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The specific heat of branched polymers having an attractive monomer-monomer interaction is

calculated using Monte Carlo methods in the lattice-animal model on the simple-cubic lattice, for
animals of various sizes N, up to N 80. The data confirm a scaling function for the specific heat
derived from a scaling analysis in analogy with linear polymers. This gives better estimates for
the collapse transition temperature T, and the crossover exponent p.

Branched polymers in dilute solvents in the high-
temperature limit are well modeled by lattice animals, '
which are connected clusters of occupied sites on a lattice.
Introducing attractive monomer-monomer interaction can
lead to a collapse of the branched polymers at low temper-
atures. Such a transition can in fact be realized experi-
mentally at low temperatures or in good solvent when
monomer-monomer affinity can become the dominant
effect. 3 6 In linear polymers, the collapse temperature is
known as the 8 point and it coincides with the point where
the second virial coefficient vanishes. The 8 point in linear
polymers has been much studied both theoretically and
experimentally (see references cited in Ref. 7). Much less
is known in the case of branched polymers. Derrida and
Herrmann did a theoretical study of the collapse of
branched polymers in two dimensions using transfer ma-
trix methods on strips. They obtained the transition tem-
perature T, and certain critical exponents, including the
crossover exponent p. However, their method cannot be
easily extended to three dimensions in which most experi-
ments are usually performed. Later, Dickman and
Schieves studied this problem using a Monte Carlo
method for some two- and three-dimensional lattices. In
two dimensions, they obtained a transition temperature in

close agreement with that of Ref. 7. However, they did
not determine any exponent. In three dimensions, their
data were insufficient to determine either the transition
temperature or the exponent.

Using the same method as in Ref. 8 we had performed
Monte Carlo studies of this problem on the simple-cubic
lattice. 9 We were able to estimate both the collapse point
T, and the crossover exponent 4i. In this paper we per-
form a scaling analysis of our data reported in Ref. 9 for
the specific heat usin'g a scaling function derived in analo-

gy with linear polymers. This results in better estimates
of the collapse temperature T, and the crossover expo-
nent 4i.
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FIG. 1. Specific heat vs temperature T for various animal size
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C-N's 'g(tN4) .
-

(3)

Although the scaling form (3) was derived only for linear
polymers, we feel that the scaling structure carries over
straightforwardly into the case of branched polymers.
Only the critical exponents, upper critical dimension, scal-
ing functions such as yr and g change.

In Fig. 1 we reproduce the result of the specific heat re-
ported in Ref. 9. The specific heat as a function of the
temperature exhibits a peak at T~(N) depending on the
size of the animal N. As N increases both T (N) and
the height of the peak C (N) increase monotonically.
We have T (27) 0.5433, T (36) 0.6090, T (48)

0.6482, T (64) 0.7037, T (80) 0.7279, and
C (27) 1 4668, C (36) 1 6929, CM(48) 2 1179,
C (64) 2.4565, C (SQ) 2.8871. In Ref. 9 we ob-
tained a first estimate of T, and p by using the finite-size
scaling relation

T (N) T, +aN

and least-squares fitting the data for T (N) to determine
the three unknowns T„a, and p. We obtain the rough es-
timate T, =0.97, p= 0.52.

These estimates can be improved using a scaling
analysis for the specific heat. For linear polymers, it is
known that the partition function has the scaling form'o
for N ee and t=(T—T, )/T, 0,

Z~ N" 'y(tNs),

where T, is the collapse temperature, p is the crossover
exponent, and y is a universal scaling function. From (2)
and the relation a 2 —I/p for the specific-heat exponent
a one obtains the scaling form for the specific heat for
N eeandt 0,
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FIG. 2. Positions of the specific-heat peaks T (N) vs N
with p 0.814.

The crossover exponent p is obtained b~ fitting the
values C (N) to the form C (N)-Nzs . This pro-
cedure relies on the tentative assumption that the data in

Fig. 1 are already close enough to the asymptotic region
where Eq. (3) holds. We obtain p=0.814. Using this
value of p in the finite size scaling relation (1) and fitting
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FIG. 3. Scaled specific heat C/N i ' vs scaling variable tNi, with t= IT T(N)l/T (N) and p
—0.814, for various N: 0,

N 48; x, N 64;+, N 80.
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the values of T (N) we find T, =0.854. We consider
these to be better estimates of T, and p, since an indepen-
dent relation (3) was used to determine p. In Fig. 2 we

plot T~(N) vs N v with 4 0.814. The points lie more or
less on a straight line with intercept at T, and thus are
consistent with finite-size scaling.

To test the scaling form (3), we plot in Fig. 3 the quan-

tity C/N v ' vs the scaling variable tNv, where here we
have taken i—= (T —T~(N)]/T~(N). Since T (N) ap-
proaches T, for large N, t, and t are equivalent for large
N. From Fig. 3 we see that except for values near the
peak, the data for various N fall more or less on the same
curve, which is the scaling function g. This confirms the

scaling form (3). The deviations near the peak may be
due to the inaccuracy with which the height of the peak is
determined or to the possibility that the asymptotic region
where (3) holds is not yet reached. The increasing devia-
tions in the wing of the scaling function are interpreted as
corrections to scaling. However, our data do not cover a
wide enough range of N to allow a systematic analysis of
these corrections.
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