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The exact Dyson equation for an anisotropic Heisenberg ferromagnet is derived using the
irreducible-Green s-function technique. The spin-wave energy shift and damping are derived at low

temperatures and are discussed with reference to earlier work. The results for the Curie tempera-
ture are derived and are critically analyzed with reference to those of the molecular-field approxi-
mation, the correlated effective-field approximation of Lines, the high-temperature series expansion
of Wang and Lee, and the Green's-function diagrammatic theory of Yang and Wang.

I. INTRODUCTION

Observed data from magnetic resonance experiments
and theoretical studies of the crystalline field, along with
the perturbation calculation of the spin-orbit interaction,
have clearly established the fact that the exchange anisot-
ropy and the single-ion anisotropy are two fundamentally
important features existing in a wide variety of magnetic
substances. Hence the static and dynamic properties of
these substances can be studied by means of a generalized
Heisenberg model expressed as

H = —too +S Dg (S )—
—y J,i[S,'S;+-,' (S,+S;+S;S,+)],

where ~0——gp&H, ; g being the Lande splitting factor, pz
the Bohr magneton, and H, the external field applied
along the positive z direction. S; and S,. are two spin
operators at the lattice sites i and j, respectively. J; is
the exchange integral and g measures the strength of the
anisotropic exchange. D is a parameter measuring the
strength of the single-ion anisotropy. The summation is
assumed to extend over nearest-neighbor pairs i and j. In
the present paper we restrict ourselves to the spin-1 case.
We further assume at the outset that D is greater than
zero which implies that the doublet is the ground state
and the system orders along the z axis even if the ex-
change interaction is very weak compared to the single-
ion anisotropy.

The above model has been extensively studied by a
number of authors in the past " and some important
results were obtained by them by several different
methods. The model can be studied very simply by
means of the molecular-field approximation (MFA) and
although it is the simplest of all the methods and it
overestimates the interspin correlation, it gives fairly ac-
curately the qualitative behavior of the model. More ac-
curate quantitative results have been obtained by the
method of double-time temperature-dependent Green's
function. " In the early stage of application of
Green's-function theory to magnetic problems, the
equation-of-motion approach was adopted. In this ap-
proach one obtains a nonlinear differential equation in

which the higher-order Green's functions are coupled
with the lower-order ones. Each of the higher-order
Green's functions is again written down in the form of a
nonlinear equation and so on. This infinite hierarchy of
equations is cut off by a decoupling approximation and
the solution is achieved. However, these decoupling ap-
proximations are essentially intuitive or empirical in na-
ture and cannot be justified from first principles. Often
they lead to unphysical results. The problem becomes
really serious for spins greater than —,'. A spin-1 Heisen-

berg model with single-ion anisotropy " and a spin-1
Heisenberg model with biquadratic exchange' ' are
two well-known problems where the solutions obtained
even by rigorous decoupling schemes are far from satis-
factory. In both cases the problem of decoupling of
single-site Green's functions causes much diSculty.
However, it has been realized that the idea of decoupling
of single-site Green's functions is erroneous and methods
have been devised in which the single-ion terms were
treated exactly. In the present paper we restrict our-
selves to the single-ion case and the biquadratic-exchange
problem will be discussed in a later paper. A fairly long
review of early works on the single-ion problem is
presented in the paper of Yang and Wang' in which they
clearly analyze the arbitrariness and inconsistencies in
the calculations of earlier authors.

In order to remove the inconsistencies Yang and Wang
developed a diagrammatic perturbation theory for stan-
dard basis operators (SBO) and summed up the diagrams
to order I/z, where z is the number of nearest neighbors
of a given spin. They showed that if one performs a
correct summation of diagrams of a given order the
redundancy problem of Murao and Matsubara is re-
moved. However, although their theory is a definite im-
provement over early works on the problem, there still
seems to be objections. Haley' claims that Yang and
Wang were only partially successful. In the formulation
of Yang and Wang some arbitrariness remains in the
Wick-like reduction theorem proposed to decouple the
time-ordered products of SBO. Furthermore, it is felt
that the use of SBO leads to unnecessary complications of
the problem. A diagrammatic technique of Vaks, Larkin,
and Pikin, using the usual spin operators, was
developed by Kaschenko et aI. ' and Balakhonov et al.
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However, a semi-invariant diagram method with the use
of the reduction theorem of Care and Tucker may be
developed. A general formulation including the spin-
phonon interaction has been recently developed by
Chakraborty and Tucker.

