the interparticle separation at angle y;j with

the c axis and PP(y j) is an associated Legendre polyno-
mial. There are 1V particles in the lattice.

In a similar manner we find
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FIG. 2. T2 from Eq. (5) in the limit m 0 as a function of P
and Y. Y l corresponds to the theoretical prediction of Roger
(Ref. 3).
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P tr/2. His angular dependence corresponds to a varia-
tion of hatt. So, we are unfortunately unable to use his data
to extract a value of K

We can easily reduce our results to a powder average by
averaging over P. For example, we then Snd MJM2~J (20.7+O.SY+20.7Y )

Our results have been derived by neglect of the second-
neighbor pair, four-particle, and any higher-order ex-
change integrals. After some of our work was done, we
found that Matsumoto and Izuyama'o had independently
considered a somewhat similar treatment of T1 in hcp
3He. They did a complete angular average (i.e., they con-

FIG. 3. The longitudinal spin relaxation time TI in the limit
tu 0 as a function of P and Y.

sidered a powder) but included the effects of these
higher-order exchange integrals. It should be possible to
extend their work to the case of an oriented crystal.
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