Recently, it has been realized that it is possible to for-
mulate a systematic self-consistent many-body theory and
to develop an exact Dyson equation for the system.
In this respect, two apparently dissimilar but essentially
equivalent approaches were invented. One is the
Zwanzig-Mori's projection-operator method and the
other is the method of irreducible Green's functions.
Micnas and Kishore, ' using the former approach, treat-
ed the single-ion problem. However, they did not study
many of the important aspects of the problem, and also
they represented the spin operators in terms of SBO
which complicates the problem. The method of irreduc-
ible Green s function is more advantageous due to its in-
herent simplicity.

The purpose of the present paper is to develop the
irreducible-Green s-function theory of an anisotropic
Heisenberg model expressed by Eq. (1}and to derive the
results for some important thermodynamic quantities.
To date no such calculation is apparently available in the
literature.

The plan of the paper is as follows: Section II presents
the formal developments of the equation of motion for
the two-time temperature-dependent Green's function
and the random-phase-approximation (RPA) results are
studied. Section III employs some appropriate irreduc-
ible operators to obtain a solution. An exact Dyson equa-
tion is derived. In Sec. IV the low-temperature proper-
ties of the model are investigated. In Sec. V the results
for the Curie temperature are derived and discussed with
the results of MFA, of the diagrammatic technique of
Yang and Wang, of the correlated effective-field approxi-
mation of Lines, and of the high-temperature series re-
sults of Wang and Lee. Some concluding remarks are
presented in Sec. VI.

«s+;s; ».=(1/2 )&[s+,s;]&
+ « [S,+,~];S;&&. , (4)

(5)

where

a f+ ——SfSf+ +Sf+Sf

is treated as a single operator.
The right-hand side of Eq. (5) contains higher-order

Green's function of two kinds. One is the exchange
Green's function like «S Sf+;Sg » and the other is the
single-site Green's function like « tT f+;S ». The
random-phase approximation used to decouple the form-
er type gives very good results throughout a wide range
of temperatures. Much more rigorous decoupling
schemes were also devised. Similar attempts were also
made to decouple the single-site Green's functions. How-
ever, it has been realized by some authors that there is no
need to decouple this kind of Green's function and that
the single-ion term can be treated exactly. Actually, of
is a single operator and one can readily set up the follow-
ing equation of motion for S = 1:

( —.)«,+;s;»=(1/ )~,s„+D&&s,+;s;&&

+2+ J/«(S o/ —its;+if );S

where we have chosen units such that 6=1. The suffix co

attached to the Green's function implies that we have
taken the time-energy Fourier transform of the Green's
function Gfg(t —t'}. Henceforth we omit this suffix.

Using Eq. (1) for H in Eq. (4), we get, aftersimplification

,

(~ ~,)&&s,+;s; &&=(1/~)&sf &s„+a&&~~+;s;&&

+2+ Jtf «(S Sf+ ris—,+Sf );Sg »,

II. BASIC FORMALISM

There exist in the literature sufficient sources of infor-
mation about the equation-of-motion approach for two-
time temperature-dependent Green's functions and so it
is not very useful to repeat it here. Following Zubarev
we employ a two-time thermal-retarded Green's function

Gfg ( t —t '
}defined by

Gf, (t —t') =«sf+;s; »

= —ie(t —t )&[Sf+(t},S (t'}]&,

where f and g are lattice sites and e(x) is the step func-
tion having the property

where

(7)

Sf+St+ =0,

f f+ f f sf
Because of the translational invariance of the lattice we
can use the fo11owing Fourier transforms:

S,'=(1/N'~ )Qsfexp( ik R—;),
k

Af
——3(sf) —2 .

In deriving Eq. (7) we have used the following spin-1
identities:

0, for x&0ex =.
1, for x &0. (3) S; =(1/N' )g Sk—exp(+ ik R, ),

k

(10)

Considering difFerentiation with respect to the first time t,
the equation of motion for the Green's function may be
shown to be

J,~=(1/N)g Jkexp[ —ik (R; —Rt)] .
k

The Fourier transforms of o.,
+ is like S,-+ and k,. is like S .
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Equations (5) and (7), therefore, take the following
forms:

(~—~,)&&s,+;s;, &&

=&s„,. &/( ~N )+D&&,+;s; &&

+(2/N' )QJk «(Sk Sk+ k ris—k k Sk+ );Sq
k'

(co—coo) « o'k+;Sq

= & A,k ~ &/(AN'~ )+D &&Sk+;S ~ &&

+(2/N' )g Jk « (Sk crk k. q)Ak —kSk+ );Sq
k'

(12)

( —,)« Sf+;,—»

=(b/ )5

+2 g Jf«(S,'Sf+ —ris;+Sf');o'g »,

(n) coo—)« o'j+;og »

=(~/ )~„+D&&s,+;;&&

+2+ J,f«.(S;o'f rIkfs;+);Ss » .

Fourier transforming to momentum space we get

( —,)«S„+;

=&&„,.&/( N'")+D«,+;;.»
+(2/N )y JI, «(sksi,+ I,

—q)sk+Sk k yoq » y

Equations (11) and (12) are the results of straightforward
derivation and were obtained in these forms by Potap-
kov. s These equations may also be seen to follow from
the works of Devlin and Tanaka and Kondo.

Now within the RPA one can write

k'

( —,)«o;;;»
(20)

s„',s„+ „,;s;. »=N'"beak. «s„+,.;s;, », (13)

(14)

Equations (11) and (12) may, therefore, be written in the
following forms:

=&Sk
q

&/(AN' )+D«Sk+;o

+(2/N )XJk'« (Sk'ok k' 9~k— k'sk ) ~—q' &&

k'

(21)

I (co coo) 2—b (Jo—q)Jk ) 1 G
&

DG2 (b/—qr)5k——

(15)

(D 2q)AJk —)G, +—(co coo 2bJo )—G2 =—( ~/qr)&k q'—
(16)

where

G, =«s„+;s;, »,
G, =«o+;S;. »,
b=&s'&; ~=&) &. (17)

For q) =1, Eqs. (15) and (16) reduce to those of Potapkov,
and generate two spin-wave branches, one is the usual
spin-wave excitation and the other is the optical excita-
tion. Equations (15) and (16), along with the use of the
spectral theorem, enable one to derive all the necessary
thermodynamic quantities with correct qualitative behav-
1OI.

However, the calculations done in the above way are
subject to serious criticisms from another corner. It may
be noted that in addition to the Green's functions G

&
and

G2, there are other pair of Green's functions 63 and G4
which are, respectively, the Fourier transforms of the
Green's functions «Sf+;og » and «crf+;erg »„. The
equations of motion for these Green's functions can be
found to be

Using RPA one can linearize the above equations of
motion and one obtains two coupled equations in G3 and
G4. Using this set of equations it is again possible to
derive necessary thermodynamic quantities. The interest-
ing point is that the results obtained from this set do not
agree with those derived from Eqs. (15) and (16). This
redundancy problem was discussed by many authors.
When one uses the SBO an additional problem develops.
This is the one related to the breakdown of kinematical
consistency of SBO.'

One interesting point should be noted. Two sets of
equations mentioned above are actually coupled with
each other. When one uses the RPA this coupling breaks
down and two sets become essentially independent and
this leads to redundancy. $o, to remove this redundancy
we have to retain this coupling and this is what is done in
a diagram technique.

III. IRREDUCIBLE GREEN'S FUNCTIONS

It is possible to formulate the equation-of-motion tech-
nique with the use of irreducible operators first intro-
duced by Plakida, and later studied by other au-
thors. ' Like the diagrammatic technique the irreduc-
ible Green s function theory, in principle, enables one to
formulate the problem exactly. However, as in a diagram
technique, only a certain class of diagrams are summed
up in practice, likewise in the irreducible Green s func-
tion theory specific approximations are found to be neces-
sary for reducing or evaluating the irreducible operators.

In the present problem we use the following irreducible
operators:
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(Sk, }"=Sk. —bN' 5«, ,

$,=(S« Sk+ k — 9—S« «S—k )

( 2 ( k'~k —k' 9~« —k'Sk' }

Therefore, we can write

(22)

Go Go
1 A,(a)—y )+bD

2 — 3=—
~ (~—~k )(~—CO« )

n n k'k" ~

2n.(co —y )

b (co y)—+A,D

(32)

(33)

(34)

((($«.$«+ k. —riS« k Sk+ );Sq. ))

= (((p, +bN' 5« Sk+ k ribN—'
5« k Sk+. );Sq. )),

(23)

(((Sk'Hk k' —'9kk k'Sk' );Sq' ))

= g (pz+bN' 5«o k k. rIAN—' 5« «.S«+ );Sq

(24}

C2 ——

C3 ——

C4 ——

4m (co —y)(D —2gkJ« )

[A(a) —y ) +bD ]2

4qr (co y)(—D —2rlAJ« )

[b(a) y)+—AD]

2n(D —2gAJ« )

A(co —y)+bD+2(1 q))bAJ—«

'2

(35)

(36)

The equations of motion for G, , Gz, G3, and G4 can,
therefore, be written in the following matrix form:

G ) G2 co—y +2rib Jk (D —2—ried« )

G3 G4

D
Ik k- ——(1/N) g J«.J«- P)+

k', k" (co —y )

(38)

where

y =COO+2bJO,

I I
1,o, 2,o',

(25}

(26)

~k give two branches of excitation spectra expressed as

cok y r——ibJ«kfq—) b Jk+D(D —2riAJ«)]' . (39)

For g=l, the above equation coincides with that ob-
tained by previous authors.

Equation (30) can be written down as the exact Dyson
equation

1(2),S,
I

1,(2),cr,

b (A, }/m.

A, (b)/~
G=G +G XG,

where X is the self-energy operator given by

X=(P)',

(40)

(41)

S ~

+i~i~'"~X J,'((kn2), ~'
)l

. (27)

Q( ——(S«S«+q vlS« qS«—)

$2 (Sk ok+q q)A,
——« qS« )—

(28)

and after necessary simplifications Eq. (25) can be thrown
into the following matrix Dyson equation

The expressions for g ((}„S~ )) etc., can be written down

by setting up the equations of motion with respect to the
second time t' appearing in the Green's functions. Using
the irreducible operators

c denoting the connected or proper part.
Knowing (41), one can calculate G exactly from Eq.

(40), but the problem is that there exists no procedure for
calculating (41) exactly and we have to employ approxi-
mations. It can be readily shown that in the lowest-order
approximation the results obtained agree exactly with
those obtained from (1/z) order diagrams. In the lowest
order we have only two Green's functions G, =63 and

G2 ——G4, and so the thermodynamic properties can be
calculated uniquely and hence no redundancy arises. It
may be noted that identical results were also obtained by
Yang and Wang to order (1/z) .

Furthermore, we note that G } can be rearranged as

G=G +G PG (30)
&(~)

1+riJ« X(co)
(42}

p b (co—y )+ADG}= 7

17(CO CO« )(QP CO« )——

2J« ( b rid}—.
GO Go+

m(CO —CO« )(CO —CO« )

(31)

where G is the mean field or zeroth-order Green's func-
tion and P is the polarization operator. These are given
by

where

1 2b 1 2D(b —A, )

2m' co —y D2m (~—y—)2 —D2

X(co}=2nD(co) .

(43)

(44)

For g = 1, the above equations reduce exactly to those of
Tanaka and Kondo' and Potapkov.

Again, as the correspondence with the semi-invariant
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diagrammatic formalism, we may rewrite G, in the fol-
lowing form:

PE (k)
(

x 1)—1 (57)

G, =g(1+2mgJt, g)

where g stands for

b+A, b —k+
2m(co —y D)— 2m(co —y+D) '

(45)

(46)

b,*=b+[(AD b—Jt, )/M(k)],

A,,*=+[(bD bA—Jt, )/M(k)],

M(k}=[rt b Jt, +D(D —2gMt, )]' (58)

g is thus identical with the second-order semi-invariant
and Eq. (45) is the same as that obtained in a semi-
invariant diagrammatic formalism ' to order (1/z) .

IV. RENORMALIZED GREEN'S FUNCTION
AND LO%-TEMPERATURE RESULTS

From Eq. (40) one can write down the expression for
the renormalized Green's function in a straightforward
way. The result is

G~(k, co)= A+[co E+(k—)] '+ A [co—E~ (k)]

(47)

For the case g = 1 and when we use the unrenormalized
energy values, i.e., E*(k)=cot*, we may readily recover
the expressions derived by Potapkov and Devlin.

Equations (53)—(56) enable us to study the statistical-
mechanical properties of the model at any arbitrary tem-
perature, but the complicated structure of these equa-
tions prevent us from having exact estimates. However,
the low-temperature case can be treated very easily. This
is mainly due to the fact that at low temperatures we can
neglect the upper branch cok+ and that we have to consid-
er only the lower branch cok, and one gets after
simplifications

where E*(k) stand for the renormalized energy and are
given by

b = 1+(2/N)g(e " —1)
k

(59)

E~(k)=cot*, + A~X~(k, cot*, +te),
with m =1-4 and

(48)
(60)

A(cot —y )+bD
A2 ——A3 ——2

'tr( co t
—co g )

(50)

b( co—t y )+AD ~ ~ 2Jt, (b re, )—
A) ——k, A4 ——+Ai+

17(col —cot, ) 1T(cot, —cot )

(49)

cot, =coo+D+2(Jo Jt, )b, (61)

where we have quoted the results only for g= 1. These
are well-known results.

For the spin-1 case we get, using A, =l,b=l, , the sim-
ple relationship

The energy shift and damping are given by

b I*,c(om) i I'
t, (m—)= A X (k, &co+ie),

P) ——P2 ——P3 ——P4

(51)
which implies

(62)

where hook is the shift in energy and I k is the spin-wave
damping.

Using the spectral theorem

(St, St+(t)) =i lim I dcoe ' '(e~" 1)—
~~p

and

G) ——G2 ——G3 ——64, (63)

x((&s+;s„-))„„,
—&(s„+;s„-))„,,)

we get the following relations:

b —(A, /3) =(—1/N)g(N j+b„++N, b„)
k

=(1/N}g(N4+b„++N4 b„),

(53)

(54)

P] ——

X(k, cot, )

(D —2Jt, )
2

k'k" &

k

(D —2Jt,).
(1/N)

(64)

b —A, =(1/N)y(N+ A, ++N A,„)
k

(55)
(65)

where

=(1/N)g(N+ A, ++N, A,„), — —

k
Equation (65) can be written down in a very simple form.
We note that at any arbitrary temperature Ik.k- may be
expressed as
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Ikk- (——1/N) g JkJk -f, (e~ —1)f dte'"' (p,p, (t))+ (1(2$,(t))
k k

—00 k
1

+ D —2J ~'~'" +
D —2J

D D

k k

2

(p p (t)) (66}

Let us use a simple decoupling approximation of the form

(( k ~ k +q )'"[ k (t)Sk+ k. (t)]'")

- (Sk.Sk.(t) ) (Sk.~q Sk k (t) ), (67)

along with a single-pole approximation co =cok we get the
following low-temperature expression for the self-energy:

(J —J „) (S„'S~ )
X,(k, cok +i e) =(4b&/N)g

k' 4 k k —k'+~~

(68)

The expressions for the energy shift and damping are
given by

bcoI, (4b qt/N——)g[(Jk Jk~k ) l—(Jk k Jk)](.S~—Sk ),
(69)

1"k (4b qt /——N)g(Jk Jk+k ) —(S„'.Sk )5(Jk k Jk) . —
k'

(70)

The resonance linewidth is related to I 0 and we see in
this case that I 0——0. Also, hco0=0. These results agree
with those obtained by Chakraborty and Tucker. But
these results are not in accordance with the results of
Kaschenko et al. ' and Yang and Wang' in diagram-
matic framework, and of Micnas and Kishore ' in a
projection-operator framework.

Furthermore, at low temperatures one can readily
derive the following result:

G, (0}= 2b
2n (co too —D)— (71)

The resonance frequency is thus cu„=coo+D which is the
same as that of Potapkov.

V. HIGH-TEMPERATURE RESULTS

(4—A, ) b=(1/N—)g bn &+ + n
&

k

b(D bJk)—
b —A, =(1/N)g n ~++ nz

k

where

(72)

(73)

(74)

After straightforward simplifications we can write the
following explicit expressions for n

&
and n 2.

As in a diagrammatic theory for a magnetic system it is
also very diScult in the present theoretical framework to
derive quantitatively accurate results at high ternpera-
tures. However, some sensibly accuratt; values of Curie
temperatures can be derived with the use of some approx-
imations. Equations (53)-(56) are exact expressions for b
and A, , but it is impossible, in practice, to perform compu-
tations from these equations. The simplified forms for
the self-energy are necessary for computation. However,
we shall consider an easier problem of computing the re-
sults for the Curie temperature. We first see that since
E&(k)=E4(k), E2(k)=E3(k), Eqs. (53)—(56) reduce to
the following two identities:

n ~+ = —1 ——,'P(y bJk)cosech [—,'P—M(k)]

m.p f' + f
2M(k) ' b( bJ„+M(k))+A—D b(bJI, +M(k)) —AD

(75)

(76)

n z =+—1 ,'P(y bJI, )cosech—[——,'PM—(k)]

pm(D —2AJk }

2M(k}
p+p+ pcosech [—,'PM(k)]

A( bJk+ M(k))+—bD A(bJk+M(k)) bD-+ (77)

pn. (D —2AJ„), pM (k)
n2 =coth[ —,'pM(k)] — cosech

f+p+ f—P-
A( bJk+M(k))+b—D A(bJk+M(k)) bD—(78}
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where

f =(1/N) g JI, JI,-(([bJI, TM(k)]$, —D$2;
k', k"

mode. They identified cok+ as this highly damped mode.
So, considering only a single pole at co=cok and taking
the limit b —+0 we arrive at the following two equations
(for g= 1):

[bJ„™~ i ]g& —D Pz }) ~+ .

P*= bJ—I, +M(k) .

(79) 1=U(P, ) —A, V(P, )+ W, (P, ),
4+3Wi(P, )

1+3U(P, )

(80)

(81)

The elimination or the determination of A, from Eqs.
(72) and (73) in the limit b ~0 and the subsequent deriva-
tion for an expression for the Curie temperature are evi-
dently complicated. However, approximate results for
the Curie temperature may be obtained readily using a
single-pole approximation which is consistent with the
observation of Kaschenko et al. ' stating that even at
temperatures close to the Curie point one of the modes
becomes highly damped in comparison to the other

Combining (80) and (81) we arrive at the final expression
for the Curie temperature

4+3W|(p, )
1=U(P, ) —W, (P, )+ V(P, ) =0 . (82)

This equation is structurally similar to the form obtained
by Tanaka and Kondo. Different parameters appearing
in the above equation are given by

U(P, )=(1/N)g coth[&'P, MO(k}],
k

V(p, ) = (1/N)g ((Jl, /Mo(k) ]coth[ —,'p, MO(k) ]+—,
' p, (2JO —Ji, )cosech [—,

' p, MO(k) ]],
k

W, (P, ) = g cosech [—,'P, MO(k)],
~p, y,
2N „M,'(k)

n p, (D —2AJ1, ) (D —2AJI, )(D —kJ~ )
Wz(P, )= — g, yi y2cosech [—,'P, MO(k)]

2N ~ mo(k) Mp k

(83)

(84)

(85)

(86)

where

y =Iim I'-I
b-o b

yz ——lim(f++f ),
b~o

Mo(k) = [D(D —2JI, (A, )s 0)]'i

G) (col, ) ——A,o/(4mD ), (87)

where Ao=(A, )& o. We have assumed that the mode co&+

is highly damped. The expressions for y& and y2 thus be-
come

A, D
y, = J„(J —J ), (88)

If one ignores W, (P, ) and W2(P, ) one can recover the
results of Tanaka and Kondo. Thus in the present frame-
work the results for the Curie temperature are substan-
tially modified by the presence of the parameters W, (p, )

and W2(p, ). The estimates for these parameters may be
made by means of calculating y, and y2. Exact calcula-
tion is not possible at present. %e resort to approxima-
tions. Using Tyablikov's approximation for infinite en-

ergy we may write for D )0 and at T = T,

D,
r2= Jk2' (89)

The expressions for W, (p, ) and Wz(p, ) take the forms

A, P, DJq
cosech [—,'P, MO(k)],

P g2 D5J2
W2(, )=

4N I, M(k)

(90)

X I 1+2[MD(k)/D ][1—(Jo/Ji, }]I,

For the case Wt(p, )=0, Wz(p, )=0, and

(91)

Mo(k) =D, 2(e ' —1)
e' +1

one can get the MFA result

4p, Jo=y (92)

where y =2+ exp( p, D ), and Jo ——Jz—, J being the
nearest-neighbor exchange constant and z being the num-
ber of nearest neighbors.

Using (92) as a first step of iteration and ignoring
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p', (p, ) and W2(p, ), we arrive at the RPA result

4p, JO y——F,
where

F =(1/N)+[1 —(Jk /Jo)]
k

(93)

(94)

The irreducible Green's function (IRG) theory for a
spin-1 anisotropic Heisenberg model developed in the
preceding sections has been found to be more satisfactory
than the conventional equation-of-motion technique.
Like a diagram technique, the IRG theory is, in princi-
ple, able to reproduce exact results. An additional advan-
tage of an IRG theory is its simplicity in application to
complicated magnetic systems. It has been realized that
for a Heisenberg model with complicated interactions it
is not really easy to carry out high-temperature-series ex-

o.a

Q I

0 8.0

FIG. 1. The variation K, =Jo /k T, with respect to
a=D/Jo, for a spin-1 simple-cubic Heisenberg ferromagnet.
Curve I represents the results of the present paper. Curve II
shows the results of CEF of Lines. Curve III represents the re-
sults of HTS expansion of Wang and Lee. Curve IV corre-
sponds to the results of MFA.

We shall now include the effects of the parameters W&

and Wz. Using (93) we get the following equation for the
Curie temperature:

24aPK, +2y(2+aC) Fy —=0,
where

a =Q/a, C =(1+4a)(1+2a), a=D/Jo,

g =1—(3/y), P =1—(2/y)

The results are shown in Fig. 1 where K, has been plot-
ted against D/Jo. For comparison the results of other
calculations are also quoted. These results correspond to
those of the MFA, of correlated-effective-field (CEF) ap-
proximation3 and of the high-temperature-series (HTS)
expansion derived by Wang and Lee. Results of diagram-
matic theory of Yang and Wang are not shown in Fig. 1

since they are not very distinguishable from those of
Wang and Lee. Figure 1 shows that the results of the
present calculation are very close to those of CEF theory
of Lines.

VI. CONCLUDING REMARKS

pansion, Monte Carlo simulation, or a renormalization-
group calculation. Indeed, the results of such calcula-
tions are still not available. Wang-Lee's results of HTS
expansion are actually based on the diagrammatic per-
turbation formalism of standard basis operators, which
has some disadvantages as mentioned in the Introduc-
tion. So the results calculated from this expansion should
not be considered as exact. Still, considering these results
as the best available estimates for the Curie temperature,
we find that the results of the present paper do not differ
very widely from the results of Wang and Lee. An addi-
tional feature to be noted is that the present results agree
nicely with those of CEF theory of Lines.

However, it is clear that the most difficult part of an
IRG theory is the calculation of the self-energy operator
and no systematic method has been invented for this.
Combining with the formalities of the diagrammatic
technique, it might be possible to devise an appropriate
reduction theorem for the irreducible operators. The
problem may also be considered with reference to the re-
cent work of Singer and Weeks, who, starting from
Kubo's generalized cumulant formalism, developed re-
normalized finite cluster expansions for a class of statisti-
cal systems in which the degrees of freedom can be
grouped according to their degrees of correlation. They
were able to show that when the expansion is truncated
at different orders the final result is found to be a hierar-
chy of mean-field approximations and a number of terms
of the exact series expansion is reproduced. In the
present IRG formulation the mean-field contribution is
first extracted out from the higher-order Green's func-
tions and the effects of the remaining terms are all left
with the irreducible operators which are then decoupled
by RPA. So, the results might not be expected to agree
with the results obtained from the first few terms of the
exact series. A systematic way of extracting mean-field
contributions successfully from the irreducible operators
may possibly reproduce an increasing number of terms of
the exact series expansion. A formulation of the problem
in this manner will be considered in future.

We conclude by mentioning the major difficulties at
present to formulate the problem using renormalization-
group technique. Recently, the Heisenberg models are
studied on the basis of Migdal -Kadanoff (MK) ap-
proximation which has the following basic problem.
The MK approximation consists of two main steps —one
is the bond moving and the other is the site decimation.
For quantum-spin models site decimation cannot be car-
ried out exactly and one has to resort to a suitable ap-
proximation. Recent modified approximate schemes for
site decimation done by Chen, Chen, and Lee may be
applied to the present problem. Under these cir-
cumstances IRG theory may be granted as an acceptable
approach since it has been found from the present calcu-
lations that this method has got the potential to repro-
duce the resu1ts with reasonable accuracy.
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